Riêng đối với hàm số lượng giác nên sử dụng quy tắc II để tìm các cực trị *Hoạt động 3: Luyện tập, củng cố TG Hoạt động của GV Hoạt động của HS 11’ +Yêu cầu HS hoạt +HS thực hiện hoạt độ[r]
(1)Ngày soạn: 4/8/2008 Tiết: CỰC TRỊ CỦA HÀM SỐ (Chương trình chuẩn) I-Mục tiêu: + Về kiến thức: - Nắm vững định lí và định lí - Phát biểu các bước để tìm cực trị hàm số (quy tắc I và quy tắc II) + Về kỹ năng: Vận dụng quy tắc I và quy tắc II để tìm cực trị hàm số + Về tư và thái độ: - Áp dụng quy tắc I và II cho trường hợp - Biết quy lạ quen - Tích cực học tập, chủ động tham gia các hoạt động II-Chuẩn bị GV và HS: - GV: giáo án, bảng phụ - HS: học bài cũ và xem trước bài nhà III-Phương pháp giảng dạy: vấn đáp, gợi mở, hoạt động nhóm IV-Tiến trình bài học: Ổn định lớp: (1’) Kiểm tra bài cũ: TG Hoạt động GV Hoạt động HS Ghi bảng 5’ +Treo bảng phụ có ghi 1/Hãy nêu định lí câu hỏi 2/Áp dụng định lí 1, tìm các điểm cực trị hàm số sau: y x +Gọi HS lên bảng trả lời +Nhận xét, bổ sung thêm +HS lên bảng trả lời x Giải: Tập xác định: D = R\0 x2 x2 x2 y ' x 1 y' BBT: x - -1 y’ + y -2 + + + + - - Từ BBT suy x = -1 là điểm cực đại hàm số và x = là điểm cực tiểu hàm số Bài mới: Lop10.com (2) *Hoạt động 1: Dẫn dắt khái niệm TG Hoạt động GV Hoạt động HS 10’ +Yêu cầu HS nêu các +HS trả lời bước tìm cực trị hàm số từ định lí +GV treo bảng phụ ghi quy tắc I +Yêu cầu HS tính thêm +Tính: y” = y”(-1), y”(1) câu x trên y”(-1) = -2 < y”(1) = >0 +Phát vấn: Quan hệ đạo hàm cấp hai với cực trị hàm số? +GV thuyết trình và treo bảng phụ ghi định lí 2, quy tắc II *Hoạt động 2: Luyện tập, củng cố TG Hoạt động GV Hoạt động HS 10’ +Yêu cầu HS vận dụng quy tắc II để tìm cực trị hàm số +HS giải +Phát vấn: Khi nào nên +HS trả lời dùng quy tắc I, nào nên dùng quy tắc II ? +Đối với hàm số không có đạo hàm cấp (và đó không có đạo hàm cấp 2) thì không thể dùng quy tắc Lop10.com Ghi bảng III-Quy tắc tìm cực trị: *Quy tắc I: sgk/trang 16 *Định lí 2: sgk/trang 16 *Quy tắc II: sgk/trang 17 Ghi bảng *Ví dụ 1: Tìm các điểm cực trị hàm số: f(x) = x4 – 2x2 + Giải: Tập xác định hàm số: D = R f’(x) = 4x3 – 4x = 4x(x2 – 1) f’(x) = x 1 ; x = f”(x) = 12x2 - f”( 1) = >0 x = -1 và x = là hai điểm cực tiểu f”(0) = -4 < x = là điểm cực đại Kết luận: f(x) đạt cực tiểu x = -1 và x = 1; fCT = f( 1) = f(x) đạt cực đại x = 0; fCĐ = f(0) = (3) II Riêng hàm số lượng giác nên sử dụng quy tắc II để tìm các cực trị *Hoạt động 3: Luyện tập, củng cố TG Hoạt động GV Hoạt động HS 11’ +Yêu cầu HS hoạt +HS thực hoạt động nhóm Nhóm nào động nhóm giải xong trước lên bảng trình bày lời giải Ghi bảng *Ví dụ 2: Tìm các điểm cực trị hàm số f(x) = x – sin2x Giải: Tập xác định : D = R f’(x) = – 2cos2x x k f’(x) = cos2x = x k (k ) f”(x) = 4sin2x f”( k ) = > f”(- k ) = -2 < Kết luận: x = k ( k ) là các điểm cực tiểu hàm số x = - k ( k ) là các điểm cực đại hàm số Củng cố toàn bài: (5’) Các mệnh đề sau đúng hay sai? 1/ Số điểm cực tr ị hàm số y = 2x3 – 3x2 là 2/ Hàm số y = - x4 + 2x2 đạt cực trị điểm x = Đáp án: 1/ Sai 2/ Đúng Hư ớng dẫn học bài nhà và bài tập nhà: (3’) - Định lý và các quy tắc I, II tìm cực trị hàm số - BTVN: làm các bài tập còn lại trang 18 sgk - Đọc bài và tìm hiểu bài trước nhà V-Phụ lục: bảng phụ ghi các quy tắc I, II và định lí Lop10.com (4) Lop10.com (5)