SỞ GIÁO DỤC VÀ ĐÀO TẠO BẮCGIANGĐỀTHI CHỌN HỌC SINH GIỎI CẤP TỈNH NĂM HỌC 2009-2010 Môn thi: Toán-lớp 9. Ngày thi: 28 tháng 03 năm 2010. Thời gian làm bài: 150 phút (không kể thời gian giao đề). Câu I (4,0 điểm). Cho biểu thức 2 1 2 1 ( ). 1 1 2 1 x x x x x x x x A x x x x + − − + − = + − − − − . 1. Tìm các giá trị của x để 6 6 5 A − = . 2. Chứng minh rằng 2 3 A > với mọi x thoả mãn 1 0, 1, 4 x x x≥ ≠ ≠ . Câu II (4,0 điểm). 1. Cho a, b, c, d là các số nguyên dương thoả mãn : a 2 + c 2 = b 2 + d 2 Chứng minh rằng a + b + c + d là hợp số . 2. Tìm ,x y nguyên dương thỏa mãn: 2 ( 3) ( 3)x xy− +M Câu III (4,0 điểm). 1. Giải phương trình: 2 1 3 1x x x+ − = − . 2. Cho phương trình: 4 2 2 6 24 0x mx+ + = (m là tham số). Tìm giá trị của tham số m để phương trình có 4 nghiệm 1 2 3 4 , , ,x x x x phân biệt thỏa mãn: 4 4 4 4 1 2 3 4 144x x x x+ + + = . Câu IV (6,0 điểm). Cho nửa đường tròn (O;R) đường kính AB. Gọi C là trung điểm của đoạn thẳng AO. Một đường thẳng a vuông góc với AB tại C cắt nửa đường tròn (O) tại I. Trên đoạn CI lấy điểm K bất kì (K không trùng với C và I). Tia AK cắt nửa đường tròn (O) tại M, tiếp tuyến của nửa đường tròn (O) tại M cắt đường thẳng a tại N, tia BM cắt đường thẳng a tại D. 1. Chứng minh rằng tam giác MNK là tam giác cân. 2. Tính diện tích tam giác ABD theo R, khi K là trung điểm của đoạn thẳng CI. 3. Chứng minh rằng khi K chuyển động trên đoạn thẳng CI thì tâm đường tròn ngoại tiếp tam giác AKD luôn nằm trên một đường thẳng cố định. Câu V (2,0 điểm). Cho a, b, c là các số thực dương thỏa mãn a + b + c = 1. Chứng minh rằng: 4 1 111 ≤ + + + + + b ca a bc c ab . ----------------Hết---------------- Cán bộ coi thi không giải thích gì thêm. Họ và tên học sinh: .Số báo danh: ĐỀ CHÍNH THỨC . VÀ ĐÀO TẠO BẮC GIANG ĐỀ THI CHỌN HỌC SINH GIỎI CẤP TỈNH NĂM HỌC 20 09- 2010 Môn thi: Toán- lớp 9. Ngày thi: 28 tháng 03 năm 2010. Thời gian làm bài: 150 phút. 28 tháng 03 năm 2010. Thời gian làm bài: 150 phút (không kể thời gian giao đề) . Câu I (4,0 điểm). Cho biểu thức 2 1 2 1 ( ). 1 1 2 1 x x x x x x x x A