Phân lập nghiên cứu đặc điểm sinh học của một số chủng vi sinh vật có khả năng tạo màng sinh vật biofilm ở việt nam

79 33 0
Phân lập nghiên cứu đặc điểm sinh học của một số chủng vi sinh vật có khả năng tạo màng sinh vật biofilm ở việt nam

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN - Trần Thúy Hằng PHÂN LẬP, NGHIÊN CỨU ĐẶC ĐIỂM SINH HỌC CỦA MỘT SỐ CHỦNG VI SINH VẬT CÓ KHẢ NĂNG TẠO MÀNG SINH VẬT (BIOFILM) Ở VIỆT NAM LUẬN VĂN THẠC SĨ KHOA HỌC Hà Nội – 2011 ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN - Trần Thúy Hằng PHÂN LẬP, NGHIÊN CỨU ĐẶC ĐIỂM SINH HỌC CỦA MỘT SỐ CHỦNG VI SINH VẬT CÓ KHẢ NĂNG TẠO MÀNG SINH VẬT (BIOFILM) PHÂN LẬP Ở VIỆT NAM Chuyên ngành: Sinh học thực nghiệm Mã số: 60 42 30 LUẬN VĂN THẠC SĨ KHOA HỌC NGƢỜI HƢỚNG DẪN KHOA HỌC: TS NGUYỄN QUANG HUY Hà Nội - 2011 Luận văn thạc sĩ Sinh học Trần Thúy Hằng MỤC LỤC Trang MỞ ĐẦU Chương TỔNG QUAN TÀI LIỆU .2 1.1 Khái niệm màng sinh vật (biofilm) 1.2 Các dạng màng sinh vật tự nhiên vai trò vi sinh vật 1.2.1 Các chủng vi sinh vật có khả tạo màng sinh vật tự nhiên 1.2.2 Các dạng tồn màng sinh vật 1.2.3 Ảnh hưởng màng sinh vật vi sinh vật 1.3 Thành phần, cấu trúc đặc điểm màng sinh vật .11 1.3.1 Mạng lưới ngoại bào 11 1.3.2 Các thành phần khác 13 1.4 Các yếu tố ảnh hưởng đến hình thành phát triển màng sinh vật 15 1.4.1 Các giai đoạn tạo thành màng sinh vật 15 1.4.2 Các yếu tố ảnh hưởng đến hình thành màng sinh vật 20 1.4.3 Điều hòa trình hình thành màng sinh vật 22 1.5 Nghiên cứu ứng dụng màng sinh vật 24 1.5.1 Ứng dụng màng sinh vật việc xử lý nước thải 24 1.5.2 Ứng dụng màng sinh vật việc ức chế vi sinh vật gây hại 25 1.5.3 Một số nghiên cứu ứng dụng khác 26 Chương NGUYÊN LIỆU VÀ PHƯƠNG PHÁP NGHIÊN CỨU .29 2.1 Nguyên liệu .29 2.1.1 Chủng vi sinh vật nghiên cứu 29 2.1.2 Vi sinh vật kiểm định 29 2.2 Hóa chất, thiết bị dụng cụ thí nghiệm 30 2.2.1 Môi trường nuôi cấy .30 2.2.2 Máy móc, thiết bị 31 2.3 Phương pháp nghiên cứu 31 2.3.1 Phương pháp phân lập vi khuẩn 31 Trường Đại học KHTN ii Luận văn thạc sĩ Sinh học Trần Thúy Hằng 2.3.2 Phương pháp bảo quản giống vi sinh vật .32 2.3.3 Phương pháp nghiên cứu đánh giá khả tạo màng sinh vật chủng vi sinh vật 32 2.3.4 Tối ưu hóa điều kiện tạo màng sinh vật 33 2.3.5 Phương pháp đánh giá khả tạo chất hoạt động bề mặt 35 2.3.6 Phương pháp đánh giá khả kháng khuẩn .35 2.3.7 Phương pháp nhuộm Gram 36 2.3.8 Quan sát cấu trúc màng sinh vật ảnh chụp kính hiển vi điện tử quét 37 2.3.9 Phương pháp phân loại phân tử dựa gen 16S rDNA 37 Chương KẾT QUẢ VÀ THẢO LUẬN 39 3.1 Phân lập, tuyển chọn chủng vi sinh vật có khả tạo màng sinh vật 39 3.1.1 Phân lập vi sinh vật .39 3.1.2 Khả phát triển tạo màng sinh vật chủng phân lập .40 3.2 Các yếu tố ảnh hưởng đến tạo màng sinh vật chủng phân lập 42 3.2.1 Ảnh hưởng nhiệt độ 42 3.2.2 Ảnh hưởng pH môi trường .43 3.2.3 Ảnh hưởng nguồn cacbon .44 3.2.4 Ảnh hưởng nguồn nitơ 46 3.2.5 Ảnh hưởng giá thể 47 3.3 Một số đặc tính sinh học phân loại chủng vi sinh vật phân lập 50 3.3.1 Khả tạo chất hoạt động bề mặt 50 3.3.3 Đặc điểm hình thái 53 3.3.4 Phân loại chủng vi sinh vật phân lập dựa gen 16S rDNA 55 KẾT LUẬN VÀ KIẾN NGHỊ .59 TÀI LIỆU THAM KHẢO .60 PHỤ LỤC 69 Trường Đại học KHTN iii Luận văn thạc sĩ Sinh học Trần Thúy Hằng DANH MỤC BẢNG Bảng 1: Ảnh hưởng pH môi trường đến tạo màng sinh vật chủng vi sinh vật phân lập 44 Bảng 2: Ảnh hưởng nguồn cacbon đến tạo màng sinh vật chủng vi sinh vật phân lập 45 Bảng 3: Ảnh hưởng nguồn nitơ đến tạo màng sinh vật chủng vi sinh vật phân lập 47 Bảng 4: Hoạt tính kháng khuẩn chủng vi khuẩn nghiên cứu 52 Trường Đại học KHTN iv Luận văn thạc sĩ Sinh học Trần Thúy Hằng DANH MỤC HÌNH Hình Các vi sinh vật gắn kết với bề mặt nhựa nhân tạo liên kết với thông qua mạng lưới polysaccarit kính hiển vi điện tử Hình Ảnh SEM màng sinh vật Staphylococcus aureus tạo nên .4 Hình Ảnh SEM màng sinh vật hình thành chủng Bacillus subtilis B-1 Hình Một số ví dụ màng sinh vật Hình Mơ hình phát triển màng sinh vật .16 Hình Khuẩn lạc số chủng vi sinh vật phân lập môi trường thạch 39 Hình Khả tạo màng sinh vật số chủng vi sinh vật phân lập từ mẫu nước thải làng miến Lại Trạch .40 Hình Khả tạo màng sinh vật số chủng vi sinh vật phân lập từ mẫu nước thải nhà máy sản xuất bia 41 Hình Khả tạo màng sinh vật số chủng vi sinh vật phân lập từ mẫu nước thải làng nghề bún Phú Đô 42 Hình 10 Ảnh hưởng nhiệt độ đến khả tạo màng sinh vật từ chủng phân lập .43 Hình 11 Màng chủng vi sinh vật sau ngày nuôi cấy 48 Hình 12 Màng sinh vật bề mặt nhựa 48 Hình 13 Cấu trúc màng sinh vật chủng phân lập 49 Hình 14 Khả nhũ tương hóa dầu ăn chủng vi sinh vật 51 Hình 15 Hình thái khuẩn lạc hình dạng vi khuẩn kính hiển vi quang học 54 Hình 16 Hình thái tế bào chủng vi khuẩn màng sinh vật 55 Hình 17 Vị trí phân loại chủng M3.8, M4.9 với lồi có quan hệ họ hàng dựa vào trình tự gen 16S rDNA .56 Hình 18 Vị trí phân loại chủng U1.3 U3.7 với lồi có quan hệ họ hàng dựa vào trình tự gen 16S rDNA .57 Trường Đại học KHTN v Luận văn thạc sĩ Sinh học Trần Thúy Hằng BẢNG CHỮ VIẾT TẮT Acyl - HSL Acyl - homoserine lactone COD Chemical Oxygen Demand (nhu cầu oxy hóa học) dd NTP Dideoxynucleotide đvC đơn vị Cacbon E24 Emulsion index (chỉ số nhũ tương hóa) OD Optical Density (Mật độ quang học) SDS Sodium dodecyl sulfate SEM Scanning electron microscopy TCA Tricarboxylic acid TOC Total Organic Carbon w/v Khối lượng (g)/thể tích (ml) Trường Đại học KHTN vi Luận văn thạc sĩ Sinh học Trần Thúy Hằng MỞ ĐẦU Nghiên cứu vi sinh vật học mơ hình nghiên cứu ưu việt để tìm hiểu chất q trình sống, đồng thời đóng vai trị quan trọng lĩnh vực y học, nông nghiệp, công nghiệp môi trường Tuy nhiên, tự nhiên vi sinh vật tồn dạng tế bào đơn lẻ mà chúng thường tìm thấy dạng tập hợp tế bào liên kết chặt chẽ với với bề mặt thông qua mạng lưới chất ngoại bào gọi màng sinh vật (biofilm) Nghiên cứu màng sinh vật giúp có nhìn tổng qt tăng trưởng, phát triển thích nghi vi sinh vật mối quan hệ với với điều kiện môi trường Đồng thời, việc tìm hiểu màng sinh vật giúp có hiểu biết sâu mối liên hệ bên tế bào màng sinh vật chế điều hòa trình tạo màng sinh vật Nghiên cứu màng sinh vật góp phần tạo sản phẩm ứng dụng cao sống tạo công nghệ sinh học xử lý ô nhiễm môi trường, xử lý cố tràn dầu, ứng dụng nghiên cứu phòng bệnh cho trồng nghiên cứu cơng nghiệp thực phẩm, hóa mỹ phẩm v.v… mà Việt Nam nghiên cứu vi sinh vật tạo màng sinh vật ứng dụng chúng cịn mẻ Chính từ ý nghĩa thực tiễn trên, định thực đề tài: “Phân lập, nghiên cứu đặc điểm sinh học số chủng vi sinh vật có khả tạo màng sinh vật phân lập Việt Nam” Trường Đại học KHTN Luận văn thạc sĩ Sinh học Trần Thúy Hằng Chương TỔNG QUAN TÀI LIỆU 1.1 Khái niệm màng sinh vật (biofilm) Vi sinh vật tên gọi chung để tất sinh vật có hình thể bé nhỏ, muốn thấy rõ người ta phải sử dụng tới kính hiển vi Vi sinh vật khơng phải nhóm riêng biệt sinh giới Chúng chí thuộc nhiều giới sinh vật khác nhóm khơng có quan hệ mật thiết với [1] Lịch sử nghiên cứu phát triển vi sinh vật học ghi nhận người có cơng phát giới vi sinh vật người mô tả hình thái nhiều loại vi sinh vật - Antonie van Leeuwenhoek (1632 - 1723) Với việc tự chế tạo 400 kính hiển vi, ơng quan sát thứ có xung quanh mình, có vi khuẩn động vật nguyên sinh mà ông gọi “động vật vô nhỏ bé” Ông người phát tượng bám dính phát triển phổ biến vi khuẩn bề mặt tạo thành mảng bám răng, dạng màng sinh vật sau [1] Cùng với đời kính hiển vi quang học hoàn chỉnh vào đầu kỷ 19, đặc biệt việc chế tạo thành cơng kính hiển vi điện tử (1934) góp phần tạo nên cống hiến lớn lao nhà khoa học lĩnh vực vi sinh vật học [1] Năm 1936, Zobell cộng [87] nghiên cứu cho thấy số lượng vi khuẩn bám dính vị trí tiếp xúc nước biển bề mặt vật rắn lớn nhiều so với vị trí xung quanh Lợi ích bề mặt chất rắn mang lại đánh nơi cư trú vi khuẩn giúp tập trung hấp thụ chất dinh dưỡng, tăng cường hoạt động enzyme hấp thụ chất chuyển hóa Trong nghiên cứu hiệu bề mặt rắn hoạt tính vi khuẩn, Zobell [86] bên cạnh việc cung cấp nơi khu trú tập trung chất dinh dưỡng, bề mặt chất rắn làm chậm khuếch tán enzyme ngoại bào, thúc đẩy đồng hóa chất dinh dưỡng thơng qua q trình thủy phân trước chúng hấp thụ Một loạt nghiên cứu đề cập đến khả hoạt động tăng trưởng đáng kể vi sinh vật cách bám dính vào bề mặt xác Trường Đại học KHTN Luận văn thạc sĩ Sinh học Trần Thúy Hằng định Nghiên cứu Heukelekian cộng [39] cho thấy giới hạn nồng độ chất dinh dưỡng không cố định mà phụ thuộc vào tổng diện tích bề mặt tiếp xúc với mơi trường Jones cộng [43] sử dụng kính hiển vi điện tử quét (SEM) để xuất màng sinh vật lọc nhỏ giọt nhà máy xử lý nước thải cho thấy chúng bao gồm nhiều loại, nhóm vi sinh vật khác (dựa đặc điểm hình thái tế bào) Bằng cách sử dụng chất nhuộm màu polysaccarit đặc biệt đỏ Ruthenimum cố định Osmium tetroxide (OsO4), nhà nghiên cứu chứng minh vật liệu chất bao xung quanh kết dính tế bào cấu trúc màng sinh vật polysaccarit Hình Các vi sinh vật gắn kết với bề mặt nhựa nhân tạo liên kết với thơng qua mạng lưới polysaccarit kính hiển vi điện tử ( 57700) [43] Dựa quan sát mảng bám số thí nghiệm khác, năm 1978, Costerton cộng [14] đưa giả thuyết màng sinh học: “Trong tự nhiên, tế bào vi khuẩn gắn kết với bám dính bề mặt định nhờ hệ thống sợi glycocalyx” Giả thuyết góp phần giải thích chế bám dính vi sinh vật vật liệu vô sinh hữu sinh lợi ích thu nhờ phương thức sinh thái thích hợp Trường Đại học KHTN Luận văn thạc sĩ Sinh học Trần Thúy Hằng [56] Bằng cách tạo hợp chất surfactin trình tạo màng sinh vật, B subtilis giúp trồng có khả kháng lại số vi khuẩn gây bệnh Erwina, Pseudomonas, Xanthomonas Khả tạo gramicidin chủng Bacillus brevis 18-3 có tác dụng làm giảm đáng kể tốc độ ăn mòn kim loại cách ức chế hai chủng vi khuẩn D orientis L discophora SP-6 [5] Mặt khác, khả tạo chất hoạt động bề mặt chủng vi sinh vật trình tạo màng làm tăng mức độ nhũ tương hóa tạo bọt chế biến thực phẩm tạo nhũ hóa cho sản phẩm mỹ phẩm [80] Đồng thời, đặc tính mở triển vọng việc chế tạo chất hoạt động bề mặt sinh học hoạt tính cao từ nguồn vi sinh vật ứng dụng cho cơng nghiệp dầu khí để xử lý cố tràn dầu [6] Trường Đại học KHTN 58 Luận văn thạc sĩ Sinh học Trần Thúy Hằng KẾT LUẬN VÀ KIẾN NGHỊ Kết luận Từ mẫu 75 chủng vi sinh vật phân lập từ nước thải làng nghề Việt Nam, lựa chọn chủng M1.10, U1.3, A3.3, M3.8, U3.7, M4.3, M4.9 M4.10 có hoạt tính tạo màng sinh vật cao chủng lại Tám chủng vi khuẩn phân lập có khả sinh trưởng tạo màng sinh vật tốt 37oC pH từ - 7,5 Trong số chủng này, bốn chủng M3.8, M4.9, U1.3, U3.7 có khả sinh trưởng tạo màng sinh vật tốt mơi trường khống có bổ sung nguồn cacbon (fructose, rhamnose, glucosamine) mơi trường khống sở có bổ sung nguồn nitơ ((NH4)2SO4, cao nấm men) khác Các chủng M3.8, M4.9 U1.3 có hoạt tính kháng mạnh E coli Vibrio parahaemolyticus, với đường kính vịng kháng khuẩn mm mm; mm 10 mm; mm mm; chủng U3.7 có hoạt tính kháng mạnh chủng Staphylococcus aureus, Samonella typhi Ralstonia solanacaerum với đường kính vịng kháng khuẩn mm, mm mm Những phân tích đặc điểm hình thái phân tích gen 16S rDNA chủng cho phép nhận định chủng M3.8, M4.9, U1.3, U3.7 vi khuẩn Gram dương thuộc chi Bacillus Trong đó, chủng M3.8, M4.9 gần với loài Bacillus licheniformis; chủng U1.3 gần với lồi Bacillus subtilis cịn chủng U3.7 gần với lồi Bacillus velezensis Kiến nghị Tiếp tục nghiên cứu sâu khả tạo thành chất hoạt động bề mặt đặc tính kháng khuẩn bốn chủng vi khuẩn phân lập M3.8, M4.9, U1.3, U3.7 để ứng dụng cơng nghệ xử lý nước thải phịng chống dịch hại gây bệnh trồng Tìm hiểu thành phần protein vai trò điều hòa biểu gen trình tạo thành màng sinh vật bốn chủng vi khuẩn phân lập Trường Đại học KHTN 59 Luận văn thạc sĩ Sinh học Trần Thúy Hằng TÀI LIỆU THAM KHẢO Tài liệu tiếng Việt: Nguyễn Lân Dũng, Nguyễn Đình Quyến, Phạm Văn Ty (2002), Vi sinh vật học, Nxb Giáo dục, Hà Nội Hồ Huỳnh Thùy Dương (2002), Sinh học phân tử, Nxb Giáo dục, Hà Nội Vũ Thị Minh Đức (2001), Thực tập vi sinh vật học, Nxb Đại học Quốc Gia, Hà Nội Tài liệu tiếng Anh: Allison D G., Gilbert P., Wilson M (2000), Community ctructure and co-operation in biofilms, Cambridge University Press, Cambridge, England Bais H P., Fall R., Vivanco J M (2004), “Biocontrol of Bacillus subtilis against infection of arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production”, Plant Physiology, 134(1), pp 307-319 Banat I M (1995), “Characterization of biosurfactants and their use in pollution removal-state of the art”, Acta biotechnologica, 15, pp 251-267 Bendinger B., Rijnaarts H H M., Altendorf K., Zehnder A J B (1993), “Physicochemical cell surface and adhesive properties of coryneform bacteria related to the presence and chain length of mycolic acids”, Applied and Environmental Microbiology, 59, pp 3973-3977 Beveridge T J., Makin S A., Kadurugamuwa J L., Li Z (1997), “Interactions between biofilms and the environment”, FEMS Microbiology Reviews, 20, pp 291-303 Boyd A., Chakrabarty A M (1994), “Role of alginate lyase in cell detachment of Pseudomonas aeruginosa”, Applied and Environmental Microbiology, 60, pp 2355-2359 Trường Đại học KHTN 60 Luận văn thạc sĩ Sinh học Trần Thúy Hằng 10 Brading M G., Jass J., Lappin-Scott H M (1995), “Dynamics of bacterial biofilm formation”, Microbial biofilms, Cambridge University Press, Cambridge, pp 46-63 11 Brooks W., Demuth D R., Gil S., Lamont R J (1997), “Identification of a Streptococcus gordonii SspB domain that mediates adhesion to Porphyromonas gingivalis”, Infection and Immunity, 65, pp 3753-3758 12 Characklis W G (1990), “Biofilm processes”, Biofilms, Wiley-Interscience, New York, pp 195-231 13 Characklis W G., Marshall K C (1990), “Biofilms: a basis for an interdisciplinary approach”, Biofilms, John Wiley & Sons, New York, pp 3-15 14 Costerton J W., Geesey G G., Cheng K J (1978), “How bacteria stick”, Scientific American, 238(1), pp 86-95 15 Costerton J W., Ingram J M., Cheng K J (1974), “Structure and function of the cell envelope of gram-negative bacteria”, Bacteriological Reviews, 38(1), pp 87-110 16 Costerton J W., Lewandowski Z., Caldwell D E., Korber D R., Lappin-Scott H M (1995), “Microbial biofilms”, Annual Review of Microbiology, 49, pp 711-745 17 Cowan M M., Warren T M., Fletcher M (1991), “Mixed species colonization of solid surfaces in laboratory biofilms”, Biofouling, 3, pp 23-34 18 Czaczyk K., Myszka K (2007), “Biosynthesis of extracellular polymeric substances (EPS) and its role in microbial biofilm formation”, Polish Journal of Environmental Studies, 16(6), pp 799-806 19 Davey M E., O'toole G A (2000), “Microbial biofilms: from ecology to molecular genetics”, Microbiology and Molecular Biology Reviews, 64(B), pp 847-867 Trường Đại học KHTN 61 Luận văn thạc sĩ Sinh học Trần Thúy Hằng 20 Davies D G., Parsek M R., Pearson J P., Iglewski B H., Costerton J W., Greenberg E P (1998), “The involvement of cell-to-cell signals in the development of a bacterial biofilm”, Science, 280, pp 295-298 21 De Angelis M., Siragusa S., Berloco M., Caputo L., Settanni L., Alfonsi G., Amerio M., Grandi A., Gobbetti M (2006), “Selection of potential probiotic lactobacilli from pig feces to be used as additives in pelleted feeding”, Research in Microbiology, 157, pp 792-801 22 De Weger L A., Van Der Vlught C I M., Wijfjes A H M., Bakker P A H M., Schippers B., Lugtenberg B (1987), “Flagella of a plant growthstimulating Pseudomonas fluorescens strain are required for colonization of potato roots”, Journal of Bacteriology, 169, pp 2769-2773 23 Decho A W (1990), “Microbial exopolymer secretion in ocean environment: Their role(s) in food web and marine process”, Oceanography and Marine Biology: Annual Review, 28, pp 73-153 24 Deflaun M F., Marshall B M., Kulle E P., Levy S B (1994), “Tn5 insertion mutants of Pseudomonas fluorescens defective in adhesion to soil and seeds”, Applied and Environmental Microbiology, 60, pp 2637-2642 25 Donlan R M (2000), “Role of biofilms in antimicrobial resistance”, American Society for Artificial Internal Organs Journal, 46(6), pp S47-S52 26 Donlan R M (2002), “Biofilms: Microbial life on surfaces”, Emerging Infectious Diseases, 8(9), pp 881-890 27 Donlan R M., Pipes W O., Yohe T L (1994), “Biofilm formation on cast iron substrata in water distribution systems”, Water Research, 28, pp 1497-1503 28 Emerson D., Ghiorse W C (1992), “Isolation, cultural maintenance, and taxonomy of a sheath-forming strain of Leptothrix discophora and characterization of manganese-oxidizing activity associated with the sheath”, Applied and Environmental Microbiology, 58, pp 4001-4010 Trường Đại học KHTN 62 Luận văn thạc sĩ Sinh học Trần Thúy Hằng 29 Espinosa-Urgel M., Salido A., Ramos J L (2000), “Genetic analysis of functions involved in adhesion of Pseudomonas putida to seeds”, Journal of Bacteriology, 182, pp 2363-2369 30 Fall R., Kinsinger R F., Wheeler K A (2004), “A simple method to isolate biofilm-forming Bacillus subtilis and related species from plant roots”, Systematic and Applied Microbiology, 27, pp 372-379 31 Flemming H C (1993), “Biofilm and environmental protection”, Water Science and Technology, 27, pp 1-10 32 Fletcher M (1988), “Attachment of Pseudomonas fluorescens to glass and influence of electrolytes on bacterium-substratum separation distance”, Journal of Bacteriology, 170, pp 2027-2030 33 Fujita M., Tanaka K., Takahashi H., Amemura A (1994), “Transcription of the principal sigma-factor genes, rpoD and rpoS, in Pseudomonas aeruginosa is controlled according to the growth phase”, Molecular Microbiology, 13, pp 1071-1077 34 Geesey G G (1990), Biofouling and biocorrosion in industrial water systems: Proceedings of the international workshop on industrial biofouling and biocorrosion, stuttg, Springer Verlag, Berlin, Germany 35 Geesey G G (2001), “Bacterial behaviour at surfaces”, Current Opinion in Biotechnology, 4, pp 296-300 36 Gilbert P., Das J., Foley I (1997), “Biofilm susceptibility to antimicrobials”, Advances in Dental Research, 11(1), pp 160-167 37 Haggag W (2010), “The role of biofilm exopolysaccharides on biocontrol of plant diseases”, Biopolymers, InTech, pp 217-184 38 Haggag W M (2007), “Colonization of exopolysaccharide-producing Paenibacillus polymyxa on peanut roots for enhancing resistance against crown rot disease”, African Journal of Biotechnology, 6(3), pp 1568-1577 39 Heukelekian H., Heller A (1940), “Relation between food concentration and surface for bacterial growth”, Journal of Bacteriology, 40(4), pp 547-558 Trường Đại học KHTN 63 Luận văn thạc sĩ Sinh học Trần Thúy Hằng 40 Heydorn A., Nielsen A T., Hentzer M., Sternberg C., Givskov M., Ersboll B K., Molin S (2000), “Quantification of biofilm structures by the novel computer program COMSTAT”, Microbiology, 146, pp 2395-2407 41 Hussain M., Wilcox M H., White P J (1993), “The slime of coagulase negative staphylococci: biochemistry and relation to adherence”, FEMS Microbiology Reviews, 104, pp 191-208 42 Jackson D W., Simecka J W., Romeo T (2002), “Catabolite repression of Escherichia coli biofilm formation”, Journal of Bacteriology, 184, pp 3406-3410 43 Jones H C., Roth I L., Sanders W M (1969), “Electron microscopic study of a slime layer”, Journal of Bacteriology, 99(1), pp 316-325 44 Kaplan J B., Ragunath C., Ramasubbu N., Fine D H (2003), “Detachment of Actinobacillus actinomycetemcomitans biofilm cells by an endogenous betahexosaminidase activity”, Journal of Bacteriology, 185, pp 4693-4698 45 Kokare C R., Chakraborty S., Khopade A N., Mahadik K R (2009), “Biofilm: Importance and applications”, Indian Journal of Biotechnology, 8, pp 159-168 46 Korber D R., Lawrence J R., Sutton B., Caldwell D E (1989), “Effects of laminar flow velocity on the kinetics of surface colonization by mot+ and mot- Pseudomonas fluorescens”, Microbial Ecology, 18, pp 1-19 47 Kubota H., Senda S., Nomura M., Tokuda H., Uchiyama H (2008), “Biofilm formation by lactic acid bacteria and resistance to environmental stress”, Journal of Bioscience and Bioengineering, 106(4), pp 381-386 48 Lamont R J., Jenkinson H F (1998), “Life below the gum line: pathogenic mechanisms of Porphyromonas gingivalis”, Microbiology and Molecular Biology Reviews, 62, pp 1244-1263 49 Lazarova V., Manem J (1995), “Biofilm characterization and activity analysis in water and wastewater treatment”, Water Research, 29(10), pp 2227-2245 Trường Đại học KHTN 64 Luận văn thạc sĩ Sinh học Trần Thúy Hằng 50 Lazarova V., Manem J (2000), “Innovative biofilm treatment technologies for water and wastewater treatment”, Biofilms II: process analysis and applications, Wiley-Liss, New York, United States, pp 159-206 51 Lee J W., Yeomans W G., Allen A L., Deng F., Gross R A., Kaplan D L (1999), “Biosynthesis of novel exopolymers by Aureobasidium pullulans”, Applied and Environmental Microbiology, 65(12), pp 5265-5271 52 Lengeler J W., Drews G., Schlegel H G (1999), Biology of the Prokaryotes, Wiley-Blackwell, New Jersey, United States 53 Leriche V., Sibille P., Carpentier B (2000), “Use of an enzyme-linked lectinsorbent assay to monitor the shift in polysaccharide composition in bacterial biofilms”, Applied and Environmental Microbiology, 66, pp 1851-1856 54 Matsukawa M., Greenberg E P (2004), “Putative exopolysaccharide synthesis genes influence Pseudomonas aeruginosa biofilm development”, Journal of Bacteriology, 186, pp 4449-4456 55 Mceldowney S., Fletcher M (1986), “Variability of the influence of physicochemical factors affecting bacterial adhesion to polystyrene substrata”, Applied and Environmental Microbiology, 52(3), pp 460–465 56 Morikawa M (2006), “Beneficial biofilm formation by industrial bacteria Bacillus subtilis and related species”, Journal of Bioscience and Bioengineering, 101(1), pp 1-8 57 Morikawa M., Kagihiro S., Haruki M., Takano K., Branda S., Kolter R., Kanaya S (2006), “Biofilm formation by a Bacillus subtilis strain that produces γ - polyglutamate”, Microbiology, 152, pp 2801-2807 58 National Association of Corrosion Engineers (1976), “The role of bacteria in the corrosion of oil field equipment”, Technical Practices Committee No 3, National Association of Corrosion Engineers, Houston, Texas, pp 23 Trường Đại học KHTN 65 Luận văn thạc sĩ Sinh học Trần Thúy Hằng 59 Nguyen Q H., Nguyen T P L., Tran T H (2011), “Characterization of biofilm-forming bacteria isolated from soil in Vietnam”, VNU Journal of Science, Natural Sciences and Technology, 27(2S), pp 187-193 60 Notermans S., Doormans J A., Mead G C (1991), “Contribution of surface attachment to the establishment of microorganisms in food processing plants: A review”, Biofouling, 5, pp 21-36 61 O'toole G A., Gibbs K A., Hager P W., Phibbs P V J., Kolter R (2000), “The global carbon metabolism regulator crc is a component of a signal transduction pathway required for biofilm development by Pseudomonas aeruginosa”, Journal of Bacteriology, 182(2), pp 425-431 62 O’toole G A., Kolter R (1998), “Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development”, Molecular Microbiology, 30, pp 295-304 63 O’toole G A., Kolter R (1998), “Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: A genetic analysis”, Molecular Microbiology, 28, pp 449-461 64 Oliveira R., Melo L., Oliveira A., Salgueiro R (1994), “Polysaccharide production and biofilm formation by Pseudomonas fluorescen: effects of pH and surface material”, Colloids and Surfaces B: Biointerfaces, 2(1-3), pp 41-46 65 Otto K., Norbeck J., Larsson T., Karlsson K A., Hermansson M (2001), “Adhesion of type 1-fimbriated Escherichia coli to abiotic surfaces leads to altered composition of outer membrane proteins”, Journal of Bacteriology, 183, pp 2445-2453 66 Page S., Gaylarde C (1990), “Biocide activity against Legionella and Pseudomonas”, International Biodeterioration, 26(2-4), pp 139-148 67 Pornsunthorntawee O., Maksung S., Huayyai O (2009), “Biosurfactant production by Pseudonmonas aeruginosa SP4 using sequencing batch reactors: Effect of oil loading rate and cycle time”, Bioresource Technology 100, pp 812-818 Trường Đại học KHTN 66 Luận văn thạc sĩ Sinh học Trần Thúy Hằng 68 Pratt L A., Kolter R (1998), “Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili”, Molecular Microbiology, 30(2), pp 285-289 69 Ramey B E., Koutsoudis M., Von Bodman S B., Fuqua C (2004), “Biofilm formation in plant-microbe associations”, Current Opinion in Microbiology, 7(6), pp 602-609 70 Ron E Z., Rosenberg E (2001), “Natural roles for biosurfactants”, Environmental Microbiology, 3, pp 229-236 71 Sanger F., Nicklen E F., Conlson A R (1997), “DNA Sequencing with chain terminating inhibitor”, Proceedings of the National Academy of Sciences of the United States of America, 74(12), pp 5403-5460 72 Sauer K., Camper A K., Ehrlich G D., Costerton J W., Davies D G (2002), “Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm”, Journal of Bacteriology, 184, pp 1140-1154 73 Schmoll T., Ott M., Oudega B., Hacker J (1990), “Use of a wild-type gene fusion to determine the influence of environmental conditions on expression of the S fimbrial adhesin in Escherichia coli pathogen”, Journal of Bacteriology, 172(5), pp 5103-5111 74 Sleytr U B (1997), “Basic and applied S-layer research: an overview”, FEMS Microbiology Reviews, 20(1-2), pp 5–12 75 Stanley N R., Lazazzera B A (2004), “Environmental signals and regulatory pathways that influence biofilm formation”, Molecular Microbiology, 52, pp 917-924 76 Steyn B (2005), Proteomic analysis of the biofilm and biofilm – associated phenotypes of Pseudomonas aeruginosa cultured in batch, PhD dissertation, The Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 77 Stoodley P., Sauer K., Davies D G., Costerton J W., Microbiol A R (2002), “Biofilms as complex differentiated communities”, Annual review of microbiology, 56, pp 187-209 Trường Đại học KHTN 67 Luận văn thạc sĩ Sinh học Trần Thúy Hằng 78 Sule P., Horne S M., Logue C M., Prüß B M (2011), “Regulation of cell division, biofilm formation, and virulence by FlhC in Escherichia coli O157:H7 grown on meat”, Applied and Environmental Microbiology, 77(11), pp 3653–3662 79 Sutherland I W (2001), “Biofilm exopolysaccharides: a strong and sticky framework”, Microbiology, 147, pp 3-9 80 Suwansukho P., Rukachisirikul V., Kawai F., H-Kittikun A (2008), “Production and applications of biosurfactant from Bacillus subtilis MUV4”, Songklanakarin Journal of Science and Technology, 30, pp 87-93 81 Thys S (2009), Effect of biosurfactants isolated from endophytes on biofilm formation by Candida albicans, Master dissertation, Universiteit gent, Novara, Italy 82 Tolker-Nielsen T., Brinch U C., Ragas P C., Andersen J B., Jacobsen C S., Molin S (2000), “Development and dynamics of Pseudomonas sp biofilms”, Journal of Bacteriology, 182, pp 6482-6489 83 Watnick P., Kolter P (2000), “Biofilm, city of microbes”, Journal of Bacteriology, 182(10), pp 2675-2679 84 Watnick P I., Fulner K J., Kolter R (1999), “A role for the mannose-sensitive hemagglutinin in biofilm formation by Vibrio cholera El Tor”, Journal of Bacteriology, 181, pp 3606-3609 85 Xie H., Cook G S., Costerton J W., Bruce G., Rose T M., Lamont R J (2000), “Intergeneric communication in dental plaque biofilms”, Journal of Bacteriology, 182(24), pp 7067-7069 86 Zobell C E (1943), “The effect of solid surfaces upon bacteria activity”, Journal of Bacteriology, 46(1), pp 39-56 87 Zobell C E., Anderson D Q (1936), “Observations on the multiplication of bacteria in different volumes of stored sea water and the influence of oxygen tension and solid surfaces”, The Biological bulletin, 71, pp 324-342 Trường Đại học KHTN 68 Luận văn thạc sĩ Sinh học Trần Thúy Hằng PHỤ LỤC Bảng 1: Trình tự gen 16S rDNA chủng M3.8 CTCAGGACGA ACGCTGGCGG CGTGCCTAAT ACATGCAAGT CGAGCGGACC GACGGGAGCT TGCTCCGTTA GGTCAGCGGC GGACGGGTGA GTAACACGTG GGTAACCTGC CTGTAAGACT GGGATAACTC CGGGAAACCG GGGCTAATAC CGGATGCTTG ATTGAACCGC ATGGTTCAAT CATAAAAGGT GGCTTTTAGC TACCACTTAC AGATGGACCC GCGGCGCATT AGCTAGTTGG TGAGGTAACG GCTCACCAAG GCGACGATGC GTAGCCGACC TGAGAGGGTG ATCGGCCACA CTGGGACTGA GACACGGCCC AGACTCCTAC GGGAGGCAGC AGTAGGGAAT CTTCCGCAAT GGACGAAAGT CTGACGGAGC AACGCCGCGT GAGTGATGAA GGTTTTCGGA TCGTAAAACT CTGTTGTTAG GGAAGAACAA GTACCGTTCG AATAGGGCGG TACCTTGACG GTACCTAACC AGAAAGCCAC GGCTAACTAC GTGCCAGCAG CCGCGGTAAT ACGTAGGTGG CAAGCGTTGT CCGGAATTAT TGGGCGTAAA GCGCGCGCAG GCGGTTTCTT AAGTCTGATG TGAAAGCCCC CGGCTCAACC GGGGAGGGTC ATTGGAAACT GGGGAACTTG AGTGCAGAAG AGGAGAGTGG AATTCCACGT GTAGCGGTGA AATGCGTAGA GATGTGGAGG AACACCAGTG GCGAAGGCGA CTCTCTGGTC TGTAACTGAC GCTGAGGCGC GAAAGCGTGG GGAGCGAACA GGATTAGATA CCCTGGTAGT CCACGCCGTA AACGATGAGT GCTAAGTGTT AGAGGGTTTC CGCCCTTTAG TGCTGCAGCA AACGCATTAA GCACTCCGCC TGGGGAGTAC GGTCGCAAGA CTGAAACTCA AAGGAATTGA CGGGGGCCCG CACAAGCGGT GGAGCATGTG GTTTAATTCG AAGCAACGCG AAGAACCTTA CCAGGTCTTG ACATCCTCTG ACAACCCTAG AGATAGGGCT TCCCCTTCGG GGGCAGAGTG ACAGGTGGTG CATGGTTGTC GTCAGCTCGT GTCGTGAGAT GTTGGGTTAA GTCCCGCAAC GAGCGCAACC CTTGATCTTA GTTGCCAGCA TTCAGTTGGG CACTCTAAGG TGACTGCCGG TGACAAACCG GAGGAAGGTG GGGATGACGT CAAATCATCA TGCCCCTTAT GACCTGGGCT ACACACGTGC TACAATGGGC AGAACAAAGG GCAGCGAAGC CGCGAGGCTA AGCCAATCCC ACAAATCTGT TCTCAGTTCG GATCGCAGTC TGCAACTCGA CTGCGTGAAG CTGGAATCGC TAGTAATCGC GGATCAGCAT GCCGCGGTGA ATACGTTCCC GGGCCTTGTA CACACCGCCC GTCACACCAC GAGAGTTTGT AACACCCGAA GTCGGTGAGG TAACCTTTTG GAGCCAGCCG CC Trường Đại học KHTN 69 Luận văn thạc sĩ Sinh học Trần Thúy Hằng Bảng 2: Trình tự gen 16S rDNA chủng M4.9 CCTGGCTCAG GACGAACGCT GGCGGCGTGC CTAATACATG CAAGTCGAGC GGACCGACGG GAGCTTGCTC CCTTAGGTCA GCGGCGGACG GGTGAGTAAC ACGTGGGTAA CCTGCCTGTA AGACTGGGAT AACTCCGGGA AACCGGGGCT AATACCGGAT GCTTGATTGA ACCGCATGGT TCAATCATAA AAGGTGGCTT TTAGCTACCA CTTACAGATG GACCCGCGGC GCATTAGCTA GTTGGTGAGG TAACGGCTCA CCAAGGCGAC GATGCGTAGC CGACCTGAGA GGGTGATCGG CCACACTGGG ACTGAGACAC GGCCCAGACT CCTACGGGAG GCAGCAGTAG GGAATCTTCC GCAATGGACG AAAGTCTGAC GGAGCAACGC CGCGTGAGTG ATGAAGGTTT TCGGATCGTA AAACTCTGTT GTTAGGGAAG AACAAGTACC GTTCGAATAG GGCGGTACCT TGACGGTACC TAACCAGAAA GCCACGGCTA ACTACGTGCC AGCAGCCGCG GTAATACGTA GGTGGCAAGC GTTGTCCGGA ATTATTGGGC GTAAAGCGCG CGCAGGCGGT TTCTTAAGTC TGATGTGAAA GCCCCCGGCT CAACCGGGGA GGGTCATTGG AAACTGGGGA ACTTGAGTGC AGAAGAGGAG AGTGGAATTC CACGTGTAGC GGTGAAATGC GTAGAGATGT GGAGGAACAC CAGTGGCGAA GGCGACTCTC TGGTCTGTAA CTGACGCTGA GGCGCGAAAG CGTGGGGAGC GAACAGGATT AGATACCCTG GTAGTCCACG CCGTAAACGA TGAGTGCTAA GTGTTAGAGG GTTTCCGCCC TTTAGTGCTG CAGCAAACGC ATTAAGCACT CCGCCTGGGG AGTACGGTCG CAAGACTGAA ACTCAAAGGA ATTGACGGGG GCCCGCACAA GCGGTGGAGC ATGTGGTTTA ATTCGAAGCA ACGCGAAGAA CCTTACCAGG TCTTGACATC CTCTGACAAC CCTAGAGATA GGGCTTCCCC TTCGGGGGCA GAGTGACAGG TGGTGCATGG TTGTCGTCAG CTCGTGTCGT GAGATGTTGG GTTAAGTCCC GCAACGAGCG CAACCCTTGA TCTTAGTTGC CAGCATTCAG TTGGGCACTC TAAGGTGACT GCCGGTGACA AACCGGAGGA AGGTGGGGAT GACGTCAAAT CATCATGCCC CTTATGACCT GGGCTACACA CGTGCTACAA TGGGCAGAAC AAAGGGCAGC GAAGCCGCGA GGCTAAGCCA ATCCCACAAA TCTGTTCTCA GTTCGGATCG CAGTCTGCAA CTCGACTGCG TGAAGCTGGA ATCGCTAGTA ATCGCGGATC AGCATGCCGC GGTGAATACG TTCCCGGGCC TTGTACACAC CGCCCGTCAC ACCACGAGAG TTTGTAACAC CCGAAGTCGG TGAGGTAACC TTTTGGAGCC AGCCGCC Trường Đại học KHTN 70 Luận văn thạc sĩ Sinh học Trần Thúy Hằng Bảng 3: Trình tự gen 16S rDNA chủng U1.3 AGCGGCGGAC GGGTGAGTAA CACGTGGGTA ACCTGCCTGT AAGACTGGGA TAACTCCGGG AAACCGGGGC TAATACCGGA TGGTTGTTTG AACCGCATGG TTCAAACATA AAAGGTGGCT TCGGCTACCA CTTACAGATG GACCCGCGGC GCATTAGCTA GTTGGTGAGG TAATGGCTCA CCAAGGCAAC GATGCGTAGC CGACCTGAGA GGGTGATCGG CCACACTGGG ACTGAGACAC GGCCCAGACT CCTACGGGAG GCAGCAGTAG GGAATCTTCC GCAATGGACG AAAGTCTGAC GGAGCAACGC CGCGTGAGTG ATGAAGGTTT TCGGATCGTA AAGCTCTGTT GTTAGGGAAG AACAAGTACC GTTCGAATAG GGCGGTACCT TGACGGTACC TAACCAGAAA GCCACGGCTA ACTACGTGCC AGCAGCCGCG GTAATACGTA GGTGGCAAGC GTTGTCCGGA ATTATTGGGC GTAAAGGGCT CGCAGGCGGT TTCTTAAGTC TGATGTGAAA GCCCCCGGCT CAACCGGGGA GGGTCATTGG AAACTGGGGA ACTTGAGTGC AGAAGAGGAG AGTGGAATTC CACGTGTAGC GGTGAAATGC GTAGAGATGT GGAGGAACAC CAGTGGCGAA GGCGACTCTC TGGTCTGTAA CTGACGCTGA GGAGCGAAAG CGTGGGGAGC GAACAGGATT AGATACCCTG GTAGTCCACG CCGTAAACGA TGAGTGCTAA GTGTTAGGGG GTTTCCGCCC CTTAGTGCTG CAGCTAACGC ATTAAGCACT CCGCCTGGGG AGTACGGTCG CAAGACTGAA ACTCAAAGGA ATTGACGGGG GCCCGCACAA GCGGTGGAGC ATGTGGTTTA ATTCGAAGCA ACGCGAAGAA CCTTACCAGG TCTTGACATC CTCTGACAAT CCTAGAGATA GGACGTCCCC TTCGGGGGCA GAGTGACAGG TGGTGCATGG TTGTCGTCAG CTCGTGTCGT GAGATGTTGG GTTAAGTCCC GCAACGAGCG CAACCCTTGA TCTTAGTTGC CAGCATTCAG TTGGGCACTC TAAGGTGACT GCCGGTGACA AACCGGAGGA AGGTGGGGAT GACGTCAAAT CATCATGCCC CTTATGACCT GGGCTACACA CGTGCTACAA TGGACAGAAC AAAGGGCAGC GAAACCGCGA GGTTAAGCCA ATCCCACAAA TCTGTTCTCA GTTCGGATCG CAGTCTGCAA CTCGACTGCG TGAAGCTGGA ATCGCTAGTA ATCGCGGATC AGCATGCCGC GGTGAATACG TTCCCGGGCC TTGTACACAC CGCCCGTCAC ACCACGAGAG TTTGTAACAC CCGAAGTCGT TGAGGTAACC TTTTAGGAGC CAGCCGCCGA AGGTGGGACA GATGATTGGG GTGAAGTCGT Trường Đại học KHTN 71 Luận văn thạc sĩ Sinh học Trần Thúy Hằng Bảng 4: Trình tự gen 16S rDNA chủng U3.7 GCTCAGGACG AACGCTGGCG GCGTGCCTAA TACATGCAAG TCGAGCGGAC AGATGGGAGC TTGCTCCCTG ATGTTAGCGG CGGACGGGTG AGTAACACGT GGGTAACCTG CCTGTAAGAC TGGGATAACT CCGGGAAACC GGGGCTAATA CCGGATGGTT GTCTGAACCG CATGGTTCAG ACATAAAAGG TGGCTTCGGC TACCACTTAC AGATGGACCC GCGGCGCATT AGCTAGTTGG TGAGGTAACG GCTCACCAAG GCGACGATGC GTAGCCGACC TGAGAGGGTG ATCGGCCACA CTGGGACTGA GACACGGCCC AGACTCCTAC GGGAGGCAGC AGTAGGGAAT CTTCCGCAAT GGACGAAAGT CTGACGGAGC AACGCCGCGT GAGTGATGAA GGTTTTCGGA TCGTAAAGCT CTGTTGTTAG GGAAGAACAA GTGCCGTTCA AATAGGGCGG CACCTTGACG GTACCTAACC AGAAAGCCAC GGCTAACTAC GTGCCAGCAG CCGCGGTAAT ACGTAGGTGG CAAGCGTTGT CCGGAATTAT TGGGCGTAAA GGGCTCGCAG GCGGTTTCTT AAGTCTGATG TGAAAGCCCC CGGCTCAACC GGGGAGGGTC ATTGGAAACT GGGGAACTTG AGTGCAGAAG AGGAGAGTGG AATTCCACGT GTAGCGGTGA AATGCGTAGA GATGTGGAGG AACACCAGTG GCGAAGGCGA CTCTCTGGTC TGTAACTGAC GCTGAGGAGC GAAAGCGTGG GGAGCGAACA GGATTAGATA CCCTGGTAGT CCACGCCGTA AACGATGAGT GCTAAGTGTT AGGGGGTTTC CGCCCCTTAG TGCTGCAGCT AACGCATTAA GCACTCCGCC TGGGGAGTAC GGTCGCAAGA CTGAAACTCA AAGGAATTGA CGGGGGCCCG CACAAGCGGT GGAGCATGTG GTTTAATTCG AAGCAACGCG AAGAACCTTA CCAGGTCTTG ACATCCTCTG ACAATCCTAG AGATAGGACG TCCCCTTCGG GGGCAGAGTG ACAGGTGGTG CATGGTTGTC GTCAGCTCGT GTCGTGAGAT GTTGGGTTAA GTCCCGCAAC GAGCGCAACC CTTGATCTTA GTTGCCAGCA TTCAGTTGGG CACTCTAAGG TGACTGCCGG TGACAAACCG GAGGAAGGTG GGGATGACGT CAAATCATCA TGCCCCTTAT GACCTGGGCT ACACACGTGC TACAATGGAC AGAACAAAGG GCAGCGAAAC CGCGAGGTTA AGCCAATCCC ACAAATCTGT TCTCAGTTCG GATCGCAGTC TGCAACTCGA CTGCGTGAAG CTGGAATCGC TAGTAATCGC GGATCAGCAT GCCGCGGTGA ATACGTTCCC GGGCCTTGTA CACACCGCCC GTCACACCAC GAGAGTTTGT AACACCCGAA GTCGGTGAGG TAACCTTTAT GGAGCCAGCC GCCGAAGGTG Trường Đại học KHTN 72 ...ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN - Trần Thúy Hằng PHÂN LẬP, NGHIÊN CỨU ĐẶC ĐIỂM SINH HỌC CỦA MỘT SỐ CHỦNG VI SINH VẬT CÓ KHẢ NĂNG TẠO MÀNG SINH VẬT (BIOFILM) PHÂN... tơi định thực đề tài: ? ?Phân lập, nghiên cứu đặc điểm sinh học số chủng vi sinh vật có khả tạo màng sinh vật phân lập Vi? ??t Nam? ?? Trường Đại học KHTN Luận văn thạc sĩ Sinh học Trần Thúy Hằng Chương... phân lập mơi trường thạch 39 Hình Khả tạo màng sinh vật số chủng vi sinh vật phân lập từ mẫu nước thải làng miến Lại Trạch .40 Hình Khả tạo màng sinh vật số chủng vi sinh vật phân lập

Ngày đăng: 16/04/2021, 15:14

Từ khóa liên quan

Mục lục

  • MỤC LỤC

  • DANH MỤC BẢNG

  • DANH MỤC HÌNH

  • BẢNG CHỮ VIẾT TẮT

  • MỞ ĐẦU

  • Chương 1. TỔNG QUAN TÀI LIỆU

  • 1.1 Khái niệm về màng sinh vật (biofilm)

  • 1.2 Các dạng màng sinh vật trong tự nhiên và vai trò đối với vi sinh vật

  • 1.2.1 Các chủng vi sinh vật có khả năng tạo màng sinh vật trong tự nhiên

  • 1.2.2 Các dạng tồn tại của màng sinh vật

  • 1.2.3 Ảnh hưởng của màng sinh vật đối với vi sinh vật

  • 1.3 Thành phần, cấu trúc và đặc điểm của màng sinh vật

  • 1.3.1 Mạng lưới ngoại bào

  • 1.3.2 Các thành phần khác

  • 1.4 Các yếu tố ảnh hưởng đến sự hình thành và phát triển của màng sinh vật

  • 1.4.1 Các giai đoạn tạo thành màng sinh vật

  • 1.4.2 Các yếu tố ảnh hưởng đến sự hình thành màng sinh vật

  • 1.4.3 Điều hòa quá trình hình thành màng sinh vật

  • 1.5 Nghiên cứu ứng dụng màng sinh vật

  • 1.5.1 Ứng dụng màng sinh vật trong việc xử lý nước thải

Tài liệu cùng người dùng

Tài liệu liên quan