1. Trang chủ
  2. » Luận Văn - Báo Cáo

Một số vấn đề cơ sở của tổ hợp

63 11 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 63
Dung lượng 575,17 KB

Nội dung

ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC ĐỖ VĂN PUN MỘT SỐ VẤN ĐỀ CƠ SỞ CỦA TỔ HỢP LUẬN VĂN THẠC SĨ TOÁN HỌC Thái Nguyên - 2014 ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC ĐỖ VĂN PUN MỘT SỐ VẤN ĐỀ CƠ SỞ CỦA TỔ HỢP Chuyên ngành: PHƯƠNG PHÁP TOÁN SƠ CẤP MÃ SỐ: 60.46.01.13 LUẬN VĂN THẠC SĨ TOÁN HỌC Người hướng dẫn khoa học: GS TSKH Hà Huy Khoái Thái Nguyên - 2014 Mục lục Lời mở đầu Chương Tập hợp tổ hợp 1.1 Tập hợp khả 1.1.1 Tập hợp 1.1.2 Xâu 1.1.3 Tập hợp thứ tự 1.2 Các phép toán tập hợp 1.2.1 Giao hai tập hợp 1.2.2 Hợp hai tập hợp 1.2.3 Hiệu phần bù hai tập hợp 1.2.4 Tích Đềcác n tập hợp 1.3 Số tập 1.4 Quy tắc tổng 10 1.5 Quy tắc nhân 11 1.6 Hốn vị khơng lặp hốn vị vịng 12 1.6.1 Hốn vị khơng lặp 12 1.6.2 Hoán vị vòng 14 1.7 Chỉnh hợp 14 1.7.1 Chỉnh hợp không lặp 14 1.7.2 Chỉnh hợp có lặp 15 1.8 Tổ hợp không lặp 15 1.9 Hốn vị có lặp 16 1.10 Tổ hợp có lặp 18 1.11 Tính chất Cnn−m 19 1.12 Nhị thức Newton 20 Chương Giải toán tổ hợp 23 2.1 Giải toán đếm 23 2.1.1 Sử dụng xâu để giải toán đếm số 23 2.1.2 Bài toán đếm số cách xếp 27 2.1.3 Bài toán chọn số phương án để thỏa mãn số điều kiện cho trước 28 2.2 Các tốn tổ hợp có nội dung hình học 32 Chương Các phương pháp đếm nâng cao 36 3.1 Phương pháp đếm nhờ thiết lập quan hệ truy hồi 37 3.2 Phương pháp sử dụng quy tắc cộng tổng quát 43 3.3 Phương pháp xây dựng song ánh 53 Kết luận 59 Tài liệu tham khảo 60 LỜI MỞ ĐẦU Toán tổ hợp lĩnh vực toán học nghiên cứu từ sớm ngày quan tâm nhờ vai trị quan trọng mơn tốn học Những kết đóng vai trị kiến thức tảng giải tích, xác suất, thống kê, hình học Trong thực tiễn giáo dục việc dạy học tốn tổ hợp quan trọng học tốt toán tổ hợp người học có lực sáng tạo tư nhạy bén để học tốt môn học khác lĩnh vực khác sống Trong kỳ thi học sinh giỏi quốc gia, thi toán sinh viên trường đại học cao đẳng, thi Olympic toán khu vực quốc tế toán tổ hợp xuất thử thách lớn cho thí sinh Rất nhiều tốn hay khó giải cách gọn đẹp cách sử dụng kiến thức tổ hợp Như Tốn tổ hợp có vai trị to lớn việc rèn luyện tư toán học kỹ giải tốn Vì tốn tổ hợp từ lâu đóng vai trị quan trọng việc rèn luyện tư toán học kỹ giải toán Những tốn tổ hợp có số đặc điểm quan trọng mang tính khác biệt sau: + Khơng địi hỏi nhiều kiến thức, giảng dạy bậc lớp khác + Khơng có khuôn mẫu định cho việc giải (giống việc giải phương trình, khảo sát hàm số, tính tích phân), ln địi hỏi sáng tạo từ phía học sinh + Thường phát biểu lời văn, địi hỏi học sinh phải có kỹ đọc, hiểu rút trích thơng tin, biết cách phát biểu lại ngơn ngữ tốn học Bài tốn tổ hợp thường mang tính thực tế tính thẩm mỹ cao, khiến học sinh u thích ghi nhớ Vì vậy, kỳ thi Olympic Toán nước, tốn tổ hợp ln xuất với tỷ lệ cao Tuy nhiên, Việt Nam, tốn tổ hợp xuất Điều thấy rõ thông qua việc nghiên cứu đề thi học sinh giỏi tỉnh thành, đề thi học sinh giỏi quốc gia, đề toán báo Toán học Tuổi trẻ Theo góp ý nhiều đồng nghiệp nước ngồi, đề thi Olympic Tốn Việt Nam mang nặng tính kỹ thuật, màu sắc thực tế thiếu ln vẻ đẹp toán học Đây điều cần bàn Tốn học khơng tốn khơ khan, mà sống, thực tế vẻ đẹp Tốn học tổ hợp (hay giải tích tổ hợp, đại số tổ hợp, lý thuyết tổ hợp) ngành toán học rời rạc, nghiên cứu cấu hình kết hợp phần tử tập hữu hạn phần tử Các cấu hình hoán vị, chỉnh hợp, tổ hợp, phần tử tập hợp Nó có liên quan đến nhiều lĩnh vực khác toán học, đại số, lý thuyết xác suất, lý thuyết ergod (ergodic theory) hình học, đến ngành ứng dụng khoa học máy tính vật lí thống kê Nhưng luận văn sâu đề cập nội dung sau: - Chương 1:Tập hợp tổ hợp - Chương 2: Ứng dụng giải toán tổ hợp - Chương 3: Phương pháp đếm nâng cao Luận văn thực hoàn thành trường Đại học Khoa học - Đại học Thái Nguyên hướng dẫn khoa học GS TSKH Hà Huy Khoái Qua đây, tác giả xin gửi lời cảm ơn sâu sắc đến thầy giáo, người hướng dẫn khoa học mình, GS.TSKH Hà Huy Khối, người đưa đề tài tận tình hướng dẫn suốt trình nghiên cứu tác giả Đồng thời tác giả chân thành cảm ơn thầy cô trường Đại học Khoa học, Đại học Thái Nguyên, tạo điều kiện cho tác giả tài liệu thủ tục hành để tác giả hồn thành luận văn Tác giả gửi lời cảm ơn đến gia đình, BGH trường THPT Chuyên Sơn La bạn lớp Cao học K6 trường Đại học Khoa học, động viên giúp đỡ tác giả trình học tập làm luận văn Sơn La, ngày 25 tháng 08 năm 2014 Học viên Đỗ Văn Pun N tập số tự nhiên Z tập số nguyên Z+ tập số nguyên không âm Q tập số hữu tỷ R tập số thực ∅ tập rỗng n(A) số phần tử tập hợp A |A| số phần tử tập hợp A n - xâu độ dài n n - tập tập hợp có n phần tử [a] phần nguyên a Pn số hoán vị n phần tử Qn hốn vị vịng quanh n phần tử Akn số chỉnh hợp không lặp chập k n phần tử Akn số chỉnh hợp lặp chập k n phần tử Cnk số tổ hợp không lặp chập k n phần tử P (n1 , n2 , , nk ) số hoán vị có lặp có cấu tạo (n1 , n2 , , nk ) Cnk số tổ hợp có lặp chập k n phần tử Chương Tập hợp tổ hợp 1.1 Tập hợp khả 1.1.1 Tập hợp Tập hợp (còn gọi tập) khái niệm tốn học, khơng định nghĩa Giả sử cho tập hợp A Để a phần tử tập hợp A, ta viết a ∈ A (đọc a thuộc A) Để a phần tử tập hợp A, ta viết a ∈ / A (đọc a khơng thuộc A) Ví dụ 1.1.1 Tập học sinh giới tính nam lớp, tập học sinh có nhà cách trường 30km, Các phần tử tập hợp hai cách sau: • Liệt kê phần tử chúng Ví dụ: A tập hợp ước nguyên dương 30, Ta viết A = {1, 2, 3, 5, 6, 10, 15, 30} • Chỉ tính chất đặc trưng cho phần tử Ví dụ: B tập hợp nghiệm phương trình : 2x2 − 5x + = 0, ta viết : B = x ∈ R/2x2 − 5x + = Một số tập hợp toán học: Tập số thực, ký hiệu R ; Tập số hữu tỷ, ký hiệu Q ; Tập số nguyên, ký hiệu Z ; Tập số nguyên không âm, ký hiệu Z+ ; Tập số tự nhiên ký hiệu N ; Tập rỗng, tập khơng có phần tử nào, ký hiệu ∅ Tập B mà phần tử thuộc tập A, B gọi tập tập A viết B ⊆ A Tập B mà phần tử thuộc tập A B = A, A gọi tập thực tập A viết B ⊂ A Khi A ⊂ B B ⊂ A ta nói tập hợp A tập hợp B viết A = B Số phần tử tập hợp A gọi lực lượng tập A, ký hiệu |A| hay n(A) Ví dụ |∅| = , |Z| = ∞ n - tập ký hiệu tập có n phần tử 1.1.2 Xâu Trong nhiều toán tổ hợp, thứ tự phần tử đóng vai trị quan trọng (ví dụ thứ tự trận đấu, thứ tự xếp học lực học sinh lớp, thứ tự lắp ráp linh kiện cho cỗ máy ), trong tập hợp thứ tự phần tử khơng giữ vai trị Do phải đưa khái niệm “xâu” để giải toán nêu Định nghĩa 1.1.2 Cho tập X tập gồm số tự nhiên Nn = {1, 2, 3, , n} Cho ánh xạ từ tập Nn vào tập X tương ứng số với phần tử x1 ∈ X, số với phần tử x2 ∈ X, , số n với phần tử xn ∈ X Kết ta nhận x1 , x2 , , xn phần tử tập hợp X, số phần tử xuất nhiều lần Khi xếp phần tử theo thứ tự, ta nhận xâu (x1 , x2 , , xn ) độ dài n, lập nên từ phần tử tập X Phần tử xk , ≤ k ≤ n gọi thành phần thứ k tọa độ thứ k xâu (x1 , , xn ) Các xâu có độ dài gọi cặp, cịn xâu có độ dài ba Đôi xâu độ dài n gọi n-bộ Ví dụ 1.1.3 Xâu a1 a2 a3 a4 a5 , “abcdefg”, “123468”, Hai xâu (x1 , x2 , , xn ) (y1 , y2 , , yn ) xem chúng có độ dài nhau, đồng thời thành phần chúng có số thứ thự Ta kí hiệu xâu chữ Hy Lạp Như vậy, α = (x1 , x2 , , xn ) β = (y1 , y2 , , ym ) α = β n = m xk = yk với k, ≤ k ≤ n √ √ √ √ √ √ Ví dụ: Cho α = 2, 3, β = 4, 9, 16 , α = β 4 = √ √ √ √ √ √ √ 1 2 4 22 = = 2 = 2, = 32 = = = 3, 16 = 24 = Các xâu (a, b, c, d) (a, b, c) không có độ dài khác Các xâu (a, b, c) (c, a, b) khơng thứ tự thành phần khác Các thành phần xâu tập hợp, xâu, Ví dụ 1.1.4 Xâu (a, b, {c, d}) xâu (a, b, {d, c}) tập hợp {c, d} {d, c} Xâu không chứa phần tử gọi xâu rỗng, ký hiệu ( ) 1.1.3 Tập hợp thứ tự Định nghĩa 1.1.5 Một tập hợp gọi thứ tự, phần tử xếp theo thứ tự xác định Ví dụ 1.1.6 Sắp thứ tự tập em học sinh lớp theo vần chữ tên, theo điểm trung bình mơn 1.2 Các phép tốn tập hợp 1.2.1 Giao hai tập hợp Định nghĩa 1.2.1 Giao hai tập hợp tập hợp gồm phần tử thuộc hai tập hợp Giao A B ký hiệu A ∩ B Theo định nghĩa, ta có A ∩ B = {x|x ∈ B x ∈ A} ... học khơng tốn khơ khan, mà sống, thực tế vẻ đẹp Tốn học tổ hợp (hay giải tích tổ hợp, đại số tổ hợp, lý thuyết tổ hợp) ngành tốn học rời rạc, nghiên cứu cấu hình kết hợp phần tử tập hữu hạn phần... ta có Akn = nk 1.8 Tổ hợp không lặp Định nghĩa 1.8.1 Cho n - tập A, k số tự nhiên thỏa mãn ≤ k ≤ n Mỗi k - tập tập hợp A gọi tổ hợp chập k n - tập hợp A Số tổ hợp chập k tập hợp gồm n phần tử... Từ chữ số 1, 2, lập số tự nhiên có năm chữ số 1, hai chữ số ba chữ số 18 Giải Xem số cần lập có 10 chữ số gồm năm chữ số giống nhau, hai chữ số giống ba chữ số giống Vậy có 10! = 2520 số 5!2!3!

Ngày đăng: 26/03/2021, 07:41

TỪ KHÓA LIÊN QUAN

w