Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 139 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
139
Dung lượng
2,75 MB
Nội dung
BỘ GIÁO DỤC VÀ ĐÀO TẠO BỘ Y TẾ ĐẠI DPHỐ HỒ CHÍ MINH ĐẠI HỌC Y DƯỢC THÀNH - - CAM NGỌC PHƯỢNG HIỆU QUẢ VÀ CHI PHÍ THỞ KHÍ NITRIC OXIDE Ở TRẺ SƠ SINH SUY HÔ HẤP NẶNG LUẬN ÁN TIẾN SĨ Y HỌC TP Hồ Chí Minh - Năm 2014 BỘ GIÁO DỤC VÀ ĐÀO TẠO BỘ Y TẾ ĐẠI HỌC Y DƯỢC THÀNH PHỐ HỒ CHÍ MINH - - CAM NGỌC PHƯỢNG HIỆU QUẢ VÀ CHI PHÍ THỞ KHÍ NITRIC OXIDE Ở TRẺ SƠ SINH SUY HÔ HẤP NẶNG CHUYÊN NGÀNH : NHI – SƠ SINH MÃ SỐ : 62 72 16 01 LUẬN ÁN TIẾN SĨ Y HỌC Người hướng dẫn khoa học: PGS TS Vũ Minh Phúc PGS TS Phạm Thị Minh Hồng TP HỒ CHÍ MINH - NĂM 2014 LỜI CAM ĐOAN Tơi xin cam đoan cơng trình nghiên cứu riêng Các số liệu luận án trung thực chưa công bố cơng trình khác Ký tên Cam Ngọc Phượng MỤC LỤC Trang phụ bìa Lời cam đoan Mục lục Danh mục chữ viết tắt Bảng đối chiếu từ chuyên môn Việt – Anh Danh mục bảng Danh mục biểu đồ Danh mục sơ đồ Danh mục hình Trang ĐẶT VẤN ĐỀ MỤC TIÊU NGHIÊN CỨU Chương 1: TỔNG QUAN TÀI LIỆU 1.1.Cơ sở sinh học phân tử cao áp phổi 1.2 Khí Nitric oxide 1.3 Áp dụng lâm sàng thở khí Nitric Oxide 27 1.4 Tác dụng phụ khí Nitric Oxide 38 Chương 2: ĐỐI TƯỢNG VÀ PHƯƠNG PHÁP NGHIÊN CỨU 2.1 Đối tượng nghiên cứu 41 2.2 Phương pháp nghiên cứu 41 Chương 3: KẾT QUẢ NGHIÊN CỨU 3.1 Đặc điểm dân số nghiên cứu………………… 55 3.2 Kết điều trị thở khí Nitric oxide 64 3.3 So sánh đặc điểm lâm sàng, cận lâm sàng nhóm thở NO đáp ứng hồn tồn khơng đáp ứng 70 3.4 Hậu thở NO ……… 72 3.5 Kết điều trị chung- Tỉ lệ tử vong, di chứng lúc 30 ngày tuổi… 75 3.6 Chi phí điều trị trung bình………………………………… 80 Chương 4: BÀN LUẬN 4.1 Đặc điểm dân số nghiên cứu………………… 83 4.2 Kết điều trị thở NO 89 4.3 So sánh đặc điểm lâm sàng, cận lâm sàng nhóm thở NO đáp ứng hồn tồn khơng đáp ứng 92 4.4 Hậu thở NO ……… 96 4.5 Kết điều trị chung- Tỉ lệ tử vong, di chứng lúc 30 ngày tuổi… 97 4.6 Chi phí điều trị trung bình………………………………… 100 KẾT LUẬN 102 KIẾN NGHỊ 104 DANH MỤC CÁC CƠNG TRÌNH NGHIÊN CỨU TÀI LIỆU THAM KHẢO PHỤ LỤC DANH MỤC CÁC CHỮ VIẾT TẮT TIẾNG VIỆT ĐT Điều trị SA Siêu âm SHH Suy hô hấp SS Sơ sinh TBS Tim bẩm sinh TIẾNG ANH ALK Activin-like kinase type1 ALI Acute lung injury (Tổn thương phổi cấp) ARDS Acute respiratory distress syndrome (Hội chứng suy hô hấp cấp) ASQ Ages and Stages Questionaire ( Bộ câu hỏi tuổi giai đoạn) BMPR-II Bone morphogenetic protein type II receptor (Thụ thể protein tạo hình xương nhóm II) [Ca2+]I concentration of myoplasmic Ca2+ (Nồng độ Ca2+trong tương cơ) [Ca2+]in Intracellular Ca2+ concentration (Nồng độ Ca2+ nội bào) Ca2+ L channel L-type Ca2+ channel (Kênh Ca2+ loại L) Ca2+ T channel T-type Ca2+ channel (Kênh Ca2+ loại T) cAMP Adenosine 3',5' -cyclic monophosphate (Adenosine 3',5' monophosphate vòng) cGMP Guanosine 3',5' -cyclic monophosphate (Guanosine 3',5' monophosphate vòng) CI Confidence Interval (Khoảng tin cậy) Cl−Ca channel Ca2+ -activated Cl− channel (Kênh Cl− hoạt hóa Ca2+) ECMO Exchange Corporeal Membrane Oxygenation (Trao đổi oxy màng thể) EDRF Endothelium Derived Relaxing Factor (Yếu tố giãn mạch có nguồn gốc nội mô) eNOS endothelial Nitric oxide synthetase (Men tổng hợp Nitric Oxide nội mô) ERK Extracellular signal regulated kinases (Kinases điều hịa tín hiệu ngoại bào) FiO2 Fraction of inspired Oxygen (Phân suất Oxy khí hít vào) GSNO S-nitrosoglutathione 5-HT 5-hydroxytryptamine iNO Inhaled Nitric Oxide (Nitric Oxide hít vào) IP3 inositol 1,4,5 triphosphate IRAG IP3 receptor associated PKG substrate (Thụ thể IP3 kèm chất PKG) IP3 R channel IP3 -sensitive channel (Kênh IP3 nhạy cảm) K+ATP channel ATP-dependent K+ channel (Kênh K+ phụ thuộc ATP) K+Ca channel Ca2+ -dependent K+ channel (Kênh K+ phụ thuộc Ca2+) K+dr channel Delayed rectifier K+ channel (Kênh K+ chỉnh lưu muộn) K+ir channel Inward rectifier K+ channel (Kênh K+ chỉnh lưu hướng nội) MAP Mean Airway Pressure (Áp lực trung bình đường thở) MetHb MetHemoglobin MLCP myosin light chain phosphatase nicotinamide (myosin chuỗi nhẹ phosphatase) NADP adenine dinucleotide phosphate NNT Number need to treat (Số ca cần điều trị) NO Nitric oxide NOS Nitric Oxide Synthetase (Men tổng hợp Nitric Oxide) NTG Nitroglycerin OI Oxygenation Index (Chỉ số Oxy hóa máu) PaO2 Arterial Oxygen tension (Áp suất phần Oxy máu động mạch) PAOP Pulmonary artery occlusion pressure (Áp lực động mạch phổi bít) ODQ H-(1,2,4) oxadiazole (4,3-a) quinoxallinone PDGF Platelet-derived growth factor (Yếu tố tăng trưởng có nguồn gốc tiểu cầu) PEEP Positive end expiratory pressure (Áp lực dương cuối kỳ thở ra) PKA cAMP-dependent protein kinase (protein kinase phụ thuộc cAMP) PLC phospholipase C PPHN Persistent Pulmonary Hypertension of the Newborn (Cao áp phổi tồn trẻ sơ sinh) ppm Parts per million (Phần triệu) PR Prevalence Risk (Tỷ số tỷ suất mắc) RR Relative risk (Nguy tương đối) RSNOs S-nitrosothiols RTK Receptor tyrosine kinases (Thụ thể tyrosine kinases) RyR channel Ryanodine-sensitive channel (Kênh nhạy cảm Ryanodine) SERCA Sarcoplasmic-endoplasmic reticulum Ca2+ -ATPase (Ca2+ ATPase lưới nội bào tương) sGC soluble guanylyl cyclase (guanylyl cyclase hòa tan) SIN-1 3-Morpholino-sydnonimine SMC Smooth muscle cell (Tế bào trơn) SNAP S-nitroso-N-acetylpenicillamine SN Sodium nitropruside SNC S-nitrosocysteine SOC channel store-operated channel Sarcoplasmic (Kênh điều hòa dự trữ) SR reticulum (Lưới tương) TIE2 Endothelial specific tyrosine kinase (tyrosine kinase nội mô đặc hiệu ) DANH M C BẢNG ng Tên b ng Trang Bảng 1.1 Đặc điểm đồng phân NOS 11 Bảng 1.2 K ch th ch thể dịch yếu tố vận mạch tế b o nội mô 19 Bảng 1.3 So s nh tỷ lệ tử vong nhu cầu ECMO nh m thở khí NO so với nh m chứng điều trị suy hô hấp trẻ đủ th ng v gần đủ th ng 30 So s nh tỷ lệ tử vong nh m thở NO v nh m chứng điều trị suy hô hấp trẻ sanh non 32 So s nh tỷ lệ tử vong nh m thở NO so với nh m chứng điều trị hội chứng nguy kịch hô hấp cấp v tổn thương phổi cấp trẻ em v người lớn 37 Phân loại giá trị biến số……………………………………… 48 Đặc điểm dân số nghiên cứu…………………………………… 56 Triệu chứng lâm sàng 57 Phân bố hình ảnh Xquang ngực theo OI………………………… 57 Giá trị OI………………………………………………………… 58 Đặc điểm siêu âm tim màu 59 Nguyên nhân suy hô hấp…………… 62 Thay đổi khí máu động mạch, OI, dấu hiệu lâm sàng sau thở NO giờ………………………………………………………… 64 Kết sau thở NO theo OI…………………………… 65 Ba mức độ đáp ứng thở khí NO………………………………… 67 So sánh đặc điểm lâm sàng, cận lâm sàng nhóm thở NO đáp ứng hồn tồn khơng đáp ứng 71 Tỉ lệ tử vong theo trị số OI trước thở khí NO……………… 75 Bảng 3.18 Tỉ lệ tử vong theo mức độ đáp ứng thở khí NO………………… 75 Chẩn đốn lâm sàng nguyên nhân suy hô hấp tử vong……… 76 Di chứng lâu dài 77 Tái khám thần kinh……………………………………………… 78 Bảng 1.4 Bảng 1.5 Bảng 2.6 Kết chẩn đoán, điều trị tử vong dân số nghiên cứu… 79 Chi phí điều trị trung bình cho bệnh nhi thở NO (Việt nam đồng)…………………………………………………………… 81 Chỉ số hô hấp trước thở NO………………………………… 86 Bảng 4.25 Nguyên nhân suy hô hấp………………………………………… 88 Bảng 4.26 Hậu lâm sàng trước mắt……………………………………… 97 Bảng 4.27 Di chứng đến 12 tháng theo dõi 99 103 so với nhóm trẻ cao áp phổi tồn tại, bệnh màng Thời gian điều trị thở NO trung bình 25,1 ± 11 thời gian thở máy trung bình 12 ngày Thời gian nằm viện trung bình 24 ngày Chi phí - hiệu sống cịn trung bình nghiên cứu 45.121.323 VNĐ, với hiệu sống cịn xuất viện 68%, chi phí khí NO trung bình 28.402.000 VNĐ /một bệnh nhi, chiếm 62,9% tổng viện phí 104 KIẾN NGHỊ Qua nghiên cứu 50 trường hợp trẻ sơ sinh đủ tháng non tháng muộn suy hô hấp giảm oxy máu nặng, điều trị thở khí Nitric oxide, chúng tơi mạn phép đưa kiến nghị sau: Xây dựng hướng dẫn chi tiết điều trị thở khí Nitric oxide suy hô hấp sơ sinh nặng: Chiến lược điều trị trước thở NO Ổn định bệnh nhi FiO2 100% Kiềm hoá máu (pH > 7,45) Dịch truyền/ Vận mạch An thần Huy động phế nang Thở máy rung tần số cao Surfactant thay Liều điều trị NO Thở NO liều khởi đầu 20 ppm Khi bệnh nhi đáp ứng với thở khí NO, cố gắng giảm MAP FiO2 dần để hạn chế tổn thương phổi Chiến lược cai NO - Khởi đầu thở NO liều 20 ppm - Nếu bệnh nhi đáp ứng thở NO, giảm FiO2 5% Khi FiO2 60%, giảm liều NO, thường vòng - Cố gắng giảm FiO2 giảm liều NO tình trạng lâm sàng bệnh nhi ổn định với tiêu chuẩn sau : (1) SpO2 trước ống động mạch > 92% ; (2) PaO2 > 60 mmHg (3) độ khác biệt SpO2 trước sau ống động mạch < 5% - Nên cố gắng cai NO tối thiểu 24 - Có thể giảm liều NO ppm 15 phút đạt liều ppm - Từ liều NO ppm xuống ppm: Nên giảm liều NO ppm 105 - Có thể tăng FiO2 15% đến tối đa 75% nhằm mục đích ngưng NO Khi ngưng NO, có khả độ bão hồ oxy động mạch giảm, thường tăng FiO lên 10 – 20 % Nói cách khác, khơng nên thở NO lại phải tăng FiO2 vừa phải - Sau ngưng thở NO, nên đánh giá lại bệnh nhi sau 60 phút, định thở lại NO (1) Cần FiO2 > 75% để trì PaO2 > 60 mmHg SpO2> 92% ; (2) Tình trạng huyết động xấu Nên làm siêu âm tim màu bệnh nhi cai NO thất bại dù áp dụng phác đồ thở NO chuẩn, diễn tiến lâm sàng bệnh nhi nặng trình điều trị thở NO Biện pháp an tồn bệnh nhi mơi trường: - Biện pháp an tồn bệnh nhi: Để loại bỏ độc tính NO trình điều trị cần theo dõi nồng độ NO, NO2 khí hít vào, nồng độ MetHb Trong trình điều trị NO, cần thu thập số liệu q trình điều trị, độc tính, thất bại điều trị, sử dụng phương pháp điều trị thay kết trước mắt Ngoài ra, trung tâm điều trị thở NO nên tổ chức theo dõi tái khám phát triển thần kinh thính lực cho tất trẻ xuất viện - Biện pháp an tồn mơi trường: Đường thở máy thở nối với hệ thống hút trung tâm, tránh khí NO NO2 đường thở thải vào phòng bệnh Kiểm tra hệ thống cung cấp NO, đảm bảo khơng có dị rỉ khí trước cho bệnh nhi thở NO Trang bị hệ thống thở khí NO nên tập trung trung tâm sơ sinh tuyến cuối, có khả theo dõi hỗ trợ hô hấp, bao gồm thở máy rung tần số cao cho trẻ sơ sinh suy hô hấp nặng Chi phí điều trị thở khí NO cần bảo hiểm y tế tốn, phương pháp điều trị cấp cứu cho trẻ sơ sinh suy hô hấp nặng Bước đầu áp dụng kỹ thuật thở khí NO cho thấy hiệu cải thiện oxy hóa máu an tồn, khơng có tác dụng phụ Vì vậy, chúng tơi mạnh dạn đề xuất tiếp tục nghiên cứu đa trung tâm, với cở mẫu lớn hơn, đặc biệt quan tâm chi phí hiệu sống trước định triển khai kỹ thuật Việt nam TÀI LIỆU THAM KHẢO TIẾNG ANH 1.Abman SH, Hall SL, McMurtry IF (1990) “Role of endothelium-derived relaxing factor during transition of pulmonary circulation at birth” Am J Physiol, 259, pp H1921-7 2.Adhikari NK, Friedrich JO (2007) “Effect of nitric oxide on oxygenation and mortality in acute lung injury: Systematic review and meta-analysis” BMJ, 334 (7597), pp 779-82 3.Adrie C, Moreno PR (1996) “Inhaled nitric oxide increases coronary artery patency after thrombolysis” Circulation, 94, pp 1919-26 4.Alam MS, Okamoto S (2002) “Role of nitric oxide in host defense in murine salmonellosis as a function of its antibacterial and antiapoptotic activities” Infect Immun, 70, pp 3130-42 5.Amezcua JL, Palmer RM,, de Souza BM, Moncada S (1989) “Nitric oxide synthesized from L-arginine regulates vascular tone in the coronary circulation of the rabbit” Br J Pharmacol, 97, pp 1119-24 6.Anju Gupta (2002) “Inhaled nitric oxide and gentle ventilation in the treatment of pulmonary hypertension of the newborn- a single-center, 5-year experience” Journal of Perinatology, 22, pp 435-41 7.Antunes MJ, Holt WJ (1994) “Assessment of lung function pre-nitric oxide therapy: a predictor of response?” Ped Res, 35, pp 212A 8.Atz AM (1997) “Inhaled nitric oxide in the neonate with cardiac disease” Seminars in Perinatology, 21(5), pp 441-55 9.Baldus S, Eiserich JP, Freeman BA (2001) “Is NO news bad news in acute respiratory distress syndrome?” Am J Respir Crit Care Med, 163, pp 308-10 10 Baldus S, (2002) “NO inhalation in acute respiratory distress syndrome” Am J Respir Crit Care Med, 167, pp 518-25 11 Ballard RA, Cnaan A (2006) “Inhaled nitric oxide in preterm infants undergoing mechanical ventilation” N Engl J Med, 355(4), pp 343-53 12 Bando K, Sharp TG, Sekine Y, Aufiero TX, Sun K (1996) ”Pulmonary hypertension after operations for congenital heart disease: analysis of risk factors and management” Journal of Thoracic and Cardiovascular Surgery, 112(6), pp 1600-9 13 Barefield ES, Phillips JB, Carlo WA (1996).“Inhaled nitric oxide in term infants with hypoxemic respiratory failure” J Pediatr, 129, pp 279-86 14 Beckman JS (1996) ”Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and the ugly” Am J Physiol, 271, pp C1424-37 15 Belvisi MG, Yacoub M, Barnes PJ.(1992) ”Nitric oxide is the endogenous neurotransmitter of bronchodilator nerves in humans” Eur J Pharmacol, 210, pp 221-2 16 Bhandari A (2007).“Bronchopulmonary dysplasia: An update” Indian J Pediatr, 74(1), pp 73-7 17 Bizzarro M (2008) “Inhaled nitric oxide for the postoperative management of pulmonary hypertension in infants and children with congenital heart disease (Review)” The Cochrane Library, (4) 18 Black SM, McMullan DM, Bekker JM, Johengen MJ, Fineman JR (1999) “Inhaled nitric oxide inhibits NOS activity in lambs: potential mechanism for rebound pulmonary hypertension” Am J Physiol., 277, pp H1849-56 19 Bleeding, Coagulation, Inflammation and Endothelium - A Pyramid Towards Outcome Blaise (2000) “The endothelium at rest”, Lippincott Williams & Wilkins, Baltimore, pp 31-78 20 Bloomfield GL, Ridings PC (1997) “Pretreatment with inhaled nitric oxide inhibits neutrophil migration and oxidative activity resulting in attenuated sepsis-induced acute lung injury” Crit Care Med, 25, pp 584-93 21 Bolotina VM, Najibi S, Palacino JJ, Pagano PJ, Cohen RA (1994) “Nitric oxide directly activates calciumdependent potassium channels in vascular smooth muscle cells” Nature, 368, pp 850-853 22 Bolotina VM, Palacino JJ, Pagano PJ, Cohen RA (1994) “ Nitric oxide directly activates calciumdependent potassium channels in vascular smooth muscle cells” Nature, 368, pp 850–3 23 Cannon RO III, Panza JA, et al (2001) “Effects of inhaled nitric oxide on regional blood flow are consistent with intravascular nitric oxide delivery” J Clin Invest,108 pp 279-87 24 Chambers DC, Ayres JG (2001) “Exchange dynamics of nitric oxide in the human nose” J Appl Physiol, 91, pp 1924-30 25 Chollet-Martin S, Kermarrec N, Gougerot- Pocidalo MA, Payen DM (1996) “Alveolar neutrophil functions and cytokine levels in patients with the adult respiratory distress syndrome during nitric oxide inhalation” Am J Respir Crit Care Med, 153, pp 985-90 26 Clark RH, Walker MW (2000) “Low-dose nitric oxide therapy for persistent pulmonary hypertension of the newborn” N Engl J Med, 342(7) pp 469-474 27 Clark RH, Walker MW, Southgate MS, Huckaby JL, Perez JA (2000) “Low-dose nitric oxide therapy for persistent pulmonary hypertension of the newborn” N Engl J Med., 342, pp 469-74 28 Clifton V.L (1995) “Corticotropin-releasing hormone-induced vasodilatation in the human fetal-placental circulation: involvement of the nitric oxide-cyclic guanosine 3′,5′-monophosphate-mediated pathway” J Clin Endocrinol Metab, 80(10), pp 2888-93 29 Cohen RA (1995) “Endothelium-dependent hyperpolarization-beyond nitric oxide and cyclic GMP” Circulation, 92, pp 3337-49 30 Colasanti M (2000) “Nitric oxide: an inhibitor of NF-kB/Rel system in glial cells” Brain Res Bull, 52, pp 155-61 31 Cole FS, Dolken D (2011) “NIH Consensus Development Conference statement: inhaled nitric oxide therapy for premature infants” Pediatrics, 127, pp 363 32 Cornfield DN, Tolarova S (1996) “Oxygen causes fetal pulmonary vasodilation through activation of a calcium-dependent potassium channel” Proc Natl Acad Sci USA, 93, pp 8089-94 33 Cornwell T.L (1991) “Regulation of sarcoplasmic reticulum protein phosphorylation by localized cyclic GMP-dependent protein kinase in vascular smooth muscle cell” Mol Pharmacol, 40(6), pp 923-31 34 Cuesta EG, Renedo AA (1998) “Transient response to inhaled nitric oxide in meconium aspiration in newborn lambs” Pediatr Res., 43, pp 198-202 35 Cunningham LD, Cohen RA (1992) “PDGF receptors on macrovascular endothelial cells mediate relaxation via nitric oxide in rat aorta” J Clin Invest, 89, pp 878-82 36 Davidson (1998) “Inhaled Nitric oxide for the early treatment of persistent pulmonary hypertension of the term newborn: A randomized, double-masked, placebo-controlled, dose-response, multicenter study” Pediatrics, 101, pp 32533 37 Davidson (1998) “Origins of breath nitric oxide in humans” Pediatrics, 101, pp 325-34 38 Davies PF, Barbee KA (1994) “Endothelial cell surface imaging: insights into hemodynamic force transduction” NIPS, 9, pp 153-8 39 Davis (2001) “Novel effects of nitric oxide” Annu Rev Pharmacol Toxicol, 41, pp 203-36 40 Day RW, McGough EC, Crezee KL, Orsmond GS (2000) “Randomized controlled study of inhaled nitric oxide after operation for congenital heart surgery” Annals of Thoracic Surgery, 69(6), pp 1907-13 41 Dhillon R (2012) “The management of neonatal pulmonary hypertension” Arch Dis Child Fetal Neonatal, 97, F223 42 Finer NN (2006) “Nitric oxide for respiratory failure in infants born at or near term” Cochrane Database Syst Rev ,18, pp CD000399 43 Fleming I, Fisslthaler B, Busse R (1998) “Ca2+-independent activation of the endothelial nitric oxide synthase in response to tyrosine phosphatase inhibitors and fluid shear stress” Circ Res, 82, pp 686-95 44 Francoe M, Blaise G (1998) “Inhaled nitric oxide: technical aspects of administration and monitoring” Crit Care Med, 26, pp 782-96 45 Fratacci MD, Frostell CG, Chen TY, Wain JC Jr, Robinson DR, Zapol WM (1991) “Inhaled nitric oxide A selective pulmonary vasodilator of heparin-protamine vasoconstriction in sheep” Anesthesiology, 75, pp 990-9 46 Fratacci MD, Chen TY, Wain JC Jr, Robinson DR, Zapol WM (1991) “Inhaled nitric oxide A selective pulmonary vasodilator of heparin-protamine vasoconstriction in sheep” Anesthesiology, 75, pp 990-9 47 Freay AD, Adams DJ, Ryan US, van Breemen C (1989) “Bradykinin and inositol 1,4,5-triphosphatestimulated calcium release from intracellular stores in cultured bovine endothelial cells” Pflugers Arch, 414, pp 377-84 48 Friese RS, McIntyre RC Jr (1996) “NO prevents neutrophil-mediated pulmonary vasomotor dysfunction in acute lung injury” J Surg Res, 63, pp 23-8 49 Frostell C, Fratacci MD, Wain JC, Jones R, Zapol WM (1991) “Inhaled nitric oxide A selective pulmonary vasodilator reversing hypoxic pulmonary vasoconstriction” Circulation, 83, pp 2038-47 50 Frostell C, Wain JC, Jones R, Zapol WM (1991) “Inhaled nitric oxide A selective pulmonary vasodilator reversing hypoxic pulmonary vasoconstriction” Circulation, 83, pp 2038-47 51 Furchgott (1988) “Studies on relaxation of rabbit aorta by sodium nitrate: basis for the proposal that the acid-activatable component of the inhibitory factor from retractor penis is inorganic nitrate and the endothelium-derived relaxing factor is nitric oxide” Nature, 348, pp 401-14 52 Furchgott RF (1980) “The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine” Nature, 288, pp 373-6 53 Furukawa K, Y Tawada, and M Shigekawa (1988) “Regulation of the plasma membrane Ca2+ pump by cyclic nucleotides in cultured vascular smooth muscle cells” J Biol Chem, 263(17), pp 8058-65 54 Gath I, Closs EI, Godtel-Ambrust U, Schmitt S, Nakane M, Wessler I (1996) “Inducible NO synthase II and neuronal NO synthase I are constitutively expressed in different structures of guinea pig skeletal muscle: implications for contractile function” FASEB J., 10, pp 1614-20 55 Gericke M, Droogmans G, Nilius B (1993) “Thapsigargin discharges intracellular calcium stores and induces transmembrane currents in human endothelial cells” Eur J Physiol, 422, pp 552-7 56 Gilligan DM, Kicoyne CM, Waclawiw MA, Casino Quyyumi AA (1994) “Contribution of endothelium- derived nitric oxide to exercise-induced vasodilation” Circulation, 90, pp 2853-58 57 Greene, N.E.a.J.H.S (1972) “The identification of atmospheric nitric oxide by a spectroscopic scan” J Air Pollut Control Assoc, 22(6), pp 468-70 58 Gross (2001) “Targeted delivery of nitric oxide” Nature, 409, pp 577-8 59 Gryglewski RJ, Palmer RM, Moncada S (1986) “Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor” Nature, 320, pp 454-6 60 Guo FH, Rice TW, Stuehr DJ, Thunnissen FB, Erzurum SC (1995) “Continuous nitric oxide synthesis by inducible nitric oxide synthase in normal human airway epithelium in vivo” Proc Natl Acad Sci USA, 92 pp 7809-13 61 Gupta S, Grady C, Ruderman NB (1994) “Stimulation of vascular Na+-K+-ATPase activity by nitric oxide: a cGMP-independent effect” Am J Physiol, 266, pp H2146–51 62 Haddad IY, Crow J, Barefield E, Gadilhe T, Matalon S (1996) “Inhibition of alveolar type II cell ATP and surfactant synthesis by nitric oxide” Am J Physiol 270, pp L898-906 63 Hanafy KA, Murad F (2001) “NO, nitrotyrosine, and cyclic GMP in signal transduction” Med Sci Monit, 7, pp 801-19 64 Higenbottam T, Siddons T, Demoncheaux E (2000) “A therapeutic role for chronic inhaled nitric oxide” Lancet, 356, pp 446-7 65 Higenbottam T, Demoncheaux E (2000) “ A therapeutic role for chronic inhaled nitric oxide” Lancet, 356, pp 446-7 66 Hollenberg MD, Laniyonu AA, Saifeddine M, Moore GJ (1993) “Role of the aminoand carboxyl-terminal domains of thrombin receptor-derived polypeptides in biological activity in vascular endothelium and gastric smooth muscle: evidence for receptor subtypes” Mol Pharmacol, 43, pp 921-30 67 Hsieh H, Li N, Frangos JA (1992) “Shear-induced platelet-derived growth factor gene expression in human endothelial cells is mediated by protein kinase C” J Cell Physiol, 150, pp 552-8 68 Huang P.L (1995) “Hypertension in mice lacking the gene for endothelial nitric oxide synthase” Nature, 377(6546), pp 239-42 69 Hubert BP (2001) “Inhaled NO given perioperatively improves oxygenation and decreases pulmonary arterial resistance following cardiopulmonary bypass in a pig model” Anesthesiology, 95, pp A-366 (abstract) 70 Hubert BP, Blaise GA (2001) “Does inhaled nitric oxide (inhNO) affect matrixmetalloproteinase (MMP) concentration in bronchoalveolar lavage fluid (BAL) after cardiopulmonary bypass (CPB)” Anesthesiology, 95, pp A-440 (abstract) 71 Huddy CL, Hardy P (2008) “The INNOVO multicentre randomised controlled trial: Neonatal ventilation with inhaled nitric oxide versus ventilatory support without nitric oxide for severe respiratory failure in preterm infants: follow up at 4-5 years” Arch Dis Child Fetal Neonatal, 93(6), pp F430-5 72 Ignarro LJ, Byrns RE, Wood KS (1988) “Biochemical and pharmacological properties of endothelium-derived relaxing factor and its similarity to nitric oxide radical” Proc Natl Acad Sci USA, 95 (23), pp 8427-35 73 Ignarro LJ, Wood KS, Byrns RE, ChaudhuriG (1987) “Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide” Proc Natl Acad Sci USA, 84(24), pp 9265-9 74 Iranami H (1996) “A beta-adrenoceptor agonist evokes a nitric oxide-cGMP relaxation mechanism modulated by adenylyl cyclase in rat aorta Halothane does not inhibit this mechanism” Anesthesiology, 85(5), pp 1129-38 75 Jacobs ER, Gebremedhin D, Birks EK, Davies PF, Harder DR, (1995) “Shear activated channels in cell-attached patches of cultured bovine aortic endothelial cells” Pflugers Arch, 431, pp 129-31 76 Jacobs (2000) “A cost-effectiveness analysis of the application of nitric oxide versus oxygen gas for near-term newborns with respiratory failure: Results from a Canadian randomized clinical trial” Critical care medicine 28(3), pp 872-7 77 James M Adams (2013) “Persistent pulmonary hypertension of the newborn” Up to date, pp C21-65 78 Joseph Loscalzo (2000) “Nitric oxide and Ion channels” Nitric oxide and the Cardiovascular system, Humana Press, Boston University Medical Center, Boston, MA, pp 87-9 79 Joseph Loscalzo (2000) “Role of Nitric oxide in vasomotor regulation” Nitric oxide and the Cardiovascular system, Humana Press, Boston University Medical Center, Boston, MA, pp 111 80 Joseph Loscalzo (2000) “Role of Nitric oxide in vasomotor regulation” Nitric oxide and the Cardiovascular system, Humana Press, Boston University Medical Center, Boston, MA, pp 109 81 Karczewski P, Hartmann M, Schrader J (1992) “Role of phospholamban in NO/EDRF-induced relaxation in rat aorta” Life Sci, 51, pp 1205-10 82 Katusic ZS, Vanhoutte PM (1984) “Vasopressin causes endothelium-dependent relaxations of the canine basilar artery” Circ Res, 55, pp 575-9 83 Kaul S, Padgett RC, Heistad DD (1994) “Role of platelets and leukocytes in modulation of vascular tone” Ann NY Acad Sci, 714, pp 122-35 84 Khan BV, Olbrych MT, Alexander RW, Medford RM (1996) “Nitric oxide regulates vascular cell adhesion molecule gene expression and redox-sensitive transcriptional events in human vascular endothelial cells” Proc Natl Acad Sci USA, 93, pp 9114-9 85 Kinsella (1997) “Randomized, multicenter trial of inhaled nitric oxide and high frequency oscillatory ventilation in severe, persistent pulmonary hypertension of the newborn” Journal of Pediatrics, 131(1), pp 55-61 86 Kinsella JP (1996) “ Clinical approach to the use of high frequency oscillatory ventilation in neonatal respiratory failure” J Perinatology, 16, pp S52-S5 87 Kinsella JP (1998) “Inhaled nitric oxide and high frequency oscillatory ventilation in persistent pulmonary hypertension of the newborn” Eur J Pediatr, 157(Suppl 1), pp S28 88 Kinsella JP, Walsh WF (2006) “Early inhaled nitric oxide therapy in premature newborns with respiratory failure” N Engl J Med, 355(4), pp 354-64 89 Knepler JL, Gupta MP (2001) “Peroxynitrite causes endothelial cell monolayer barrier dysfunction” Am J Physiol Cell Physiol, 281, pp C1064-75 90 Komalavilas, (1996) “Phosphorylation of the inositol 1,4,5-trisphosphate receptor Cyclic GMP-dependent protein kinase mediates cAMP and cGMP dependent phosphorylation in the intact rat aorta” J Biol Chem, 271(36), pp 21933-8 91 Konduri, G (2007) “Early inhaled nitric oxide therapy for term and nearterm newborn infants with hypoxic respiratory failure: Neurodevelopmental follow up” The Journal of Pediatrics, pp 235-9 92 Konduri GG, Sokol GM, Singer J, Ehrenkranz RA, Singhal N (2004) “A randomized trial of early versus standard inhaled nitric oxide therapy in term and near-term newborn infants with hypoxic respiratory failure” Pediatrics, 113, pp 559-64 93 Kupatt C, Wolf DA, Becker BF, Smith TW, Kelly RA (1997) “Nitric oxide attenuates reoxygenationinduced ICAM-1 expression in coronary microvascular endothelium: role of NFkB” J Mol Cell Cardiol, 29, pp 2599-609 94 Lahera V, Miranda-Guardiola F, Moncada S, Romero JC (1991) “Effects of NG nitro-L-arginine methyl ester on renal function and blood pressure” Am J Physiol, 261, pp F1033-7 95 Laroux FS, Hines IN (2001) “Role of nitric oxide in inflammation” Acta Physiol Scand, 173, pp 113-8 96 Lazar DA, Welty SE (2012) “The use of ECMO for persistent pulmonary hypertension of the newborn: a decade of experience” J Surg Res, 177, pp 263-7 97 Leiper J (1999) “Biological significance of endogenous methylarginines that inhibit nitric oxide synthases” Cardiovasc Res, 43, pp 542-8 98 Lincoln TM, Komalavilas P, MacMillan-Crow LA, Boerth N (1996) “The nitric oxide-cyclic GMP signaling system” FASEB J, 10(2), pp 257-68 99 Linda J Van Marter (2012) “Persistent pulmonary hypertension of the newborn” Manual of neonatal care, Lippincott Williams and Wilkins, Philadelphia, pp 35864 100 Lipkin PH, Spivak L, Straube R, Rhines J, Chang CT (2002) “Neurodevelopmental and medical outcomes of persistent pulmonary hypertension in term newborns treated with nitric oxide” J Pediatr, 140, pp 306-10 101 Liu HW, Bloch K, Christiani D, Kradin R (1997) “Expression of inducible nitric oxide synthase by macrophages in rat lung” Am J Respir Crit Care Med, 156, pp 223-8 102 Lopez JA, Piegors DJ, Heistad DD (1989) “Effect of early and advanced atherosclerosis on vascular responses to serotonin, thromboxane A2, and ADP” Circulation, 79, pp 698-705 103 Lotze A, Bulas D (1998) “Multicenter study of surfactant (beractant) use in the treatment of term infants with severe respiratory failure” J Pediatr, 132, pp 40 104 Louis J Ignarro (2010) “Nitric oxide synthetase” Nitric oxide Biology and Pathobiology Elsevier, California, USA, pp 141 105 Lucas KA, Kazerounian S (2000) “Guanylyl cyclases and signaling by cyclic GMP” Pharmacol Rev, 52, pp 375-414 106 Lundberg JO, Settergren G, Alving K, Weitzberg E (1995) “Nitric oxide, produced in the upper airways, may act in an 'aerocrine' fashion to enhance pulmonary oxygen uptake in humans” Acta Physiol Scand, 155, pp 467-8 107 Lundberg JO, Gelinder S, Lundberg JM, Alving K, Weitzberg E (1996) “Inhalation of nasally derived nitric oxide modulates pulmonary function in humans” Acta Physiol Scand, 158, pp 343-7 108 Malek A, Izumo S (1992) “Physiological fluid shear stress causes downregulation of endothelin-1 mRNA in bovine aortic endothelium” Am J Physiol, 263, pp C389-C96 109 Malmros C, Dahm P, Martensson L, Thorne J, (1996) “Nitric oxide inhalation decreases pulmonary platelet and neutrophil sequestration during extracorporeal circulation in the pig” Crit Care Med, 24, pp 845-9 110 Martin RJ (2005) “Inhaled nitric oxide for preterm infants - Who benefits?” Engl J Med, 353(1), pp 82-4 111 McDaniel NL, Singer HA, Murphy RA, Rembold CM (1992) “Nitrovasodilators relax arterial smooth muscle by decreasing [Ca2+]i and uncoupling stress from myosin phosphorylation” Am J Physiol, 263, pp C461-C7 112 McMullan DM, Johengen MJ, et al (2001) “Inhaled nitric oxide-induced rebound pulmonary hypertension: role for endothelin-1” Am J Physiol Heart Circ Physiol, 280, pp H777-85 113 Meredith IT, Anderson TJ, Roddy MA, Ganz P, Creager MA (1996) “Postischemic vasodilation in human forearm is dependent on endotheliumderived nitric oxide” Am J Physiol, 270, pp H1435-40 114 Mestan KKL, Hecox K (2005) “Neurodevelopment outcomes of premature infants treated with inhaled nitric oxide” N Engl J Med., 353(1), pp 23-32 115 Miller OI, Keech A, Pigott NB, Beller E, Celermajer DS (2000) “Inhaled nitric oxide and prevention of pulmonary hypertension after congenital heart surgery: a randomised double-blind study” Lancet, 356, pp 1464-9 116 Modin A, Herulf M, Alving K, Weitzberg E, Lundberg JO (2001) “Nitrite-derived nitric oxide: a possible mediator of 'acidic-metabolic' vasodilation” Acta Physiol Scand, 171, pp 9-16 117 Mohamed WA (2012) “A randomized, double-blind, placebo-controlled, prospective study of bosentan for the treatment of persistent pulmonary hypertension of the newborn” J Perinatol, 32, pp pp 608 118 Moncada S, Vane JR (1979) “Pharmacology and endogenous roles of prostaglandin endoperoxides, thromboxane A2, and prostacyclin” Pharmacol Rev, 30, pp 293-331 119 Moncada S (1993) “The L-arginine-nitric oxide pathway” N Engl J Med, 329, pp 2002-12 120 Morris K, Petros A, Adatia I, Bohn D (2000) “Comparison of hyperventilation and inhaled nitric oxide for pulmonary hypertension after repair of congenital heart disease” Critical Care Medicine, 28(8), pp 2974-8 121 Mugford M, Field D (2008) “Extracorporeal membrane oxygenation for severe respiratory failure in newborn infants” Cochrane Database Syst Rev 16(CD001340) 122 Murad (1986) “Cyclic guanosine monophosphate as a mediator of vasodilation” J Clin Invest, 78(1), pp 1-5 123 Nagaki M, Irokawa T, Sasaki T, ShiratoK (1995) “Nitric oxide regulation of glycoconjugate secretion from feline and human airways in vitro” Respir Physiol, 102, pp 89-95 124 Nathan C (1994) “Nitric oxide synthases: roles, tolls, and controls” Cell, 78, pp 915-8 125 Neviere R, Mordon S (2000) “Inhaled NO reduces leukocyte-endothelial cell interactions and myocardial dysfunction in endotoxemic rats” Am J Physiol Heart Circ Physiol, 278, pp H1783-90 126 Nicholas W Morrell (2009) “Cellular and molecular basis of pulmonary arterial hypertension” Journal of the American College of cardiology, 54, pp S20-31 127 Nilius B, Droogmans G, Gericke M, Schwarz G (1993) “Nonselective ion pathways in human endothelial cells” Cation Channels: Pharmacology, Physiology and Biophysics Birkhauser Verlag, Basel/Switzerland, pp 269-80 128 NINOS (1997) “Inhaled nitric oxide in full-term and nearly full-term infants with hypoxic respiratory failure” N Engl J Med, 336, pp 597-604 129 NINOS (2000) “Inhaled nitric oxide in term and near-term infants: neurodevelopmental follow-up of the The Neonatal Inhaled Nitric Oxide Study Group (NINOS)” J Pediatr, 136, pp 611-7 130 Nussler AK (1993) “Inflammation, immunoregulation, and inducible nitric oxide synthase” J Leukoc Biol, 54, pp 171-8 131 Palmer RM, Moncada S (1988) “Vascular endothelial cells synthesize nitric oxide from L-arginine” Nature, 333, pp 664-6 132 Palmer RM, Moncada S (1987) “Nitric oxide release accounts for the biological activity of endothelium- derived relaxing factor” Nature, 327, pp 524-6 133 Pawloski JR, Stamler JS (2001) “Export by red blood cells of nitric oxide bioactivity” Nature, 409, pp 622-6 134 Pepke-Zaba J, H.T., Dinh-Xuan AT, Stone D, Wallwork J (1991) “Inhaled nitric oxide as a cause of selective pulmonary vasodilatation in pulmonary hypertension” Lancet, 338 (8776), pp 1173-4 135 Perkins DJ (1999) “Blockade of nitric oxide formation down-regulates cyclooxygenase-2 and decreases PGE2 biosynthesis in macrophages” J Leukoc Biol, 65, pp 792-9 136 Persson MG, Gustafsson LE, Wiklund NP, Hedqvist P, Moncada S (1990) “Endogenous nitric oxide as a modulator of rabbit skeletal muscle microcirculation in vivo” Br J Pharmacol, 100, pp 436-66 137 Pfeifer A (1998) “Defective smooth muscle regulation in cGMP kinase I-deficient mice” EMBO J, 17(11), pp 3045-51 138 Pryor WA (1995) “The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide” Am J Physiol, 268, pp L699-722 139 Pussard, G (1995) “Endothelin-1 modulates cyclic GMP production and relaxation in human pulmonary vessels” J Pharmacol Exp Ther, 274(2), pp 969-75 140 Quignard J.F (1997) “Voltage-gated calcium channel currents in human coronary myocytes Regulation by cyclic GMP and nitric oxide” J Clin Invest, 99(2), pp 185-93 141 Rajiv D Machado (2009) “Genetics and Genomics of pulmonary arterial hypertension” Journal of the American College of cardiology, 54, pp S32-42 142 Ramachandran N, Jiang XM, Hogg PJ, Mutus B (2001) “Mechanism of transfer of NO from extracellular Snitrosothiols into the cytosol by cell-surface protein disulfide isomerase” Proc Natl Acad Sci USA, 98, pp 9539-44 143 Ramnarine SI, Barnes PJ, Rogers DF (1996) “Nitric oxide inhibition of basal and neurogenic mucus secretion in ferret trachea in vitro” Br J Pharmacol,118, pp 998-1002 144 Rees DD, Palmer RM, Moncada S (1989) “Role of endothelium-derived nitric oxide in the regulation of blood pressure” Proc Natl Acad Sci USA, 86, pp 3375-8 145 Ridd JH (1978) “Nitrosation” Advances in Physical and Organic Chemistry Cambridge University Press, New York, 16, pp 211–4 146 Roberts JD, Kawai N (1993) “Inhaled nitric oxide reverses pulmonary vasoconstriction in the hypoxic and acidotic newborn lamb” Circulation Res, 72, pp 246-54 147 Rosenberg (2002) “Outcome in term infants treated with inhaled nitric oxide” J Pediatr, 140, pp 284 148 Rosenfeld C.R (1996) “Nitric oxide contributes to estrogen-induced vasodilation of the ovine uterine circulation” J Clin Invest, 98(9), pp 2158-66 149 Rossaint R, F.K., López F, Slama K, Pison U, Zapol WM (1993) “Inhaled nitric oxide for the adult respiratory distress syndrome” N Engl J Med, 328, pp 399405 150 Rubbo H, Anselmi D (2000) “Nitric oxide reaction with lipid peroxyl radicals spares -tocopherol during lipid peroxidation Greater oxidant protection from the pair nitric oxide/ -tocopherol than -tocopherol/ ascorbate” J Biol Chem, 275, pp 10812-8 151 Rubenfeld GD, Peabody E, Weaver J, Martin DP, Neff and Hudson LD (2005) “Incidence and outcomes of acute lung injury” New England Journal of Medicine, 353(16), pp 1685-93 152 Sadiq HF, Benawra RS, Devaskar UP, Hocker JR (2003) “Inhaled nitric oxide in the treatment of moderate persistent pulmonary hypertension of the newborn: a randomized controlled, multicenter trial” J Perinatol, 23, pp 98-103 153 Sausbier (2000) “Mechanisms of NO/cGMP-dependent vasorelaxation” Circ.Res, 87(9), pp 825-30 154 Schini V, Miller RC, Takeda K (1988) “Morphological characterization of cultured bovine aortic endothelial cells and the effects of atriopeptin II and sodium nitroprusside on cellular and extracellular accumulation of cyclic GMP” Eur J Cell Biol, 47, pp 53-61 155 Schlossmann (2000) “Regulation of intracellular calcium by a signalling complex of IRAG, IP3 receptor and cGMP kinase Ibeta” Nature, 404(6774), pp 197201 156 Schmidt HH, Nakane M, Forstermann U, Murad F (1992) “Ca 2+/calmodulinregulated nitric oxide synthases” Cell Calcium, 13, pp 427-34 157 Schreiber MD, Marks JD (2003) “Inhaled nitric oxide in premature infants with the respiratory distress syndrome” N Engl J Med, 349(22), pp 2099-107 158 Scott (2004) “Cost-Effectiveness of inhaled nitric oxide for the management of persistent pulmonary hypertension of the newborn” Pediatrics, 114, pp 41725 159 Sekar (2006) “Inhaled nitric oxide in term and preterm infants” Journal of Perinatology, 26, pp S4-S7 160 Shah PS (2011) “Sildenafil for pulmonary hypertension in neonates” Cochrane Database Syst Rev, CD 005494 161 Sheffler LA, Melillo G, Cox GW (1995) “Exogenous nitric oxide regulates IFN-g plus lipopolysaccharideinduced nitric oxide synthase expression in mouse macrophages” J Immunol, 155, pp 886-94 162 Shin WS, Peng HB, De Caterina R, Libby P, Liao JK (1996) “Nitric oxide attenuates vascular smooth muscle cell activation by interferon-g The role of constitutive NF-6B activity” J Biol Chem, 271, pp 11317-24 163 Sittipunt C (2001) “Nitric oxide in the lungs of patients with acute respiratory distress syndrome” Am J Respir Crit Care Med, 163, pp 503-10 164 Sittipunt C, Ruzinski JT (2002) “Nitrotyrosine in the lungs of patients with acute respiratory distress syndrome” Am J Respir Crit Care Med, 178, pp 712-20 165 Sokol J, Bohn D (2003) “Inhaled nitric oxide for acute hypoxemic respiratory failure in children and adults” Cochrane Database Syst Rev, 1, pp CD002787 166 Spiecker M, Kaboth K (1998) “Differential regulation of endothelial cell adhesion molecule expression by nitric oxide donors” J Leukoc Biol, 63, pp 732-9 167 Spiecker M, Hubner F, Liao JK (1999) “Differential regulation of endothelial cell adhesion molecule expression by antioxidants” J Leukoc Biol, 75, pp 943-8 168 Spiecker M, Liao JK (1997) “Inhibition of endothelial vascular cell adhesion molecule-1 expression by nitric oxide involves the induction and nuclear translocation of IkB-a” J Biol Chem, 272, pp 30969-74 169 Stamler JS, Lipton SA, Sucher NJ (1997) “S)NO signals: translocation, regulation and a consensus motif” Neuron, 18, pp 691–6 170 Stark (2006) “Inhaled NO for preterm infants getting to yes?” N Engl J Med, 355(4), pp 404-6 171 Szabo C (1999) “Novel roles of nitric oxide in hemorrhagic shock” Shock, 12, pp 1-9 172 Szabo C, Zingarelli B, O'Connor M, Salzman AL (1997) “Endothelial dysfunction in a rat model of endotoxic shock Importance of the activation of poly (ADPribose) synthetase by peroxynitrite” J Clin Invest, 100, pp 723-35 173 Tanaka Y (1998) “Involvement of maxi-K(Ca) channel activation in atrial natriuretic peptide-induced vasorelaxation” Naunyn Schmiedebergs Arch Pharmacol, 357(6), pp 705-10 174 Taylor DA, Stull JT (1989) “Cytoplasmic Ca2+is a primary determinant for myosin phosphorylation in smooth muscle cells” J Biol Chem, 264, pp 620713 175 Taylor RW, Dellinger RP (2004) “Low-dose inhaled nitric oxide in patients with acute lung injury: A randomized controlled trial” JAMA, 291(13), pp 1603-9 176 Tesfamariam B, Weisbrod RM, Cohen RA (1987) “Endothelium inhibits responses of rabbit carotid artery to adrenergic nerve stimulation” Am J Physiol, 22, pp H792-8 177 Tesfamariam B (1988) “Inhibition of adrenergic vasoconstriction by endothelial cell shear stress” Circ Res, 63, pp 720-5 178 Tewari (1997) “Sodium nitroprusside and cGMP decrease Ca2+ channel availability in basilar artery smooth muscle cells” Pflugers Arch, 433(3), pp 304-11 179 Tiefenbacher (2001) “Tetrahydrobiopterin: a critical cofactor for eNOS and a strategy in the treatment of endothelial dysfunction?” Am J Heart Circ Physiol, 280, pp 2484-8 180 Troncy E, Shapiro S (1998) “Inhaled nitric oxide in acute respiratory distress syndrome A pilot randomized controlled study” Am J Respir Crit Care Med, 157, pp 1483-8 181 Trovati M (1996) “Studies on the influence of insulin on cyclic adenosine monophosphate in human vascular smooth muscle cells: dependence on cyclic guanosine monophosphate and modulation of catecholamine effects” Diabetologia, 39(10), pp 1156-64 182 Vallance P, Collier JG, Moncada S (1989) “Effect of endothelium-derived nitric oxide on peripheral arteriolar tone in man” Lancet, 28, pp 997-1000 183 Van der Vliet A, Shigenaga MK, Cross CE (1999) “Reactive nitrogen species and tyrosine nitration in the respiratory tract Epiphenomena or a pathobiologic mechanism of disease?” Am J Respir Crit Care Med, 160, pp 1-9 184 Van Meurs KP, Ehrenkranz RA, et al (2005) “Inhaled nitric oxide for premature infants with severe respiratory failure” N Engl J Med, 353(1), pp 13-22 185 Van Obbergh LJ, Blaise G (1996) “Combination of inhaled nitric oxide with i.v nitroglycerin or with a prostacyclin analogue in the treatment of experimental pulmonary hypertension” Br J Anaesth, 77, pp 227-31 186 Vrolix M (1988) “Cyclic GMP-dependent protein kinase stimulates the plasmalemmal Ca2+ pump of smooth muscle via phosphorylation of phosphatidylinositol” Biochem J, 255(3), pp 855-63 187 Walsh-Sukys MC, Wright LL, Bauer CR, Korones SB, Stevenson DK (2000) “Persistent pulmonary hypertension of the newborn in the era before nitric oxide: practice variation and outcomes” Pediatrics, 105, pp 14-20 188 Wedgwood S, Bekker JM, Fineman JR, Black SM (2001) “Role for endothelin-1induced superoxide and peroxynitrite production in rebound pulmonary hypertension associated with inhaled nitric oxide therapy” Circ Res, 89, pp 357-64 189 Weinberger B, Heck DE, Laskin JD (2001) “The toxicology of inhaled nitric oxide” Toxicol Sci, 59, pp 5-16 190 Weisbrod RM, Griswold MC, Yaghoubi M, Komalavilas P, Lincoln TM, Cohen RA (1998) “Evidence that additional mechanisms to cyclic GMP mediate the decrease in intracellular calcium and relaxation of rabbit aortic smooth muscle to nitric oxide” Br J Pharmacol, 125, pp 1695-707 191 Wessel (1997) “Improved oxygenation in a randomized trial of inhaled nitric oxide for persistent pulmonary hypertension of the newborn” Pediatrics, 100, pp e17 192 Wiklund NP, Persson MG, Gustafsson LE, Moncada S, Hedqvist P (1990) “Modulatory role of endogenous nitric oxide in pulmonary circulation in vivo” Eur J Pharmacol, 185, pp 123-4 193 Wink D.A, K.M Miranda (2001) “Espey Cytotoxicity related to oxidative and nitrosative stress by nitric oxide” Exp Biol Med, 226(7), pp 621-3 194 Wu X, Somlyo AP (1996) “Cyclic GMP-dependent stimulation reverses G-proteincoupled inhibition of smooth muscle myosin light chain phosphate” Biochem Biophys Res Commun, 220, pp 658-63 195 Yoshida Y (1991) “Cyclic GMP-dependent protein kinase stimulates the plasma membrane Ca2+ pump ATPase of vascular smooth muscle via phosphorylation of a 240-kDa protein” J Biol Chem, 266(29), pp 19819-25 196 Zayek M, Morin III FC (1993) “Treatment of persistent pulmonary hypertension in the newborn lamb by inhaled nitric oxide” J Pediatr, 122, pp 743-50 197 Zimmerman JJ, Caldwell E, Rubenfeld GD (2009) “ Incidence and outcomes of pediatric acute lung injury” Pediatrics, 124(1), pp 87-95 198 Zouki C, Chan JS, Filep JG (2001) “Peroxynitrite induces integrin-dependent adhesion of human neutrophils to endothelial cells via activation of the Raf1/MEK/Erk pathway” FASEB J, 15, pp 25-7 ... DỤC VÀ ĐÀO TẠO BỘ Y TẾ ĐẠI HỌC Y DƯỢC THÀNH PHỐ HỒ CHÍ MINH - - CAM NGỌC PHƯỢNG HIỆU QUẢ VÀ CHI PHÍ THỞ KHÍ NITRIC OXIDE Ở TRẺ SƠ SINH SUY HÔ HẤP NẶNG CHUYÊN NGÀNH : NHI – SƠ SINH. .. 1.44) Thở khí NO có hiệu sử dụng trẻ suy hô hấp mức độ trung bình nặng Hai nghiên cứu so sánh hiệu thở khí NO cho nhóm trẻ suy hơ hấp trung bình nhóm trẻ suy hơ hấp nặng [152] Nghiên cứu không... đáp PHỤ LỤC PHIẾU LẤY CHẤP THUẬN CỦA THÂN NHÂN BỆNH NHÂN HIỆU QUẢ CHI PHÍ THỞ KHÍ NITRIC OXIDE Ở TRẺ SƠ SINH SUY HƠ HẤP NẶNG Chấp thuận từ bệnh nhân người bảo hộ Tôi thông tin đầy đủ nguy có