1. Trang chủ
  2. » Giáo án - Bài giảng

Bài giảng T62-C4-HH9

7 180 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 7
Dung lượng 191 KB

Nội dung

h237 G v : Võ Thò Thiên Hương Ngày soạn : . . . . . . . . Tiết : 6 2 Ngày dạy : . . . . . . . . I/- Mục tiêu : • Học sinh được giới thiệu và ghi nhớ các khái niệm về hình nón: đáy, mặt xung quanh, đøng cao, đường sinh,, mặt cắt song song với đáy hình nón và có khái niệm về hình nón cụt . • Nắm chắc và biết sử dụng công thức tính diện tích xung quanh, diện tích toàn phần và thể tích hình nón, hình nón cụt . II/- Chuẩn bò : * Giáo viên : - Đồ dùng dạy học, thước thẳng, phấn màu, máy tính bỏ túi. Bảng phụ vẽ sẵn h. 87, 92, 93, 94 SGK và mô hình . * Học sinh : - Thực hiện dặn dò của gv ở tiết trước .Thước thẳng, compa, bảng nhóm, máy tính bỏ túi . III/- Tiến trình : * Phương pháp : Vấn đáp để phát hiện và giải quyết vấn đề kết hợp với thực hành theo hoạt động cá nhân hoặc nhóm. HOẠT ĐỘNG CỦA THẦY HOẠT ĐỘNG CỦA TRÒ NỘI DUNG BỔ SUNG HĐ 1 : Hình nón (10 phút) Ta biết khi quay h.c.n. một vòng quanh một cạnh cố đònh, ta được một h.trụ. Nếu thay h.c.n. bằng 1 tam giác vuông, quay ∆ vuông AOC một vòng quanh cạnh gv OA cố đònh, ta được một h.nón - Gv đưa hình 87 trang 114 SGK trên bảng để giới thiệu : Khi quay : . Cạnh OC quét nên đáy của hình nón là một hình tròn tâm O . . Cạnh AC quét nên mặt xung quanh của hình nón, mỗi vò trí của AC đgl một đường sinh ( AE, AF là đ.sinh của hình trụ) . .A là đỉnh của hình nón. AO vuông góc với mp đáy, gọi là đ. cao h của h.nón . - Hs nghe gv trình bày và quan sát . - Hs xem gv minh họa và đối chiếu với SGK . 1. Hình nónï : d R A A H l l l h O C E F R C mặt xung quanh mặt đáy đường sinh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - Gv yêu cầu hs lên điền vào chỗ trống trên hình vẽ . - Gv đưa một chiếc nón lá để hs quan sát thực hiện ?1. - Từng bàn hs quan sát vật hình nón mang theo và lên điền vào chỗ trống trên hình vẽ . -Một hs chỉ rõ các yếu tố của hình nón đỉnh, đ.tròn đáy, đường cao, đường sinh, mặt xung quanh, mặt đáy . ( SGK ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . h238 . . . . . . . . . . . . . . . . . . HĐ 2 : Diện tích xung quanh của hình nón (11 phút) - Gv đưa mô hình hình nón (không có mặt đáy) để chỉ ra mặt xung quanh của hình nón rồi thực hành cắt dọc theo một đường sinh (SA) rồi trải ra . - Sau khi thực nghiệm, gv đưa hình vẽ minh họa trên bảng và yêu cầu hs xác đònh hình khai triển mặt xung quanh của hình nón là hình gì ? - Hãy nêu công thức tính diện tích hình quạt tròn SAA’A ? - Độ dài cung AA’A được tính như thế nào ? -Tính diện tích hình quạt tròn SAA’A ? - Đó cũng chính là diện tích xung quanh của hình nón Gọi R : bán kính mặt đáy l : độ dài đường sinhï S S l h l l A O B A A B - là hình quạt tròn - Diện tích hình quạt tròn SAA’A : S quạt = 2 360 R n π hoặc S quạt =l ¼ 'AA A . 2 l - Độ dài cung AA’A chính là độ dài đ.tròn (O) đường kính AB (bán kính r) - S quạt AA’A =2r π . 2 l = r π l - Hs nêu công thức như SGK 2. Diện tích xung quanh của hình nón : * Diện tích xung quanh của hình nón : S xq = R π l Trong đó R : bán kính mặt đáy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ta có công thức như thế nào ? - Gv cho hs tham khảo VD tính diện tích xung quanh của h.nón trang 115 SGK (gv đưa VD và bài giải trên bảng) . - Ta thấy để tính tính S xq của một h.nón phải biết yếu tố nào ? - Trong VD trên, độ dài đường sinh l được tính như thế nào ? - Có R và l ta tính được S xq của hình nón . - Vậy diện tích toàn phần của hình nón được tính như thế nào ? - Yêu cầu hs nêu công thức tính diện tích toàn phần của hình nón . - Một hs đọc đề bài . - Biết R : bán kính mặt đáy và l : độ dài đường sinhï - Đã biết đ.cao h và bán kính đáy R nên ta áp dụng đl Pytago trong v SOA∆ . - Diện tích toàn phần của hình nón bằng diện tích xung quanh cộng với diện tích mặt đáy . - Hs nêu công thức l : độ dài đường sinhï VD : Tính S xq của một h.nón có chiều cao h = 16cm và bán kính đ.tròn đáy R = 12cm . Giải Độ dài đường sinh của hình nón : l = 2 2 2 2 16 12h R+ = + =20(cm) Diện tích xung quanh của h.nón : S xq = R π l = 12. π .20 = 240 π (cm 2 ) * Diện tích toàn phần : S tp = S xq + S đáy = R π l +R 2 π Trong đó R : bán kính mặt đáy l : độ dài đường sinh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . h239 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HĐ 3 : Thể tích hình nón (7 phút) - Gv đưa hình vẽ 90 và giới thiệu thực nghiệm trang 115, 116 SGK . Người ta sử dụng một hình trụ và một hình nón có đáy là hai hình tròn bằng nhau, chiều cao của hai hình cũng bằng nhau . Sau khi đổ đầy nước vào trong hình nón, người ta đổ hết nước này sang hình trụ và đo được chiều cao của cột nước bằng 1 3 chiều cao của hình trụ. - Qua thực nghiệm trên, ta thấy thể tích nước chính là gì ? - Vậy ta kết luận được gì về thể tích hình nón và thể tích hình trụ có cùng diện tích đáy và chiều cao ? - Từ công thức tính thể tích hình trụ mà ta đã học hãy cho biết công thức tính thể tích hình nón ?. - Yêu cầu hs xác đònh công thức tính thể tích hình nón . - Cho hs áp dụng qua VD : Tính thể tích hình nón có bán kính đáy bằng 5cm, chiều cao 10cm . h h h’ h’ = 1 3 h - Thể tích nước chính là thể tích của hình nón - Thể tích hình nón bằng 1 3 thể tích hình trụ - V h.nón = 1 3 V h.trụ ⇒ V h.nón = 1 3 R 2 π h - Hs đọc cho gv ghi bảng V= 1 3 R 2 π h ≈ 1 3 .5 2 . π .10 ≈ 250 3 π (cm 3 ) 3. Thể tích hình nón : Thể tích V của hình nón được tính bởi công thức : V = 1 3 R 2 π h Trong đó R : bán kính mặt đáy h : chiều cao hình nón . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , , , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , , , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , , , . . . . . . . . . , , , . . . HĐ 4 : Hình nón cụt – Diện tích xung quanh và thể tích hình nón cụt (15 phút) - Gv sử dụng mô hình và yêu cầu hs cho biết thế nào là một hình nón cụt ? - Hình nón cụt có mấy đáy ? là các hình như thế nào ? - Gv đưa hình 92 SGK trên bảng và yêu cầu hs điền vào chỗ trống . - Ta có thể tính S xq của hình nón cụt theo S xq của hình nón lớn và hình nón nhỏ như thế nào ? - Gv hướng dẫn hs biến đổi : Mà 1 2 l l R r = ( ' 'SOA SO A ∆ ∆ : ) ⇒ r l 1 = R l 2 ⇒ S xq nón cụt = (R l 1 - R l 2 + r l 1 – r l 2 ) π = [ R ( l 1 - l 2 ) + r ( l 1 – l 2 ) ] π = (R + r) ( l 1 – l 2 ) π = (R + r) l π - Tương tự, thể tích của hình nón cụt cũng là V nón cụt = V nón lớn – V nón nhỏ = 1 3 R 2 π h 1 - 1 3 r 2 π h 2 sau khi biến đổi ta được : V nón cụt = 1 3 π h ( R 2 + r 2 + R r) - Hs quan sát và nêu khái niệm về hình nón cụt như SGK . - Hình nón cụt có hai đáy là hai hình không bằng nhau . đường cao l h mặt đáy đường sinh mặt xung quanh - S xq nón cụt = S xq nón lớn – S xq nón nhỏ = R π l 1 - r π l 2 = (R l 1 – r l 2 ) π - Hs theo dõi và trả lời phát vấn của gv theo trình tự biến đổi . 4. Hình nón cụt : 1) Khái niệm hình nón cụt : ( SGK ) 2) Diện tích xung quanh và thể tích hình nón cụt : * Diện tích xung quanh của hình nón cụt: S xq nón cụt = π l (R – r ) Trong đó: R, r : hai bán kính của hai mặt đáy l : độ dài đường sinh của h. nón cụt * Thể tích V của hình nón cụt được tính bởi công thức : V nón cụt = 1 3 π h ( R 2 + r 2 + R r) Trong đó: R, r : hai bán kính của hai mặt đáy h : chiều cao của h. nón cụt h240 . . . . . . , , , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV/- Hướng dẫn về nhà : (2 phút) - Nắm vững các khái niệm về hình nón, nắm chắc các công thức tính S xq , S tp , V của hình nón và hình nón cụt . - Bài tập về nhà số 17, 19, 20 trang 118 SGK và 17, 18 trang 126 SBT . Tiết sau luyện tập . V/- Rút kinh nghiệm : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . tham khảo VD tính diện tích xung quanh của h.nón trang 115 SGK (gv đưa VD và bài giải trên bảng) . - Ta thấy để tính tính S xq của một h.nón phải biết yếu. cầu hs nêu công thức tính diện tích toàn phần của hình nón . - Một hs đọc đề bài . - Biết R : bán kính mặt đáy và l : độ dài đường sinhï - Đã biết đ.cao

Ngày đăng: 23/11/2013, 18:11

HÌNH ẢNH LIÊN QUAN

- Có R và l ta tính được Sxq của hình nón . - Bài giảng T62-C4-HH9
v à l ta tính được Sxq của hình nón (Trang 3)
- Nắm vững các khái niệm về hình nón, nắm chắc các công thức tính Sxq, Stp, V của hình nón và hình nón cụt  - Bài giảng T62-C4-HH9
m vững các khái niệm về hình nón, nắm chắc các công thức tính Sxq, Stp, V của hình nón và hình nón cụt (Trang 6)

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w