LuyÖn tËp I Môc tiªu : – Củng cố kiến thứclí thuyết về định lí Ta-lét; định lí đảo của định lí Ta-lét – Vận dụng định lí để xác định được các cặp đoạn thẳnh song song trong hình vẽ với s[r]
(1)GA H×nh häc GV: Ph¹m Xu©n DiÖu TiÕt 39 Ngµy d¹y: 03/02/10 LuyÖn tËp I) Môc tiªu : – Củng cố kiến thứclí thuyết định lí Ta-lét; định lí đảo định lí Ta-lét – Vận dụng định lí để xác định các cặp đoạn thẳnh song song hình vẽ với số liệu đã cho, áp dụng định lí Ta-lét; định lí đảo định lí Ta-lét để làm bài tập II) ChuÈn bÞ cña gi¸o viªn vµ häc sinh : GV : Giáo án, thước thẳng và êke, bảng phụ vẽ hình 16, 17, 18 SGK HS : Học thuộc định lí Ta-lét; định lí đảo định lí Ta-lét, hệ Chuẩn bị đầy đủ thước thẳng và êke III) TiÕn tr×nh d¹y häc : Hoạt động giáo viên Hoạt động học sinh HS 1: Hoạt động : Kiểm tra bài cũ HS 1: Phát biểu định lí Ta-lét tam giác D ( SGK trang 58 ) Phát biểu định lí Ta-lét tam giác? Bµi tËp trang 62 h×nh 14 a) Vµ lµm bµi tËp trang 62 h×nh 14 a) 9,5 DEF cã MN // EF nªn theo hÖ M N định lí Ta-lét ta có : 9,5 DM MN 28 hay 37,5 x DE EF 37,5.8 x E F 31,58 x = a) MN//EF 9,5 HS 2: HS : Phát biểu định lí đảo định lí Ta-lét tam Phát biểu định lí Ta-lét đảo ( SGK Tr 60 ) gi¸c vµ hÖ qu¶ ? Phát biểu hệ định lí Ta-lét ( SGK tr 60 ) Vµ lµm bµi tËp trang 62 Bµi tËp trang 62 B” A M P B A’ 15 O 4,5 C A a) b) B CM CN 15 21 MA NB Nên theo định lí Ta-lét đảo suy MF// AB H×nh b) cã A”B”// A’B’ v× cã hai gãc so le B”A’O vµ OA’B’ b»ng OA ' OB ' A’B’// AB v× cã A ' A B ' B 4,5 A”B”// AB v× cïng song song víi A’B’ 10/ 63 Gi¶i H×nh a) cã MF // AB v× Hoạt động : LuyÖn tËp C¶ líp lµm bµi tËp phÇn LuyÖn tËp Mét em lªn b¶ng gi¶i bµi tËp 10/ 63 B’ 21 F A” A d B Lop8.net B’ C’ H’ H C (2) GA H×nh häc GV: Ph¹m Xu©n DiÖu S AB 'C ' = ? S ABC = ? S AB 'C ' =? S ABC AH ' B 'C ' Mµ =? =? AH BC S AH ' B ' C ' VËy AB 'C ' = =? S ABC AH BC S = 67.5 cm2 S’ = ? Mét em lªn b¶ng gi¶i bµi tËp 11/ 63 Ta cã AK = KI = IH vËy a) Từ giả thiết B’C’// BC, áp dụng hệ định lÝ Ta-lÐt vµ tÝnh chÊt cña d·y tØ sè b»ng ta cã: AH ' B ' H ' H ' C ' B ' H ' H ' C ' = AH BH HC BH HC AH ' B ' C ' hay AH BC b) ¸p dông : AH ' Tõ gi¶ thiÕt AH’= AH , ta cã AH B 'C ' và đó BC Gäi S vµ S’ lµ diÖn tÝch cña c¸c tam gi¸c ABC vµ AB’C’ ta cã : AH '.B ' C ' S AH '.B ' C ' AH ' S' AH BC AH AH BC 1 Từ đó suy S’= S = 67,5 = 7,5 (cm2) 9 11 / 63 Gi¶i A AK AI vµ AH AH M N K E F I B C H Tam gi¸c ABC cã MN // BC vµ AK = KI = IH MN AK 1 MN BC 15 5(cm) Suy BC AH 3 Tam gi¸c ABC cã EF // BC vµ AK = KI = IH EF AI 2 EF BC 15 10(cm) Suy BC AH 3 b)Gäi diÖn tÝch cña c¸c tam gi¸c AMN, AEF, ABC theo thø tù lµ S1 , S2, S ¸p dông kÕt qu¶ c©u b) cña bµi 10 ta cã : S1 AK S AH S AI S AH 2 S1 S 4 S2 S 9 Từ đó S2 - S1 = S( ) = S 270 90 (cm2) 9 VËy S MNFE = 90 cm Lop8.net (3)