cự, các đỉnh, độ dài trục lớn, độ dài trục nhỏ của (E).[r]
(1)Đề thi thử học kì Năm học: 2012 - 2013
Tổ Toán Trường THPT Lộc Thái
Đề thi thử số 2: Câu (3đ) Giải bất phương trình hệ bất phương trình sau: a) 23
3 12
x x
x x x
− ≤
−
+ − b)
2 3 10 2
x − x− ≥ −x c)
2
4
2
x x
x x
⎧ − − < ⎪
⎨
− − ≥ ⎪⎩
Câu (3đ) Cho phương trình (m2−1)x2−2(m+1)x+ =3
a) Giải phương trình m=2
b) Giả sử phương trình có hai nghiệm x x1, 2 Tính theo m giá trị biểu thức A= x1−x2 c) Tìm m để phương trình có hai nghiệm phân biệt
Câu (1đ) Cho elip (E) có phương trình: 25x2+169y2=4225 Hãy xác định tọa độ tiêu điểm, tiêu
cự, đỉnh, độ dài trục lớn, độ dài trục nhỏ (E)
Câu (2đ) Trong mặt phẳng tọa độ Oxy, cho điểm A(−1;3) đường thẳng d có phương trình: 5x−12y+ =2
a) Viết phương trình tham số đường thẳng d1 qua A song song với d Hãy tìm điểm M thuộc d1 cho khoảng cách từ M đến A 26
b) Viết phương trình đường trịn có tâm A tiếp xúc với d Câu (1đ) Cho tan
15
α = − với
2π α π< < Tính sin
π α
⎛ − ⎞ ⎜ ⎟ ⎝ ⎠ Hướng dẫn giải:
Câu 1: a) 23
3 12
x x
x x x
− ≤
−
+ −
3
0
12
x x
x x x
−
⇔ − ≤
−
+ − ( )( )
3
0
3
x x
x x x
−
⇔ − ≤
− + −
( ) ( )
( )( )
3
3
x x x
x x
− − − +
⇔ ≤
− + (Chú ý mẫu thức chung (x−3)(x+4))
( )( )
2 7 8
0
3
x x
x x
+ −
⇔ ≤
− +
Đặt ( ) ( )( )2
3
x x
f x
x x
+ − =
− + Ta có:
2 7 8 0
8
x
x x
x
= ⎡ + − = ⇔ ⎢
= − ⎣ ,
3
x− = ⇔ =x ,
4
x+ = ⇔ = −x Bảng xét dấu:
x −∞ −8 −4 +∞
2 7 8
x + x− + − | − + | +
3
x− − | − | − | − +
4
x+ − | − + | + | +
( )
f x + − || + − || + Dựa vào bảng xét dấu ta có: f x( )≤ ⇔ − ≤ < − ∨ ≤ <0 x x
Vậy tập nghiệm bất phương trình T = − −[ 8; 4)∪[1;3)
b) x2−3x−10≥ −x
Nhắc lại: ( ) ( ) ( )
( )
( )
( ) 2( )
0
0
g x f x
f x g x
g x f x g x
⎧ > ≥
⎧⎪ ⎪
≥ ⇔⎨ ∨⎨
≤ ≥
⎪ ⎪
(2)Đề thi thử học kì Năm học: 2012 - 2013
Tổ Toán Trường THPT Lộc Thái
Ta có:
( )
2
2
2
2
3 10
3 10 10
2
2 14
2 14
x x
x x x
x x x x x
x x
x x x
x x
− > ⎧ − ≤
⎧⎪ ⎪
− − ≥ − ⇔⎨ ∨⎨
− − ≥ − − ≥ −
⎪ ⎪
⎩ ⎩
≤ >
⎧ ⎧
⇔⎨ ∨⎨
≤ − ∨ ≥ ≥
⎩ ⎩
⇔ ≤ − ∨ ≥
Vậy tập nghiệm bất phương trình là: T = −∞ −( ; 2]∪[14;+∞) c)
2
4
2
x x
x x
⎧ − − < ⎪
⎨
− − ≥ ⎪⎩
2
4
x x
x x
⎧− + − < ⎪
⇔ ⎨
− − ≥
⎪⎩ 2
x
x x
∈ ⎧⎪ ⇔ ⎨
≤ − ∨ ≥ +
⎪⎩ ⇔ ≤ −x 2∨ ≥ +x Vậy hệ có nghiệm x∈ −∞ −( ;1 2⎤ ⎡⎦ ⎣∪ 1+ 2;+∞)
Chú ý rằng: phương trình đầu hệ có hệ số a= − <1 0, biểu thức f x( )= − +x2 4x−7 có ( ) ( )
2
'
Δ = − − − = − < nên ( )f x dấu với hệ số a, tức f x( )< ∀ ∈0 x , hay nói cách khác: bất phương trình − +x2 4x− <7 có nghiệm với x∈
Câu 2) (m2−1)x2−2(m+1)x+ =3 (1)
a) Khi m=2, phương trình trở thành: 3x2−6x+ =3 ⇔x2−2x+ =1
Ta có: Δ = −' ( )1 2−1.1 0= Do phương trình có nghiệm kép: 1 2 ( )1 1
x =x =− − =
b) Giả sử phương trình (1) có hai nghiệm x x1, 2 Xét A= x1−x2 ≥0 Ta có A2=(x1−x2)2 =x12+x22−2x x1 2=(x1+x2)2−4x x1 2
Theo định lí Viét ta có:
( )
1 2
1 2
2
1
3
m
x x
m m
x x m
+ ⎧
+ = =
⎪⎪ − −
⎨ ⎪ =
⎪ −
⎩ Do đó:
( )( ) ( )( ) (( )) ( ( ) )
2
2
4 12
2 4.3
4
1 1 1 1
m m
A
m m m m m m m m
+ − −
⎛ ⎞
=⎜ ⎟ − ⋅ = − =
− − − − +
⎝ ⎠ − − +
( ) ( )
( )
( ) ( )
2
8 16
1 1
m m
m m m m
− −
= =
− + − +
( )
( ) (2 )
8
1
m A
m m
− ⇒ =
− +
Chú ý: Câu em gặp đề thi dạng dễ Ví dụ: với
m= , tính A=|x1-x2| Lúc đó, ta làm sau:
Với
m= , phương trình (1) thành: 3
4x x
− − + = 4 4 0
x x
⇔ + − = (*) Rõ ràng (*) có Δ =' 22−1 4( )− = >8 nên (*) có hai nghiệm phân biệt x x1; 2 Có hai phương án tính A=|x1-x2|:
# Phương án 1: giải nghiệm x x1; 2 vào A ok Ta có hai nghiệm x1= − +2 2; x2 = − −2 2
( )
1 2 2 2
A x x
⇒ = − = − − − − =
(3)Đề thi thử học kì Năm học: 2012 - 2013
Tổ Toán Trường THPT Lộc Thái
Ta ưu tiên phương án để tránh đụng bậc hai thêm rắc rối, số phương trình giải nghiệm cách rắc rối, dù ta có dùng máy Plus
Theo định lí viet ta có: 2
4
x x
x x
− ⎧ + = = − ⎪
⎨
⎪ = − ⎩
Do đó: A2=(x1+x2)2−4x x1 2 = −( )4 2−4 4( )− =32
32
A
⇒ = =
c) Phương trình (1) có hai nghiệm phân biệt khi:
( ) ( )
2
2
1
' 1
a m
m m
⎧ = − ≠ ⎪
⎨
Δ = + − − >
⎪⎩ 2
1
2 3
m
m m m
≠ ± ⎧⎪ ⇔ ⎨
+ + − + >
⎪⎩
1
2
m
m m
≠ ± ⎧⎪ ⇔ ⎨
− + + > ⎪⎩
1
1
m m
≠ ± ⎧
⇔ ⎨− < <
⎩ ⇔ ∈ −m ( 1; \ 1) { }
Vậy, với m∈ −( 1; \ 1) { } phương trình cho có hai nghiệm phân biệt Câu 3: 25x2+169y2=4225 (E)
(E) viết lại là:
2
1 169 25
x y
+ = (y ta chia hai vế cho 4225) Ta có: a=13,b=5
2 2 169 25 144
c =a −b = − = ⇒ =c 12
Vậy tiêu điểm (E) là: F1(−12;0 ,) F2(12;0)
Các đỉnh (E) là: A1(−13;0 ,) A2(13;0),B1(0; 5− ), B2( )0;5 Tiêu cự F F1 2 =2c=2.12 24=
Độ dài trục lớn: A A1 2 =2a=2.13 26= Độ dài trục nhỏ: B B1 2 =2.5 10= Câu 4: A(−1;3), d: 5x−12y+ =7
a) Đường thẳng d1 song song với d nên d1 có vectơ pháp tuyến n1=(5; 12− ), d1 có VTCP
( )
1 12;5
u = Ta có phương trình tham số đường thẳng d1 là: 12
x t
y t
= − + ⎧
⎨ = + ⎩ Lấy M(− +1 12 ;3 5t0 + t0)∈d1⇒ AM =(12 ;5t0 t0)
( ) ( )2
0
26 12 26
AM = ⇔ t + t = ⇔169t02 =262 ⇔ = ±t0
Với t0= ⇒2 M(23;13)
Với t0= − ⇒2 M(−25; 7− )
b) Đường tròn cần tìm có bán kính ( ) ( )
( )2
2
5 12.3
;
5 12
R=d A d = − − + =
+ − Vậy phương trình đường trịn cần tìm là: (x+1) (2+ y−3)2=9
Câu Vì
2π α π< < nên sinα <0,cosα >0 Ta có:
2
2
1 289
1 tan
15 225
cos α α
⎛ ⎞ = + = +⎜ ⎟ =
⎝ ⎠
2 225 15
cos cos
289 17
α α
(4)Đề thi thử học kì Năm học: 2012 - 2013
Tổ Toán Trường THPT Lộc Thái
8 15 sin tan cos
15 17 17
α α α
⇒ = = − = −
8 15 15 sin sin cos sin cos
3 3 17 2 17 34
π π π
α α α − −
⎛ ⎞