Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 159 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
159
Dung lượng
5,73 MB
Nội dung
I H C QU C GIA HÀ N I TR NG I H C KHOA H C T NHIÊN _ NGÔ H NG ÁNH THU NGHIÊN C U BI N TÍNH B M T MÀNG L C COMPOSIT POLYAMID L P M NG (TFC-PA) VÀ KH N NG NG D NG MÀNG TRONG X LÝ N LU N ÁN TI N S HÓA H C HƠ N i - 2017 C Ô NHI M I H C QU C GIA HÀ N I TR NG I H C KHOA H C T NHIÊN _ NGÔ H NG ÁNH THU NGHIÊN C U BI N TÍNH B M T MÀNG L C COMPOSIT POLYAMID L P M NG (TFC-PA) VÀ KH N NG NG D NG MÀNG TRONG X Chun ngành: Hóa Mơi tr LÝ N C Ơ NHI M ng Mư s : 62440120 LU N ÁN TI N S HịA H C NG IH NG D N KHOA H C: PGS.TS TR N TH DUNG PGS.TS SHINSUKE MORI HƠ N i - 2017 L I CAM OAN Tác gi xin cam đoan công trình nghiên c u c a b n thân tác gi Các k t qu nghiên c u k t lu n lu n án trung th c, không chép t b t k m t ngu n tài li u d ngu n tài li u đư đ i b t k hình th c Vi c tham kh o c th c hi n trích d n ghi ngu n tài li u tham kh o quy đ nh Tác gi lu n án Ngô H ng Ánh Thu i L IC M N V i lòng bi t n sâu s c, xin cho phép em dành nh ng dòng đ u tiên c a lu n án g i l i c m n chân thành nh t t i PGS.TS Tr n Th Dung, ng giao đ tài, t n tình h ng d n t o m i u ki n thu n l i nh t cho em su t trình th c hi n lu n án Em xin đ V i th y h n th y b i s h i đư ti p nh n, c g i l i tri ân chân thành nh t đ n cô ng d n th hai, PGS.TS Shinsuke Mori, em xin chân thành c m ng d n t n tình c a th y, đ c bi t th i gian em sang Nh t th c t p Em xin c m n th y v quà c a th y dành cho em Em c ng xin g i l i c m n chân thành t i th y khoa Hố h c, th y B mơn Cơng ngh Hóa h c, th y phịng thí nghi m Hóa Mơi tr ng đư truy n th cho em nh ng ki n th c quý báu, c ng nh đ ng viên, giúp đ , đóng góp giúp em nhi u ý ki n su t q trình em h c t p cơng tác Tác gi xin đ c c m n TS inh Hùng C ng, TS Tr nh Xuơn giúp tác gi đo đ c m u phân tích; xin c m n ThS i đư ình Kh i đư giúp tác gi r t nhi u v m t k thu t đ tác gi có th hồn thi n cơng trình Tác gi c ng xin đ c g i l i c m n t i Qu Phát tri n Khoa h c Công ngh qu c gia (NAFOSTED), ch ng trình 911 c a Chính ph Vi t Nam, Qu Ryoichi Sasakawa Young Leaders Fellowship Fund (Sylff), N i (VNU) Tr ng i h c Qu c gia Hà i h c Khoa h c T nhiên (HUS) đư giúp r t nhi u su t th i gian h c t p Cu i cùng, xin đ dõi theo t ng b c bày t lòng bi t n t i gia đình tơi, đ c bi t ng c đi, ng i m ch ng đư giúp đ r t nhi u, ng im i ch ng m t a v ng ch c, chia s m i khó kh n cu c s ng, gái đáng yêu t i ch em thân thi t, b n bè thân yêu c a Ngô H ng Ánh Thu ii TÓM T T LU N ÁN Màng l c composit polyamid l p m ng (TFC-PA) m t lo i màng đ c s d ng r ng rưi có tính n ng l c tách v h c, b nh h t tr i có đ b n c ng b i sinh v t Tuy nhiên, màng TFC-PA có nh c m d b t c ngh n trình l c tách, làm gi m hi u qu c a tồn b q trình màng Cho đ n nay, vi c nâng cao kh n ng ch ng t c mà khơng làm gi m tính n ng l c tách c a màng nói chung màng TFC-PA nói riêng v n m t thách th c l nh v c nghiên c u ch t o ng d ng màng l c Lu n án đư ti n hành nghiên c u bi n tính b m t màng l c composit TFC-PA b ng m t s ph ng pháp nh trùng h p ghép quang hóa d h p ghép kh i mào oxy hóa kh ph l p h t TiO2 kích th i b c x t ngo i, trùng c nanomet lên b m t màng, nh m nâng cao tính n ng l c tách kh n ng ch ng t c cho màng Các đ c tính b m t đ c tính tách l c c a màng đ t c kh o sát đánh giá, v i đ i ng tách l c m t s ch t h u c , vô c ion kim lo i n ng đ c h i n c Các k t qu nghiên c u cho th y q trình bi n tính b m t màng l c composit TFC-PA đư làm thay đ i rõ r t đ c tính b m t tính n ng tách l c c a màng Các u ki n bi n tính b m t màng nh n ng đ tác nhân ghép, th i gian trùng h p ghép, n ng đ ch t kh i mào, hàm l ng huy n phù TiO2 kích th kích thích b c x t ngo i (UV)… có nh h c nanomet, th i gian ng m nh đ n đ c tính c a màng T k t qu th c nghi m, có th rút u ki n bi n tính b m t màng thích h p cho hi u qu tách l c t t nh t màng trùng h p ghép quang hóa v i acid acrylic 10 g/L phút, màng trùng h p ghép kh i mào oxy hóa kh v i acid acrylic 10 g/L phút, màng trùng h p ghép quang hóa v i poly (ethylen glycol) 30 g/L 10 phút màng ph l p h t TiO2 kích th c nanomet 15 ppm, chi u b c x t ngo i 30 giây Ph h ng ngo i ph n x cho th y s xu t hi n nhóm ch c carbonyl, hydroxyl TiOH a n c b m t màng sau bi n tính, t iii ng ng v i tác nhân s d ng acid acrylic (AA), poly (etylen glycol) (PEG) TiO2 B m t màng tr nên a n c h n v i góc th m t gi m m nh, t 51o c a màng n n ban đ u xu ng kho ng 25o cho màng trùng h p ghép v i AA, kho ng 15o cho màng trùng h p ghép v i PEG, kho ng 33o cho màng ph TiO2 tr nên siêu a n th m t nh h n 10o cho màng ph TiO2 đ c v i góc c chi u b c x UV nh ch p hi n vi n t quét hi n vi l c nguyên t cho th y b m t màng sau trùng h p ghép tr nên ch t sít h n tr n nh n h n s hình thành l p polyme ghép, đ thô nhám b m t màng gi m xu ng rõ r t K t qu đánh giá đ c tính l c tách c a màng bi n tính b m t ch ng t s t ng lên đ ng th i c a c ba thông s g m đ l u gi , n ng su t l c kh n ng ch ng t c l u gi t ng kho ng %, n ng su t l c c a màng t ng t 35 đ n 60 %, m c đ trì n ng su t l c cao h n t 20 đ n 40 % so v i màng n n Màng sau bi n tính b m t có đ l u gi n đ nh kho ng pH t đ n 11, đ c bi t kh n ng ch u chlor ho t đ ng c a màng trùng h p ghép b m t tr nên t t h n nhi u so v i màng ban đ u Màng sau bi n tính b m t v i AA, PEG TiO2 kích th kh n ng tách lo i tri t đ ch t h u c t nhiên tan n c nanomet có c, c ng nh ion kim lo i n ng, amoni, cromat K t qu đánh giá v i m t s m u n c th i th c t cho th y, màng TFC-PA bi n tính b m t có th lo i b g n nh hồn toàn thu c nhu m d n c th i d t nhu m, protein ch t h u c d ch th i bia sau lên men, ion kim lo i n ng n đ c nâng lên đáng k so v i màng n n iv c th i m , v i tính n ng tách l c ABSTRACT The polyamide thin film composite (TFC-PA) membranes exhibit superior water flux and good resistance to pressure compaction They have wide operating pH range and good stability to biological attack Therefore, the TFC-PA membranes are widely accepted as the relevant choice for water treatments, especially for producing of the pure and ultrapure water However, the poor fouling restrain the filtration capacity and lifetime of the TFC-PA membranes, leading to an appreciable increase for operational costs of membrane processes Therefore, the simultaneous improvement of fouling resistance, flux and retention is still very challenging for the development of membrane applications In this work, the UV-photo-induced grafting, the redox-initiated grafting and the coating of titanium dioxide nanoparticles onto the surface of commercial TFC-PA membrane have been carried out to enhance the membrane separation performance and antifouling property The changes of the membrane surface characteristics were evaluated and the membrane separation performance were determined through the possibility for removal of organic and inorganic compounds, heavy metal ions in water The experimental results demonstrated that the grafting polymerizations and the coating of titanium dioxide nanoparticles led to changes in the membrane surface characteristics and membrane filtration performance The conditions of the modification of membrane surface such as monomer concentration, graft polymerization time, TiO2 concentration and UV irradiation time highly influenced on membrane characteristics From the experimental results, the most suitable modification conditions using acid acrylic (AA), poly (ethylene glycol) (PEG) and TiO2 nanoparticles for the membrane characteristics could be obtained: 10 AA-UV 7min, 10 AA-Redox 5min, 30 PEG-UV 10min and TFC-PA/TiO2,UV The FTIR-ATR analysis verified the appearances of hydrophilic groups such as carbonyl, hydroxyl and Ti-OH after grafting of AA, PEG or coating of TiO2 nanoparticles onto membrane surface The formation of the hydrophilic layer increased the hydrophilicity of membranes with the strongly reduced water contact angles, from v 51o of unmodified membrane to about 25o, 15o and 33o for the AA-grafted, PEG-grafted and TiO2-coated membranes, respectively The TiO2-coated membrane surface became super-hydrophilic with the contact angles are less than 10o The SEM and AFM images demonstrated that the grafted membrane surface is more relative compact and smoother after grafting The filtration experiments illustrated the improved separation performance of the modified membranes with the simultaneous enhancement of membrane flux and retention and antifouling property for separation of the different organic and inorganic substances in an aqueous feed solution The retention increased about %, while the membrane flux increased from 35 to 60 %, the antifouling property increased from 20 to 40 % compared to the unmodified one The modified membranes showed the stable retention for a wide range of pH from to 11, especially the chlorine resistance of the grafted membranes was significantly improved compared to the unmodified one The modified membranes using AA, PEG and TiO2 nanoparticles showed the good possibility for removal of the polluted substances such as the natural organic matter dissolved, heavy metal ions, ammonium, chromate in water The experimental results for the wastewater treatments indicated that the modified membranes could remove well the residual dyes, organic substances and metal ions in water, with the much better filtration performance compared to the unmodified one vi M CL C Trang L I CAM OAN i L IC M N ii TÓM T T LU N ÁN iii ABSTRACT v M CL C vii DANH M C T VI T T T x DANH M C HÌNH xii DANH M C B NG xvii M CH 1.1 U NG I ậ T NG QUAN Gi i thi u v màng l c trình tách b ng màng 1.1.1 Các trình màng đ ng l c áp su t 1.1.2 C ch tách qua màng 1.1.3 Màng composit polyamid l p m ng (TFC-PA) 1.2 ng d ng c a màng l c x lỦ n 1.2.1 ng d ng c a màng x lý n c ô nhi m b i m t s h p ch t h u c 10 1.2.2 ng d ng c a màng x lý n c ô nhi m b i ion kim lo i n ng 13 c ô nhi m m t s ion vô c khác 1.3 Hi n t ng t c màng trình tách l c 16 1.3.1 Hi n t ng t c màng 16 1.3.2 Hi n t ng t c màng tách l c dung d ch h u c 18 1.3.3 Hi n t ng t c màng tách l c dung d ch mu i vô c 20 vii 1.3.4 Các tính ch t b m t nh h 1.4 ng đ n m c đ t c màng 22 Bi n tính b m t màng l c 24 1.4.1 Bi n tính b m t màng l c b ng ph ng pháp trùng h p ghép 1.4.2 Bi n tính b m t màng l c b ng ph 27 ng pháp ph l p h t kích th c 39 nanomet 1.5 M c tiêu n i dung nghiên c u c a Lu n án 45 1.5.1 M c tiêu nghiên c u 45 1.5.2 N i dung nghiên c u 45 CH 47 NG II ậTH C NGHI M 2.1 Thi t b , hóa ch t, v t li u 47 2.1.1 Thi t b 47 2.1.2 Hóa ch t, v t li u 48 2.2 Ph 50 ng pháp nghiên c u 2.2.1 Bi n tính b m t màng 50 2.2.2 ánh giá đ c tính b m t màng 53 2.2.3 ánh giá đ c tính tách l c c a màng 54 2.2.4 ánh giá kh n ng ch ng t c ngh n c a màng 58 2.2.5 ánh giá kh n ng ch u pH, chlor ho t đ ng, nhi t đ , đ n đ nh c a 58 màng theo th i gian b o qu n 2.2.6 ánh giá kh n ng tách lo i thành ph n gây ô nhi m n CH 3.1 3.1.1 c c a màng NG III ậ K T QU NGHIÊN C U VÀ BÀN LU N Trùng h p ghép bi n tính b m t màng l c TFC-PA ánh giá đ c tính b m t màng TFC-PA tr c sau trùng h p ghép 59 60 60 60 3.1.2 Kh o sát đ c tính tách l c c a màng 75 3.1.3 Kh o sát kh n ng ch ng t c c a màng 81 3.2 Ph l p h t TiO2 kích th c nanomet lên b m t màng TFC-PA viii 88 18 A.Al-Amoudi, R.W.Lovitt (2007), “Fouling strategies and the cleaning system of nanofiltration membranes and factors affecting cleaning efficiency”, Journal of Membrane Science 303, pp 4-28 19 A.C.Sagle, E.M.V.Wagner, H.Ju, B.D.M.Closkey, B.D.Freeman, M.M.Sharma (2009), “PEG-coated reverse osmosis membranes: Desalination properties and fouling resistance”, Journal of Membrane Science 340, pp 92-108 20 A.Maher, M.Sadeghi, A.Moheb (2014), “Heavy metal elimination from drinking water using nanofiltration membrane technology and process optimization using response surface methodology”, Desalination 352, pp 166-173 21 A.A.Izadpanah and A.Javidnia (2012), “The ability of a nanofiltration membrane to remove hardness and ions from diluted seawater”, Water 4, pp 283-294 22 A.B.Santos, F.J.Cervantes, J.B.Lier (2007), “Review paper on current technologies for decolourisation of textile wastewaters: Perspectives for anaerobic biotechnology”, Bioresource Technology 98, pp 2369-2385 23 B.A.M.Al-Rashdi, D.J.Johnson, N.Hilal (2013), “Removal of heavy metal ions by nanofiltration”, Desalination 315, pp 2-17 24 B.J.A.Tarboush, H.A.Arafat, T.Matsuura, D.Rana (2009), “Recent advances in thin film composite reverse osmosis and nanofiltration membranes for desalination”, Journal of Applied Membrane Science and Technology 10, pp 41-50 25 B.V.Bruggen, M.Mänttäri, M.Nyström (2008), “Drawbacks of applying nanofiltration and how to avoid them: A review”, Separation and Purification Technology 63, pp 251-263 26 B.Zdyrko, V.Klep, I.Luzinov (2003), “Synthesis and surface morphology of high- density poly(ethylene) glycol grafted layers”, Langmuir 19, pp 10179-10187 126 27 B.Mi, M.Elimelech (2010), “Organic fouling of forward osmosis membranes: Fouling reversibility and cleaning without chemical reagents”, Journal of Membrane Science 348, pp 337-345 28 B.V.Bruggen, C.Vandecasteele (2003), “Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry”, Environmental Pollution 122, pp 435-445 29 B.Gupta, C.Plummer, I.Bisson, P.Frey, J.Hilborn (2002), “Plasma-induced graft polymerization of acrylic acid onto poly(ethylene terephthalate) films: characterization and human smooth muscle cell growth on grafted films”, Biomaterials 23, pp 863-871 30 B.Gupta, K.Krishnanand, B.L.Deopura (2012), “Oxygen plasma-induced graft polymerization of acrylic acid on polycaprolactone monofilament”, European Polymer Journal 48, pp 1940-1948 31 Butterworths (1974), Macromolecular division commission on macromolecular nomenclature: Basic definitions of terms relating to polymers, International Uunion of Pure and Applied Chemistry 32 C.González-Gago, J.Pisonero, R.Sandin, J.F.Fuertes, A.Sanz-Medel, N.Bordel (2016), “Analytical potential of rf-PGD-TOFMS for depth profiling of an oxidized thin film composite”, Journal of Analytical Atomic Spectrometry 31, pp 288-296 33 C.Fersi, L.Gzara, M.Dhahbi (2005), “Treatment of textile effluents by membrane technologies”, Desalination 185, pp 399-409 34 C.Woodford (2016), Water pollution: an introduction, Explain that stuff 35 C.Ding, J.Yin, B.Deng (2014), “Effects of Polysulfone (PSf) support layer on the performance of Thin-film composite (TFC) membranes”, Journal of Chemical and Process Engineering (102), pp 1-8 36 D.Emadzadeh, W.J.Lau, M.Rahbari-Sisakht, A.Daneshfar, M.Ghanbari, A.Mayahi, T.Matsuura, A.F.Ismail (2015), “A novel thin film nanocomposite reverse 127 osmosis membrane with superior anti-organic fouling affinity for water desalination”, Desalination 368, pp 106-113 37 D.Li, H.Wang (2010), “Recent developments in reverse osmosis desalination membranes”, Journal of Materials Chemistry 20, pp 4551-4566 38 D.S.Wavhal, E.R.Fisher (2002), “Hydrophilic modification of polyethersulfone membranes by low temperature plasma-induced graft polymerization”, Journal of Membrane Science 209, pp 255-269 39 D.S.Wavhal, E.R.Fisher (2003), “Membrane surface modification by plasma- induced polymerization of Acrylamide for improved surface properties and reduced protein fouling”, Langmuir 19, pp 79-85 40 D.S.Wavhal, E.R.Fisher (2005), “Modification of polysulfone ultrafiltration membranes by CO2 plasma treatment”, Desalination 172, pp 189-205 41 D.H.Shin, N.Kim, Y.T.Lee (2011), “Modification to the polyamide TFC RO membranes for improvement of chlorine-resistance”, Journal of Membrane Science 376, pp 302-311 42 D.He, H.Susanto, M.Ulbricht (2009), “Photo-irradiation for preparation, modification and stimulation of polymeric membranes”, Progress in Polymer Science 34, pp 62-98 43 D.T.Tran, S.Mori, M.Suzuki (2008), “Characteristics of polyimide-based composite membranes fabricated by low-temperature plasma polymerization”, Thin Solid Films 516, pp 4384-4390 44 E.Bet-moushoul, Y.Mansourpanah, Kh.Farhadi, M.Tabatabaei (2016), “TiO2 nanocomposite based polymeric membranes: A review on performance improvement for various applications in chemical engineering processes”, Chemical Engineering Journal 283, pp 29-46 128 45 E.M.Van Wagner, A.C.Sagle, M.M.Sharma, Y.La, B.D.Freeman (2011), “Surface modification of commercial polyamide desalination membranes using poly(ethylene glycol) diglycidyl ether to enhance membrane fouling resistance”, Journal of Membrane Science 367, pp 273-287 46 E.Kim, Q.Yu, B.Deng (2011), “Plasma surface modification of nanofiltration (NF) thin-film composite (TFC) membranes to improve anti organic fouling”, Applied Surface Science 257, pp 9863-9871 47 F.Fu, Q.Wang (2011), “Removal of heavy metal ions from wastewater: A review”, Journal of Environmental Management 92, pp 407-418 48 G.Ozaydin-Ince, A.Matin, Z.Khan, S.M.J.Zaidi, K.K.Gleason (2013), “Surface modification of reverse osmosis desalination membranes by thin-fim coatings deposited by initiated chemical vapor deposition”, Thin Solid Film 539, pp 181-187 49 G.Xu, J.Wang, C.Li (2013), “Strategies for improving the performance of the polyamide thin film composite (PA-TFC) reverse osmosis (RO) membranes: Surface modification and nanoparticles incorporations”, Desalination 328, pp 83-100 50 G.Kang, M.Liu, B.Lin, Y.Cao, Q.Yuan (2007), “A novel method of surface modification on thin-film composite reverse osmosis membrane by grafing poly(ethylene glycol), Polymer 48, pp 1165-1170 51 G.Kang, Y.Cao (2012), “Development of antifouling reverse osmosis membranes for water treatment: a review”, Water Research 46, pp 584-600 52 H.K.Shon, S.Phuntsho, D.S.Chaudhary, S.Vigneswaran, J.Cho (2013), “Nanofiltration for water and wastewater treatment-a mini review”, Drinking Water Engineering and Sciene 6, pp 47-53 53 H.Yu, Y.Xie, M.Hu, J.Wang, S.Wang, Z.Xu (2005), “Surface modification of polypropylene microporous membrane to improve its antifouling property in MBR: CO2 plasma treatment”, Journal of Membrane Science 254, pp 219-227 129 54 H.A.Qdais, H.Moussa (2004), “Removal of heavy metals from wastewater by membrane processes: a comparative study”, Desalination 164, pp 105-110 55 H.L.Richards, P.G.L.Baker, E.Iwuoha (2012), “Metal nanoparticle modified polysulfone membranes for use in wastewater treatment: a critical review”, Journal of Surface Engineered Materials and Advanced Technology 2, pp 183-193 56 H.Susanto, M.Balakrishnan, M.Ulbricht (2007), “Via surface functionalization by photograft copolymerization to low-fouling polyethersulfone-based ultrafiltration membranes”, Journal of Membrane Science 288, pp 157-167 57 H.Choi, Y.Kim, Y.Zhang, S.Tang, S.Myung, B.Shin (2004), “Plasma-induced graft co-polymerization of acrylic acid onto the polyurethane surface”, Surface and Coatings Technology 182, pp 55-64 58 H.Kim, S.S.Kim (2006), “Plasma treatment of polypropylene and polysulfone supports for thin film composite reverse osmosis membrane”, Journal of Membrane Science 286, pp 193-201 59 H.S.Lee, S.J.Im, J.H.Kim, H.J.Kim, J.P.Kim, B.R.Min (2008), “Polyamide thin- film nanofiltration membranes containing TiO2 nanoparticles”, Desalination 219, pp 48-56 60 I.Kim, Y.Ka, J.Park, K.Lee (2004), “Preparation of fouling resistant nanofiltration and reverse osmosis membranes and their use for dyeing wastewater effluent”, Journal of Industrial and Engineering Chemistry 10 (1), pp 115-121 61 I.Sutzkover-Gutman, D.Hasson, R.Semiat (2010), “Humic substances fouling in ultrafiltration processes”, Desalination 261, pp 218-231 62 J.H.Kim, P.K.Park, C.H.Lee, H.H.Kwon (2008), “Surface modification of nanofiltration membranes to improve removal of organic micro-pollutants (EDCs and PhACs) in drinking water treatment: graft-polymerization and cross-linking”, Journal of Membrane Science 321, pp 190-198 130 63 J.Meng, Z.Cao, L.Ni, Y.Zhang, X.Wang, X.Zhang, E.Liu (2014), “A novel salt- responsive TFC RO membrane having superior antifouling and easy-cleaning properties”, Journal of Membrane Science 461, pp 123-129 64 J.Lowe, Md.M.Hossain (2008), “Application of ultrafiltration membranes for removal of humic acid from drinking water”, Desalination 218, pp 343-354 65 J.Pvan’t Hul, I.G.Racz, T.Reith (1997), “The application of membrane technology for reuse of process water and minimisation of wastewater in a textile washing range”, Journal of the Society of Dyers and Colourists 113 (10), pp 287-294 66 J.A.Nilson, F.A.Digiano (1996), “Influence of NOM composition on nanofiltration”, Journal of American water works association 88 (5), pp 53-66 67 J.Shao, J.Hou, H.Song (2011), “Comparison of humic acid rejection and flux decline during filtration with negatively charged and uncharge ultrafiltration membranes”, Water Research 45, pp 473-482 68 J.Deng, L.Wang, L.Liu, W.Yang (2009), “Developments and new applications of UV-induced surface graft polymerizations”, Progress in Polymer Science 34, pp 156193 69 J.Li, Y.Xu, L.Zhu, J.Wang, C.Du (2009), “Fabrication and characterization of a novel TiO2 nanoparticle self-assembly membrane with improved fouling resistance”, Journal of Membrane Science 326, pp 659-666 70 J.Wang, Y.Mo, S.Mahendra, E.M.V.Hock (2014), “Effects of water hemistry on structure and performance of polyamide composite membranes”, Journal of Membrane Science 452, pp 415-425 71 K.Akamatsu, T.Furue, F.Han, S.Nakao (2013), “Plasma graft polymerization to develop low-fouling membranes grafted with poly(2-methoxyethylacrylate)”, Separation and Purification Technology 102, pp 157-162 131 72 L.Zou, I.Vidalis, D.Steele, A.Michelmore, S.P.Low, J.Q.J.C.Verberk (2011), “Surface hydrophilic modification of RO membranes by plasma polymerization for low organic fouling”, Journal of Membrane Science 369, pp 420-428 73 L.Braeken, B.Van der Bruggen, C.Vandecasteele (2004), “Regeneration of brewery wastewater using nanofiltration”, Water Research 38: 13, pp 3075-3082 74 L.Ni, J.Meng, X.Li, Y.Zhang (2014), “Surface coating on the polyamide thim film composite reverse osmosis membrane for chlorine resistance and anti-fouling performance improvement”, Journal of Membrane Science 451, pp 205-215 75 L.Li, Z.Zhao, W.Huang, P.Peng, G.Sheng, J.Fu (2004), “Characterization of humic acids fractionated by ultrafiltration”, Organic Geochemistry 35, pp 1025-1037 76 M.G.Buonomenna, L.C.Lopez, M.Davoli, P.Favia, R.d’Agostino, E.Drioli (2009), “Polymeric membranes modified via plasma for nanofitration of aqueous solution containing organic compounds”, Microporous and Mesoporous Materials 120, pp 147-153 77 M.N.A.Seman, N.Hilai, M.Khayet (2013), “UV-photografting modification of nanofiltration membrane surface for nature organic materials fouling reduction”, Desalination and Water Treatment 51, pp 4855-4861 78 M.Peyravi, M.Jahanshahi, A.Rahimpour, A.Javadi, S.Hajavi (2014), “Novel thin film nanocomposite membranes incorporated with functionalized TiO2 nanoparticles for organic solvent nanofiltration”, Chemical Engineering Journal 241, pp 155-166 79 M.Safarpour, A.Khataee, V.Vatanpour (2015), “Thin film nanocomposite reverse osmosis membrane modified by reduced graphen oxide/TiO2 with improved desalination performance”, Journal of Membrane Science 489, pp 43-54 80 M.Pasmore, P.Todd, S.Smith, D.Baker, J.Silverstein, D.Coons, C.N.Bowman (2001), “Effects of ultrafiltration membrane surface properties on Pseudomonas 132 aeruginosa biofilm initiation for the purpose of reducing biofouling”, Journal of Membrane Science 194, pp 15-32 81 M.Ulbricht, G.Belfort (1996), “Surface modification of ultrafiltration membranes by low temperature plasma II Graft polymerization onto polyacrylonitrile and polysulfone”, Journal of Membrane Science 111, pp 193-215 82 M.Ulbricht (2006), “Advanced functional polymer membranes”, Polymer 47, pp 2217-2262 83 M.Taniguchi, J.E.Kilduff, G.Belfort (2003), “Low fouling synthetic membranes by UV-assisted graft polymerization: monomer selection to mitigate fouling by natural organic matter”, Journal of Membrane Science 222, pp 59-70 84 M.Liu, Q.Chen, L.Wang, S.Yu, C.Gao (2015), “Improving fouling resistance and chlorine stability of aromatic polyamide thin film composite reverse osmosis membrane by surface grafting of polyvinyl alcohol (PVA)”, Desalination 367, pp 11-20 85 M.Yan, L.Liu, Z.Tang, L.Huang, W.Li, J.Zhou, J.Gu, X.Wei, H.Yu (2008), “Plasma surface modification of polypropylene microfiltration membranes and fouling by BSA dispersion”, Chemical Engineering Journal 145, pp 218-224 86 M.N.Chong, B.Jin, C.W.K.Chow, C.Saint (2010), “Recent developments in photocatalytic water treatment technology: a review”, Water Research 44, pp 29973027 87 M.Elimelech, X.Zhu, A.E.Childress, S.Hong (1997), ”Role of membrane surfce morphology in colloidal fouling of cellulose acetate and composite aromatic polyamide reverse osmosis membranes”, Journal of Membrane Science 127, pp 101-109 88 M.F.Abid, M.A.Zablouk, A.M.Abid-Alameer (2012), “Experimental study of dye removal from industrial wastewater by membrane technologies of reverse osmosis and nanofiltration”, Iranian Journal of Environmental Health Science and Engineering (17), pp 1-9 133 89 N.M.Hidzir, D.J.T Hill, E.Taran, D.Martin, L.Grøndahl (2013), “Argon plasma treatment-induced grafting of acrylic acid onto expanded poly(tetra fluoroethylene) membranes”, Polymer 54, pp 6536-6546 90 N.Hilal, M.Khayet, C.J.Wright (2012), Membrane modification: technology and applications, CRC Press, Taylor and Francis group, Boca Raton London, New York 91 Pieracci, JV.Crivello, G.Belfort (2002), “UV-assisted graft polymerization of N- vinyl-2-pyrrolidinone onto poly(ether sulfone) ultrafiltration membranes using selective UV wavelengths”, Chemistry of Materials 14, pp 256-265 92 Q.Cheng, Y.Zheng, S.Yu, H.Zhu, X.Peng, J.Liu, J.Liu, M.Liu, C.Gao (2013), “Surface modification of a commercial thin-film composite polyamide reverse osmosis membrane through graft polymerization of N-isopropylacrylamide followed by acrylic acid”, Journal of Membrane Science 447, pp 236-245 93 R.A.Damodar, S.You, H.Chou (2009), “Study the self cleaning, antibacterial and photo catalytic properties of TiO2 entrapped PVDF membranes”, Journal of Hazardous Materials 172, pp 1321-1328 94 R.Bergamasco, F.Vieira da Silva, F.S.Arakawa, N.U.Yamaguchi, M.H.M.Reis, C.J.Tavares, M.T.P.Sousa de Amorim, C.R.G.Tavares (2011), “Drinking water treatment in a gravimetric flow system with TiO2 coated membranes”, Chemical Engineering Journal 174, pp 102-109 95 R.Zhang, L.Braeken, P.Luis, X.Wang, B.Van der Bruggen (2013), “Novel binding procedure of TiO2 nanoparticles to TFC membranes via self-polymerized polydopamine”, Journal of Membrane Science 437, pp 179-188 96 S.K.Nataraj, K.M.Hosamani, T.M.Aminabhavi (2009), “Nanofiltration and reverse osmosis thin film composite membrane module for the removal of dye and salts from the simulated mixtures”, Desalination 249, pp 12-17 134 97 S.S.Madaeni, Y.Mansourpanah (2006), “Screening membranes for COD removal from dilute wastewater”, Desalination 197: 1-3, pp 23-32 98 S.S.Madaeni, N.Ghaemi (2007), “Characterization of self-cleaning RO membranes coated with TiO2 particles under UV irradiation”, Journal of Membrane Science 303, pp 221-233 99 S.Belfer, Y.Purinson, R.Fainshtein, Y.Radchenko, O.Kedem (1998), “Surface modification of commercial composite polyamide reverse osmosis membranes”, Journal of Membrane Science 139, pp 175-181 100 S.Mondai, S.R.Wickramasinghe (2012), “Photo-induced graft polymerization of N-isopropyl acrylamide on thin film composite membrane: Produced water treatment and antifouling properties”, Separation and Purification Technology 90, pp 231-238 101 S.Zanini, M.Müller, C.Riccardi, M.Orlandi (2007), “Polyethylene glycol grafting on Polypropylene membranes for anti-fouling properties”, Plasma Chemistry and Plasma Processing 27, pp 446-457 102 S.Mehdipour, V.Vatanpour, H.Kariminia (2015), “Influence of ion interaction on lead removal by a polyamide nanofiltration membrane”, Desalination 362, pp 84-92 103 S.Alzahrani, A.W.Mohammad, N.Hilal, P.Abdullah, O.Jaafar (2013), “Identification of foulants, fouling mechanisms and cleaning efficiency for NF and RO treatment of produced water”, Separation and Purification Technology 118, pp 324341 104 S.Liu, F.Fang, J.Wu, K.Zhang (2015), “The anti-biofouling properties of thin film composite nanofiltration membranes grafted with biogenic silver nanoparticles”, Desalination 375, pp 121-128 105 S.Cheng, D.L.Oatley, P.M.Williams, C.J.Wright (2012), “Characterisation and application of a novel positively charged nanofiltration membrane for the treatment of textile industry wastewaters”, Water Research 46, pp 33-42 135 106 S.Béquet, J.Remigy, J.Rouch, J.Espenan, M.Clifton, P.Aptel (2002), “From ultrafiltration to nanofiltration hollow fiber membranes: a continous UV-photografting process”, Desalination 144, pp 9-14 107 S.H.Kim, S.Kwak, B.Sohn, T.H.Park (2003), “Design of TiO2 nanoparticle self- assembled aromatic polyamide thin film composite membrane as an approach to solve biofouling problem”, Journal of Membrane Science 211, pp 157-165 108 T.Ishigami, K.Amano, A.Fujii, Y.Ohmukai, E.Kamio, T.Mruyama, H.Matsuyama (2012), “Fouling reduction of reverse osmosis membrane by surface modification via layer-by-layer assembly”, Separation and Purification Techonology 99, pp 1-7 109 T.Bae, T.Tak (2005), “Effect of TO2 nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration”, Journal of Membrane Science 249, pp 1-8 110 T.Bae, T.Tak (2005), “Rapid communication: Preparation of TiO2 self-assembled polymeric nanocomposite membranes and examination of their fouling mitigation effects in a membrane bioreactor system”, Journal of Membrane Science 266, pp 1-5 111 T.Bae, I.Kim, T.Tak (2006), “Preparation and characterizaion of fouling resistant TiO2 self-assembled nanocomposite membranes”, Journal of Membrane Science 275, pp 1-5 112 Tang, YN.Kwon, JO.Leckie (2009a), “Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes II Membrane physiochemical properties and their dependence on polyamide and coating layers”, Desalination 242, pp 168-182 113 T.Gullinkala, I.Escobar (2010), “A green membrane functionalization method to decrease natural organic matter fouling”, Journal of Membrane Science 360, pp 155164 136 114 T.D.Tran, S.Mori, M.Suzuki (2007), “Plasma modification of polyacrylonitrile ultrafiltration membrane”, Thin Solid Films 515, pp 4148-4152 115 T.T.Dung (2001), Surface modification of RO membrane by glow discharge plasma, Ph.D Thesis, Tokyo Institute of Technology, Japan 116 V.Freger, J.Gilron, S.Belfer (2002), Thin film composite polyamide membranes modified by grafting of hydrophilic polymers: an FT-IR/ AFM/TEM study”, Journal of Membrane Science 209, pp 283-292 117 V.M.Kochkodan, V.K.Sharma (2012), “Graft polymerization and plasma treatment of polymer membranes for fouling reduction A review”, Journal of Environmental Science and Health 47, pp 1713-1727 118 V.Kochkodan, D.J.Johnson, N.Hilal (2014), “Polymeric membranes: Surface modification for minimizing (bio) colloidal fouling”, Advanced in Colloid and Interface Science 206, pp 116-140 119 Vrijenhoek, S.Hong, M.Elimelech (2001), “Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes”, Journal of Membrane Science 188 (1), pp 115-128 120 W.J.Lau, S.Gray, T.Matsuura, D.Emadzadeh, J.P.Chen, A.F.Ismail (2015), “A review on polyamide thin film nanocomposite (TFN) membranes: History, applications, challenges and approaches”, Water Research 80, pp 306-324 121 W.Lau, A.F.Ismail (2009), “Polymeric nanofiltration membranes for textile dye wastewater treatment: Preparation, performance evaluation, transport modelling, and fouling control-a review”, Desalination 245, pp 321-348 122 X.Q.Cheng, Y.Liu, Z.Guo, L.Shao (2015), “Nanofiltration membrane achieving dual resistance to fouling and chlorine for “green” separation of antibiotics”, Journal of Membrane Science 493, pp 156-166 137 123 X.F.Shi, G.Tal, N.P.Hankins, V.Gitis (2014), “Fouling and cleaning of ultrafiltration membranes: A review”, Journal of Water Process Engineering 1, pp 121138 124 X.Zhang, D.K.Wang, J.C.D.Costa (2014), “Recent progresses on fabrication of photocatalytic membranes for water treatment”, Catalysis Today 230, pp 47-54 125 X.Lu, L.Liu, B.Yang, J.Chen (2009), “Reuse of printing and dyeing wastewater in processes assessed by pilot scale test using combined biological process and sub-filter technology”, Journal of Cleaner Production 17, pp 111-114 126 X.Lu, L.Liu, R.Liu, J.Chen (2010), “Textile wastewater reuse as an alternative water source for dyeing and finishing processes: A case study”, Desalination 258, pp 229-232 127 Y.H.Teow, B.S.Ooi, A.L.Ahmad, J.K.Lim (2012), “Mixed-matrix membrane for humic acid removal: Influence of different types of TiO2 on membrane morphology and performance”, International Journal of Chemistry Engineering and Applications (6), pp 374-379 128 Y.Mansourpanah, S.S.Madaeni, A.Rahimpour, A.Farhadian, A.H.Taheri (2009), “Formation of appropriate sites on nanofiltration membrane surface for binding TiO2 photo-catalyst: performance, characterization and fouling-resistant capability”, Journal of Membrane Science 330, pp 297-306 129 Y.Mansourpanah, E.Momeni Habili (2013), “Preparation and modification of thin film polyamide membranes with improved antifouling property using acrylic acid and UV irradiation”, Journal of Membrane Science 430, pp 158-166 130 Yamagishi, JV.Crivello, G.Belfort (1995), “Development of a novel photo- chemical technique for modifying poly(arylsulfone) ultrafiltration membrane”, Journal of Membrane Science 105, pp 237-247 138 131 Y.Kaiya, Y.Itoh, K.Fujita, S.Takizawa (1996), “Study on fouling materials in the membrane treatment process for potable water”, Desalination 106 (1), pp 71-77 132 Z.Cheng, S.Teoh (2004), “Surface modification of ultra thin poly(-caprolactone) films using acrylic acid and collagen”, Biomaterials 25, pp 1991-2001 139 THÔNG TIN V TÁC GI Tác gi Ngô H ng Ánh Thu sinh ngày 17 tháng 04 n m 1987, t i Hà N i N m 2009, tác gi nh n b ng C nhân Cơng ngh Hóa h c n m 2012, tác gi nh n b ng Th c s Hóa h c t i khoa Hóa h c, tr i h c Khoa h c T nhiên – i h c Qu c gia Hà N i d d n c a PGS.TS Tr nh Lê Hùng Sau t t nghi p is h ng ng i h c, tác gi v làm công tác gi ng d y t i B mơn Cơng ngh Hóa h c, Khoa Hóa h c, Tr ng i h c Khoa h c T nhiên Hà N i Tác gi b t đ u làm nghiên c u sinh t tháng 09 n m 2013 th c hi n Lu n án d d n c a PGS.TS Tr n Th Dung PGS.TS Shinsuke Mori Email: anhthu@hus.edu.vn 140 is h ng ... a màng TFC- PA màng trùng h p ghép v i AA 76 th m n c c a màng TFC- PA màng trùng h p ghép oxh-kh 76 th m n c c a màng TFC- PA màng trùng h p ghép v i PEG 77 c tính tách l c c a màng n n TFC- PA màng. .. o màng V i tiêu đ "Nghiên c u bi n tính b m t màng l c composit polyamid l p m ng (TFC- PA) kh n ng ng d ng màng x lý n c ô nhi m“, Lu n án đ c p đ n vi c nghiên c u bi n tính b m t màng l c TFC- PA, ... h p TFC- PA/ TiO2, UV Hình 3.35 trì n ng su t l c c a màng n n TFC- PA màng t h p 96 TFC- PA/ TiO2, UV tách l c dung d ch h u c Hình 3.36 trì n ng su t l c c a màng n n TFC- PA màng t h p 97 TFC- PA/ TiO2,