1. Trang chủ
  2. » Trung học cơ sở - phổ thông

Đề cương ôn tập kì 2 môn Toán lớp 8 - Trường THCS Cầu Giấy

11 117 2

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 11
Dung lượng 3,64 MB

Nội dung

Bài 8 : Hai máy cày cùng làm trên một cánh đồng trong 90 ngày thì xong công việc. Hỏi năng suất của máy thứ nhất là bao nhiêu và nếu mỗi máy làm việc riêng thì sẽ cày xong cánh đồng tro[r]

(1)

TRƯỜNG THCS CẦU GIẤY Năm học: 2017 – 2018

ĐỀ CƯƠNG ƠN TẬP HỌC KÌ II MƠN TỐN – LỚP 8

I. Phần trắc nghiệm Bài 1:

1) Phương trình 65

3x

3x 4   có nghiệm là:

A S 3;     

  B S3;0 C

1

S 3;

3

 

  

  D S3; 3 

2) Bất phương trình

2x 3x

3

 

có nghiệm là:

A x 1 B x 1 C x 9 D x 2

3) Giá trị nhỏ biểu thức A

9x 6x

   là:

A  B  C  D 4) Nghiệm phương trình x 5   là:

A x 5 B x3 C x 5;x 3 D x5

Bài 2: Trong bất phương trình sau, cặp bất phương trình tương đương với A x 1   0 x 2x 5   C  

2

3 x  2

x2  2x 1

B 3x 0  2x x 5   D x 1  1 x x 

Bài 3: Phân thức  

2

1 x x 

xác định

A x 0 x 4 B x 0 x 2 C x 0 x2 D x 0 ; x 2 x2

Bài 4: Xác định dấu số b biết 7b 20b 

A b 0 B b 0 C b 0 D b 0

Bài 5: Cho hình thang ABCD (đáy AD > CB), cạnh bên AB CD kéo dài cắt tịa M Biết AM

AB 3 BC = 2cm Độ dài AD là:

(2)

Bài 6: Cho ABC có AB = 14cm, AC = 21cm, AD tia phân giác góc A, biết AD = 8cm Độ

dài cạnh BC là:

A 20cm B 18cm C 15cm D 16cm

Bài 7:

1) Cho ABC  DEF có

AB ;

DE 3 SDEF 90cm Khi đó:

A SABC 10cm2 B

2 ABC

S 30cm C SABC 270cm2 D SABC 810cm2

2) Cho ABC  DEF có

ABC DEF S S    Khi đó: A DE

AB 4 B

DE

AB C

DE

AB D

DE AB 2

Bài 8: Cho lăng trụ tam giác ABC.A’B’C’ có AA' a, BAB' 45   Diện tích xung qunah

thể tích lăng trụ là:

A Sxq 2a2

3

a V

2

B Sxq 3a2

3

a V

4

C Sxq 3a2

3

a V

2

Bài 9: Một hình lập phương có cạnh 2, diện tích tồn phần hình lập phương

A B 16 C 24 D 36

Bài 10: Cho hình chóp tứ giác có tất cạnh bên, cạnh đáy a, chiều cao hình chóp

A a B

a

2 C a D 2a

II. Phần tự luận ĐẠI SỐ

Phần 1: Giải phương trình bất phương trình Bài 1: Giải phương trình

a) 2x x  2x 6x 9     d) x3 3x2 4x 0 

b) 6x3  13x2  5x 0 e) x4x26x 0 

c)    

2

2 x  x  x x 2  4

f)    

2

2

x  4x  x 2 10

(3)

a)    

2 3x 11

x x x x

 

    c)

3 4x

1 4x 4x 16x

 

  

b)  

3 5x

2 5x

2x 2x

 

  

 

 

  d)

3x 2x

1

x x x 2x

 

  

   

Bài 3: Giải phương trình sau 1) x2  3x x 0    3)

2

x 2x x  

5)

2

x  5x 6 2x 3

2) 2x x   4) 2x 1  x 6) x 2  x 0  

Bài 4: Giải bất phương trình biểu diễn tập nghiệm trục số

a)    

2

x 1 x x 3 c) 3x2 10x 0

   e)

3x 4 x    f) 2 x x 1 x    b)

1 2x 5x

2

4

 

 

d) x2 x 11 7x     12 g)

2

x x x

1 2x 4x

 

 

Bài 5: Giải biện luận bất phương trình sau

a) 2ma 0  b)  

2

m  x m 0  

Bài 6: Giải phương trình

a)      

2

12x 7 3x 2x 1  3 b) 2x x 1     2 2x 3  28

Bài 7: Tìm nghiệm nguyên phương trình

a) 2x2 2y2  2xy y x 10 0    b) 6x2 5y2 74

Phần 2: Rút gọn tập áp dụng

Bài 1: Cho biểu thức

x

C

x x x x

  

   

a) Rút gọn C c) Tìm x để C

2

e) Tìm x để C <

b) Tính C biết x2  x 2 d) Tìm x nguyên để C nguyên f) Với x < 2, x3 CMR:

2 C

3

 

Bài 2: Cho biểu thức

2

2

2x 1 2x 16x 16x 4x

A :

1 2x 2x 4x 4x 4x

      

     

    

(4)

a) Rút gọn A b) Tìm giá trị A biết x2  3x 0  c) Tìm x để A > 0

Bài 3: Cho biểu thức

 

2

x 10 x

A : x

x x x x

  

 

       

   

   

a) Rút gọn A b) Tìm giá trị A biết x2  3x 0  c) Tìm x để A > 0

Bài 4: Cho biểu thức

2

2

x x x 12x

P :

3x x x x x

 

  

    

     

a) Rút gọn P b) Tính giá trị P 2x 5  c) Tìm x để P <

Bài 5: Cho biểu thức

2

2

x x x 1 x

E :

x 2x x x x x

 

  

    

     

a) Rút gọn A b) Tính E biết x 2 

c) Tìm x để

E ;

2

d) Tìm x để E > 1;

e) Tìm x ngun dể E có giá trị ngun; f) Với x > Tìm giá trị nhỏ E

Bài 6: Cho

2

2 3

1 x x 2x

N :

x 2x x x x x x

 

 

    

      

a) Rút gọn N c) Chứng minh N < với x thuộc TXĐ b) Tìm x để N1 d) Tìm N để N 1

Phần 3: Tìm cực trị, bất đẳng thức Bài 1: Cho x + y +z =3

a) Tìm GTNN A x 2y2 z2

b) Tìm GTLN B = xy + yz + zx Tìm GTNN A + B

Bài 2: Tìm giá trị lớn

2

A 12x 4x   5;

3 B

4x 4x

  ; C 10x 4x  2 23; D =

2

2x 4x x 2x

    

(5)

2

A (x  9)  y 1;  B=x2 2y2  2xy 4t 5; 

2

x x

C

(x 1)

 

 

Bài 4: Cho x 1 Tìm GTNN

1 A 2018x

2x

 

Bài 5: Cho x,y > 0, x + y =1 Tìm GTNN P = 2

1

1

x y

 

 

 

   

   

Bài 6: Cho x > 0, y > thỏa mãn x + y 1 Tìm GTNN 2

1

P 4xy

x y xy

  

Phần 4: Giải tốn cách lập phương trình

Bài 1: Hai xe khởi hành lúc hai điểm A B cách 70km sau gặp Biết vận tốc xe từ A lớn vận tốc xe từ B 10km/h Tính vận tốc xe ? Chỗ gặp cách A km

Bài 2: Một ca nơ xi dịng lên khúc sơng dài 72km, sau lại ngược dịng khúc sơng 54km hết tất Tính vận tốc riêng ca nơ biết vận tốc dịng nước 3km/h

Bài 3: Một người xe đạp từ A đến B thời gian qui định với vận tốc xác định Nếu người tăng vận tốc 3km/h đến sớm 1h Nếu người giảm vận tốc 2km/h đến B muộn 1h Tính khoảng cách AB, vận tốc thời gian người

Bài 4: Một ca nơ xi dịng khúc sông từ bến A đến bến B dài 80km, sau lại ngược dịng đến C cách bến B 72km Thời gian ca nơ xi dịng thời gian ngược dịng 15’ Tính vận tốc riêng ca nơ biết vận tốc dòng nước 4km/h

Bài 5: Một tổ sản xuất định hoàn thành kế hoạch 10 ngày với suất định trước Do tăng suất lên thêm sản phẩm ngày nên tổ hồn thành trước thời hạn ngày cịn vượt mức kế hoạch 25 sản phẩm Tính xem tổ dự định sản phẩm ?

Bài 6: Một xí nghiệm dệt thảm giao làm số thảm xuất 20 ngày Xí nghiệp tăng suất lên 20% nên sau 18 ngày làm xong số thảm giao cịn làm thêm 24 Tính số thảm mà xí nghiệp làm 18 ngày ?

Bài 7: Nếu hai vịi nước chảy vào bể chứa khơng có nước sau 1h30’ đầy bể Nếu mở vịi thứ 15 phút khóa lại, mở vịng thứ hai chảy tiếp 20 phút 1/5 bể Hỏi suất vòi chảy riêng sau vòi chảy đầy bể ?

(6)

HÌNH HỌC

Bài 1: Cho ABC vuông A, AB = 9cm, AC = 12cm, đường cao AH, đường phân giác BD Kẻ

DEBC E BC , đường thẳng DE cắt đường thẳng AB F. a) Tính BC, AH

b) Chứng minh EBF  EDC

c) Gọi I giao điểm AH BD Chứng minh AB.BI = BH.BD BD CF

d) Tính tỉ số diện tích hai tam giác ABC BCD

Bài 2: Cho ABC vuông A, đường cao AH Kẻ HE AB, HF AC

a) Chứng minh AE.AB = AC.AF

b) Gọi O trung điểm BC, AO cắt EF I Chứng minh AO vng góc với EF I c) Biết diện tích tam giác ABC gấp lần diện tích tứ giác AEHF Chứng minh tam giác

ABC vuông cân A

Bài 3: Cho ABC vuông A (AB > AC) M trung điểm BC Gọi H hình chiếu M

AC

a) Chứng minh H trung điểm AC

b) Từ M kẻ đường thẳng vuông góc với BC cắt AC kéo dài E Chứng minh BC.HM = EM.AC

c) Gọi N trung điểm MH Chứng minh NEM HBC 

d) Chứng minh BHEN

Bài 4: Điểm M trung điểm cạnh đáy BC tam giác cân ABC Các điểm D E thứ tự thuộc cạnh AB, AC cho CME BDM.  Chứng minh rằng

a) BD.CE BM

b) Các tam giác MDE BDM đồng dạng c) DM tia phân giác BDE

Bài 5: Cho ABC (AB < AC), hai đường cao BE CF gặp H, đường thẳng kẻ từ B

song song với CF từ C song song với BE gặp D Chứng minh a) ABE  ACF

b) AE.CB = AC.EF

c) Gọi I trung điểm BC Chứng minh H, I, D thẳng hàng

Bài 6: Cho ABC có ba góc nhọn (AB < AC) Gọi BD đường phân giác tam giác ABC,

(7)

b) Cho AD = 4cm, DC = 6cm Tính MD

Bài 7: Cho ABC có ba góc nhọn, đường cao BD CE cắt H Trên HB HC

lấy M N cho AMC ANB 90    CMR:

a) Các tam giác ABD ACE đồng dạng b) Tam giác AMN cân

c) Chứng minh AD.AC AE.AB BC 

Bài 8: Cho ABC ; M, N trung điểm AC BC Trung trực AC BC cắt

tại O, G; H trọng tâm trực tâm ABC

a) Chứng minh AHB NOM

b) Chứng minh AH = 2ON

c) Chứng minh AGH OGN 

d) Chứng minh H, O, G thẳng hàng GH = 3GO

Bài 9: Cho ABC vuông A (AB > AC); I BC Trên nửa mặt phẳng chứa A cò bờ chứa đường

thẳng BC, vẽ tia Cx By vng góc với BC Qua A kẻ đường thẳng vng góc với AI A cắt tia By Cx M N

a) Chứng minh AIB ANC

b) Chứng minh NIA ABC

c) Chứng minh MIN vng

d) Tìm vị trị điểm I để SNMO 4SABC;SNMI 2SABC

Bài 10: Cho hình bình hành ABCD có góc A nhọn Kẻ BI DK vng góc với AC, kẻ CM vng góc với tia AB, CN vng góc với tia AD

a) Chứng minh AK = IC, ABC NCM 

b) Tứ giác BIDK hình gì? Cho AB = 9cm, BC = 15cm, AC = 20cm Phân giác góc ABC cắt AC Q Tính AQ, CQ tỉ số diện tích hai tam giác ABQ BCQ

(8)(9)(10)(11) https://www.facebook.com/groups/tailieutieuhocvathcs/

Ngày đăng: 04/04/2021, 13:07

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w