1. Trang chủ
  2. » Giáo án - Bài giảng

Đề thi HSG CASIO 9 (09-10)

11 385 4
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 11
Dung lượng 190,5 KB

Nội dung

UBND HUYỆN QUẾ SƠN PHÒNG GD&ĐT KỲ THI HỌC SINH GIỎI THỰC HÀNH Năm học 2009-2010 Môn: Giải toán trên máy CASIO lớp 9 Thời gian: 120 phút (Không kể thời gian giao đề) Yêu cầu khi làm bài: - Ghi kết quả với độ chính xác cao nhất có thể. - Ghi ngắn gọn cách tính, qui trình ấn phím với các câu hỏi có yêu cầu. - Học sinh được phép sử dụng các loại máy fx 500A, fx 500MS, fx 570MS; fx500ES; fx 570ES. Tuy nhiên, ưu tiên viết qui trình ấn phím trên máy fx 570MS - Đề thi có 6 trang. Câu 1: (2.0 điểm) Tìm y biết: 2 3 1,826 3 12,04 1 5 4 2,3 7 3 5 18 15 0,0598 15 6 y − =   + ×  ÷ −  ÷ +  ÷  ÷   Cách tính: Kết quả: Câu 2: (2.0 điểm) Tính tích Q = 3333355555 x 3333377777 Cách tính: Kết quả : Trang 1 Câu 3: (2,0 điểm) Giải phương trình : 8 7 6 5 4 3 2 2003 1 4 1 3 1 2 20 + + + = + + + x Cách tính: Kết quả: Bài 4: (2.0 điểm) Tìm các ước nguyên tố của 3 3 3 1751 1957 2369A = + + Cách tính: Kết quả: Câu 5: (3.0 điểm): Tìm số tự nhiên lớn nhất có 10 chữ số. Biết số đó chia 19 dư 12, chia 31 dư 13 Cách tính: Kết quả: Câu 6: (2.0 điểm) Trang 2 Tìm các chữ số x, y để số 1234xy345 chia hết cho 12345 Cách tính: Kết quả: Câu 7: (4.0 điểm) Cho đa thức : Q(x) = x 5 + ax 4 – bx 3 + cx 2 + dx – 2010 Biết rằng khi x nhận các giá trị lần lượt 1, 2, 3, 4 thì Q(x) có các giá trị tương ứng là 6, 18, 30, 42. a. Xác định các hệ số a, b, c, d và tính giá trị của đa thức. b. Tại các giá trị của x = 1,15 ; 1,25 ; 1,35 ; 1,45. Cách tính: Kết quả: a = b = c = d = Q(1,15) = Q(1,25) = Q(1,35) = Q(1,45) = Câu 8: (2.0 điểm) Trang 3 Cho dãy số sắp với thứ tự U 1 = 2; U 2 = 20 và từ U 3 trở đi được tính theo công thức 1 1 2 n n n U U U + − = + (với 2n ≥ ). a) Viết quy trình bấm phím liên tục để tính giá trị U n với U 1 = 2; U 2 = 20. b) Sử dụng quy trình trên để tính U 23 ; U 24 ; U 25 Cách tính: Kết quả: U 23 = U 24 = U 25 = Câu 9: (3.0 điểm) Tam giác ABC có số đo ba cạnh lần lượt là 6 (cm), 8 (cm), 10 (cm). G là trọng tâm của tam giác. Tính tổng GA + GB + GC. Cách tính: Hình vẽ: Kết quả: Câu 10: (4.0 điểm) Cho tam giác ABC vuông tại A. Biết 5,2538AB m= , góc C = 40 0 25’. Từ A vẽ đường phân giác AD và trung tuyến AM (D và M thuộc BC) a. Tính độ dài của các đoạn thẳng AM, BD. b. Tính diện tích các tam giác ADM. c. Tính độ dài phân giác AD. Trang 4 Cách tính: Hình vẽ: Kết quả: AM = BD = S ADM = AD = Câu11: (4.0 điểm) Cho đường tròn (O) có bán kính 2(cm). O’O = 4cm. O’A là tiếp tuyến của (O). Đường tròn tâm O’ bán kính O’A cắt (O) tại B. Tìm diện tích phần chung S của hai hình tròn (Phần tô đậm). Cách giải: Hình vẽ: Trang 5 A B CMD Kết quả: UBND HUYỆN QUẾ SƠN PHÒNG GD&ĐT KỲ THI HỌC SINH GIỎI THỰC HÀNH Năm học 2009-2010 HDChấm - Môn: Giải toán trên máy CASIO lớp 9 Thời gian: 120 phút (Không kể thời gian giao đề) Trang 6 Câu 1: (2.0 điểm) Tìm y biết: 2 3 1,826 3 12,04 1 5 4 2,3 7 3 5 18 15 0,0598 15 6 y − =   + ×  ÷ −  ÷ +  ÷  ÷   Cách tính: Rút y =                         + ×+ −×−× 3 6150598,0 7 53 5 3,2 1518. 4 3 1826,104,12 (1,0 điểm) Kết quả 043992762,1 ± (1,0 điểm) Câu 2: (2.0 điểm) Tính kết quả đúng (không sai số) của tích Q = 3333355555 x 3333377777 Đặt A = 33333, B = 55555, C = 77777 ta có : Q = (A.10 5 + B)(A.10 5 + C) = A 2 .10 10 + AB.10 5 + AC.10 5 + BC Tính trên máy rồi làm tính, ta có : A 2 .10 10 = 11110888890000000000 AB.10 5 = 185181481500000 AC.10 5 = 259254074100000 B.C = 4320901235 Q = 11111333329876501235 ( 1.0 điểm) Kết quả : Q = 11111333329876501235 ( 1.0 điểm) Câu 3: (2,0 điểm) Giải phương trình : )1( 8 7 6 5 4 3 2 2003 1 4 1 3 1 2 20 + + + = + + + x Cách tính: Kết quả: Trang 7 - Tính vế phải. - Thực hiện: Chia 20 - Lấy nghịch đảo - Trừ 2 - Lấy nghịch đảo - Trừ 3 - Lấy nghịch đảo - Trừ 4 - Lấy nghịch đảo (1.0 điểm) x = -0,2333629 (1.0 điểm) Bài 4: (2.0 điểm) Tìm các ước nguyên tố của 3 3 3 1751 1957 2369A = + + Cách tính: Tìm ƯCLN(1751,1957,2369) = 103. A = 103 3 (17 3 + 19 3 + 23 3 ) = 103 3 . 23939. Chia 23939 cho các số nguyên tố 2. 3, 5, …., 37 ta được 23939 = 37 . 647 Do 647 < 37 2 nên 647 là số nguyên tố . (1,5 điểm) Kết quả: 37; 103; 647 (0,5 điểm) Câu 5: (3.0 điểm): Tìm số tự nhiên lớn nhất có 10 chữ số .Biết số đó chia 19 dư 12 ,chia 31 dư 13 Cách tính: - Tìm số nhỏ nhất thoả điều kiện chia 19 dư 12 ,chia 31 dư 13: Bội của 31 + 13 - 12 chia hết cho 19. Hay Bội của 31 + 1 chia hết cho 19. - Dùng máy tính (Cho biến A chạy từ 1 xét 31A + 1 chia 19) tìm được số A là 11 => 354 - Các số khác thoả điều kiện này là B(BCNN(31,19)) +354. - Theo điều kiện số tự nhiên lớn nhất có 10 chữ số K. 589 + 354 < 9999999999 K ≤ 16977928,09. Lấy K = 16977928 (Mỗi bước cho 0,5 điểm) Kết quả: 9999999946 (0,5 điểm) Câu 6: (2.0 điểm) Tìm xy để số 1234xy345 chia hết cho 12345 Cách tính: - Có 0 ≤ xy ≤ 99. - Gọi thương của 1234xy345 cho 12345 là k ta có: 123400345123 ≤ 12345.k ≤ 123499345 9995.969 ≤ k ≤ 10003.99 - Xét 9996 ≤ k ≤ 10003 có k = 10001 cho kết quả 123462345 (Thoả) (Mỗi y cho 0,5 điểm) Kết quả: xy = 62 ( 123462345) (0,5 điểm) Câu 7:(4.0 điểm) Trang 8 Cho đa thức : Q(x) = x 5 + ax 4 – bx 3 + cx 2 + dx – 2010 Biết rằng khi x nhận các giá trị lần lượt 1, 2, 3, 4 thì Q(x) có các giá trị tương ứng là 9, 21, 33, 45. a. Xác định các hệ số a, b, c, d và tính giá trị của đa thức. b. Tại các giá trị của x = 1,15 ; 1,25 ; 1,35 ; 1,45. Cách tính: - Thay x = 1, 2, 3, 4 ta được hệ : 1+a-b+c+d-2007=9 a-b+c+d=2015 (1) 32+16a-8b+4c+2d-2007=21 16a-8b+4c+2d=1996 (2) 243+81a-27b+9c+3d-2007=33 81a-27b+9c+3d=1797 (3) 1024+256a-64b+16c+4d-2007=45 256a-64b+16c    ⇔     +4d=1028 (4)        - Đưa về hệ bậc nhất 3 ẩn: (Lấy hai vế của phương trình (1) lần lượt nhân với 2, 3, 4 rồi trừ lần lượt vế đối vế với phương trình (2), phương trình (3), phương trình (4), ta được hệ phương trình bậc nhất 3 ẩn) : -14a+6b-2c=2034 -78a+24b+6c=4248 -252a+60b-12c=7032      Và dùng chức năng của máy để giải hệ bậc nhất ba ẩn - Ta có P(x)=x 5 – 93,5x 4 + 870x 3 -2972,5x 2 + 4211x – 2007 - Dùng chức năng CALC để nhập và tính giá trị của biểu thức (2.0 điểm) Kết quả: a =-93,5 b = -870 c = -2972,5 d = 4211 Q(1,15) = 63,15927281 Q(1,25) = 83,21777344 Q(1,35) = 91,91819906 Q(1,45) = 91,66489969 (2.0 điểm) Câu 8: (2.0 điểm) Cho dãy số sắp với thứ tự U 1 = 2; U 2 = 20 và từ U 3 trở đi được tính theo công thức 1 1 2 n n n U U U + − = + (với 2n ≥ ). c) Viết quy trình bấm phím liên tục để tính giá trị U n với U 1 = 2; U 2 = 20. d) Sử dụng quy trình trên để tính U 23 ; U 24 ; U 25 Gán: A = 2 B = 20 D = 2 (Biến đếm) D=D+1:A=2*B+A:D=D+1:B=2*A+B Ấn liên tiếp = xem giá trị D để biết số hạng thứ và xem A, B để biết giá trị của số hạng. (1,0 điểm) Kết quả: U 23 = 1941675090 U 24 = 4687618336 (0,5 điểm) U 25 = 11316911762 (0,5 điểm) Câu 9: (3.0 điểm) Tam giác ABC có số đo ba cạnh lần lượt là 6 (cm), 8 (cm), 10 (cm). G là trọng tâm của tam giác. Tính tổng GA + GB + GC. Cách tính: - Chứng tỏ được tam giác ABC vuông. Hình vẽ: Trang 9 - Trung tuyến ứng với cạnh 10 (cm) bằng: 5 (cm) - Trung tuyến ứng với cạnh 6 (cm): 22 83 + - Trung tuyến ứng với cạnh 8 (cm): 22 64 + - GA + GB + GC = 3 2 (Tổng ba trung tuyến). Kết quả: 13,83673753 (cm) (0,50 điểm) Câu 10: (4.0 điểm) Cho tam giác ABC vuông tại A. Biết 5,2538AB m= , góc C = 40 0 25’. Từ A vẽ đường phân giác AD và trung tuyến AM (D và M thuộc BC) a. Tính độ dài của các đoạn thẳng AM, BD. b. Tính diện tích các tam giác ADM. c. Tính độ dài phân giác AD. Cách tính: - Tính BC: '0 2540 2538,5 Sin BC = . '0 2540.2 2538,5 2 Sin BC AM == . - Tính BD: '0 2540 2538,5 Tan AC = . Kết quả: AM = 4,051723391 BD = 3.726915668 (cm) S ADM = 0,649613583 AD = 4,012811598 Trang 10 A B CMD [...]... O’ bán kính O’A cắt (O) tại B Tìm diện tích phần chung S của hai hình tròn (Phần tô đậm) Cách giải: - Chứng tỏ ∆AMO đều (1.0 điểm) ∆AO’O vuông tại A Gọi M là giao điểm của OO’ với (O) ta có: MO’=MO (=2cm) => AM là trung tuyến => AM = OO’/2 = 2(cm) => ∆AMO đều - Suy ra các số liệu cần thi t (0,75 điểm) => ∠AOM = 600 ; ∠AO’M = 300 O’A = 2 3 - Xây dựng công thức tính diện tích (1.0 điểm) S = Squạt o’ . lớn nhất có 10 chữ số K. 5 89 + 354 < 99 999 999 99 K ≤ 1 697 792 8, 09. Lấy K = 1 697 792 8 (Mỗi bước cho 0,5 điểm) Kết quả: 99 999 999 46 (0,5 điểm) Câu 6: (2.0. tính: - Có 0 ≤ xy ≤ 99 . - Gọi thương của 1234xy345 cho 12345 là k ta có: 123400345123 ≤ 12345.k ≤ 123 499 345 99 95 .96 9 ≤ k ≤ 10003 .99 - Xét 99 96 ≤ k ≤ 10003 có

Ngày đăng: 10/11/2013, 14:11

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w