1. Trang chủ
  2. » Giáo án - Bài giảng

Bài tập QHTT chương III

3 373 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 3
Dung lượng 115,5 KB

Nội dung

BÀI TẬP CHƯƠNG IV Dạng 1: Hãy lập bài toán đối ngẫu của các bài toán sau: 1. 1 2 3 ( ) 2 8 maxf x x x x= + − → 1 2 3 1 2 3 1 2 3 1 2 3 7 4 2 28 3 3 10 2 3 15 , , 0 x x x x x x x x x x x x + + ≤ − + = + − ≥ ≥ 2. 1 2 3 4 ( ) 2 3 maxf x x x x x= + − + → 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 2 7 2 5 5 3 20 , 0, 0 x x x x x x x x x x x x x x x + + + = − − + ≤ + + + ≥ ≥ ≤ 3. 1 2 3 ( ) 2 3f x x x x Min= + + → 1 2 3 1 2 3 1 2 1 3 1 2 2 2 2 4 3 2 4 2 5 0, 0 x x x x x x x x x x x x + − ≥ − − − ≤ − + ≥ − ≤ ≤ ≥ 4. 1 2 ( ) 2f x x x Min= + → 1 2 1 2 1 2 1 2 1 2 3 2 5 2 7 x x x x x x x x + ≥ + ≥ − − + ≤ − + ≤ 5. 1 2 3 4 ( ) 2 3 4f x x x x x Max= − + − → 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 , , 0. x x x x x x x x x x x x x x x + + + ≤ − + − = − + − + ≥ − ≥ 6. 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 ( ) 2 3 2 3 2 4 3 2 6 3 5 7 8 , , 0 f x x x x Min x x x x x x x x x x x x x x x = + + → + − = − − ≤ − + − ≥ + − ≤ ≥ Dạng 2: Giải bài toán đối ngẫu 1. Cho bài toán QHTT (P) sau: 1 2 3 4 ( ) 2 4f x x x x x Max= + + + → 1 2 4 2 4 2 3 4 1 2 3 4 3 1 5 2 3 4 3 , , , 0 x x x x x x x x x x x x + + ≤ − − ≤ + + ≤ ≥ a) Giải vài toán (P). b) Lập bài toán đối ngẫu (Q) của bài toán (P) và giải bài toán (Q). 2. Cho bài toán QHTT (P) sau: 1 2 3 ( ) 3 4f x x x x Min= + + → 1 1 2 3 1 2 3 1 2 3 1 2 3 3 2 4 15 2 5 8 4 2 2 10 , 0; 0 x x x x x x x x x x x x − + − ≥ − − ≥ + + ≥ ≥ ≤ Cho biết bài toán trên có PATƯ là (7,0, 9)x = − . Hãy lập và giải bài toán đối ngẫu của bài toán trên. 3. Cho bài toán QHTT (P) sau: 1 2 3 4 5 ( ) 2 3 4f x x x x x x Max= − + + + − → 1 2 3 4 5 1 2 4 5 1 2 4 5 3 2 4 2 9 7 3 7 5 15 4 2 4 3 8 0, 1, .,5 j x x x x x x x x x x x x x x j − + − + = − − + = − − + = ≥ = a) Giải bài toán (P). b) Lập bài toán đối ngẫu (Q) của (P) và chỉ ra các cặp ràng buộc đối ngẫu> Tìm tập phương án tối ưu của bài toán (Q). 4. Câu hỏi như bài 1. a. 1 2 3 4 5 ( ) 2 6 4 2 3f x x x x x x Max= − + + − + → 1 2 3 2 3 4 2 5 2 4 52 4 2 60 3 36 0, 1, .,5 j x x x x x x x x x j + + = + + = + = ≥ = b. 1 2 3 4 5 ( ) 3 4 5f x x x x x x Min= − + + − − → 1 2 3 4 2 3 4 5 1 2 3 4 5 2 3 2 30 23 3 2 4 10. 0, 1, .,5 j x x x x x x x x x x x x x x j + − + = − + − = − + + + ≥ − ≥ = 5. Cho bài toán QHTT (P) sau: 1 2 3 4 5 1 2 4 5 1 3 4 5 1 2 3 5 2 3 4 ( ) 2 5 3 min 2 3 2 12 3 1 4 2 3 20 , , 0. f x x x x x x x x x x x x x x x x x x x x x = − + − + → + − + ≥ − − − + − = + + + ≤ ≥ Chứng tỏ rằng vecto (4,2,0,5,0)x = không phải là một PATU của bài toán (P). 2 6. Cho bài toán QHTT (P) sau 1 2 3 4 ( ) 5 2 2 4f x x x x x Min= − + + − → 1 3 4 2 3 4 2 3 4 2 3 4 2 14 4 14 36 2 3 12 3 5 2 23 0, 1, .,4 j x x x x x x x x x x x x x j + + = − + ≤ − + ≥ − + ≤ ≥ = Chứng tỏ rằng 0 7 (9, ,0,5) 2 x = là một PATU của bài toán (P). Tìm tập PATU của bài toán (P). 7. Cho bài toán QHTT sau: 1 2 3 4 ( ) 8 6 4 5f x x x x x Min= − + + + → 1 3 4 1 2 3 4 1 2 3 4 1 2 4 2 7 2 3 4 3 2 6 5 , , 0. x x x x x x x x x x x x x x − + ≤ − + − + = − − + − ≥ ≥ a. Viết bài toán đối ngẫu (Q) của bài toán (P). b. Chứng tỏ rằng vecto * (3,0, 2,0)x = − là một PA của (P). Lợi dụng * x để tìm tập PATU của (Q). Tìm PATU của bài toán (Q) có thành phần thứ ba bằng 1. c. Tìm tập PATU của bài toán (P). 8. Cho BT QHTT (P) sau: 1 2 3 4 5 6 ( ) 3 3 3 5 2f x x x x x x x Min= + − + + + → 1 2 4 5 2 3 4 5 2 4 5 6 2 4 5 2 3 10 3 2 18 4 2 3 3 , , 0. x x x x x x x x x x x x x x x − + − ≥ + − + ≤ − + − − ≤ ≥ a. Tìm PACB của bài toán (P). b. Lập bài toán (Q) của (P) và chứng tỏ rằng cặp bài toán đối ngẫu đó có PATU. Tìm các PATU của cặp bài toán này. 3 . BÀI TẬP CHƯƠNG IV Dạng 1: Hãy lập bài toán đối ngẫu của các bài toán sau: 1. 1 2 3 ( ) 2 8 maxf x x x x= +. + + ≤ ≥ a) Giải vài toán (P). b) Lập bài toán đối ngẫu (Q) của bài toán (P) và giải bài toán (Q). 2. Cho bài toán QHTT (P) sau: 1 2 3 ( ) 3 4f x x x x

Ngày đăng: 11/11/2013, 12:11

TỪ KHÓA LIÊN QUAN

w