Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 87 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
87
Dung lượng
1,02 MB
Nội dung
100 BÀI TẬP HÌNH HỌC LUYỆN THI VÀO 10 Bài 1: Cho ∆ABC có đường cao BD CE.Đường thẳng DE cắt đường tròn ngoại tiếp tam giác hai điểm M N Chứng minh:BEDC nội tiếp Chứng minh: góc DEA=ACB Chứng minh: DE // với tiếp tuyến tai A đường tròn ngoại tiếp tam giác Gọi O tâm đường tròn ngoại tiếp tam giác ABC.Chứng minh: OA phân giác góc MAN Chứng tỏ: AM2=AE.AB Giợi ý: 1.C/m BEDC nội tiếp: C/m góc BEC=BDE=1v Hia y điểm D E làm A với hai đầu đoạn thẳng x BC góc vuông N 2.C/m góc DEA=ACB E D Do BECD nt⇒DMB+DCB=2v M O Maø DEB+AED=2v B C ⇒AED=ACB 3.Gọi tiếp tuyến A Hình (O) đường thẳng Ta phải c/m xy//DE xy (Hình 1) Do xy tiếp tuyến,AB dây cung nên sđ góc xAB= sđ cung AB Mà sđ ACB= sđ AB ⇒góc xAB=ACB mà góc ACB=AED(cmt) ⇒xAB=AED hay xy//DE 4.C/m OA phân giác góc MAN Do xy//DE hay xy//MN mà OA⊥xy⇒OA⊥MN.⊥OA đường trung trực MN.(Đường kính vuông góc với dây)⇒∆AMN cân A ⇒AO phân giác góc MAN 5.C/m :AM2=AE.AB Do ∆AMN cân A ⇒AM=AN ⇒cung AM=cung AN.⇒góc MBA=AMN(Góc nội tiếp chắn hai cung nhau);góc MAB chung ⇒∆MAE ∽∆ BAM⇒ MA AE = ⇒ MA2=AE.AB AB MA Baøi 2: Cho(O) đường kính AC.trên đoạn OC lấy điểm B vẽ đường tròn tâm O’, đường kính BC.Gọi M trung điểm đoạn AB.Từ M vẽ dây cung DE vuông góc với AB;DC cắt đường tròn tâm O’ I 1.Tứ giác ADBE hình gì? 2.C/m DMBI nội tiếp 3.C/m B;I;C thẳng hàng MI=MD 4.C/m MC.DB=MI.DC 5.C/m MI tiếp tuyến (O’) Gợi ý: 1.Do MA=MB AB⊥DE M nên ta có I DM=ME ⇒ADBE hình bình A M O B O’ C hành Mà BD=BE(AB đường trung trực DE) ADBE ;là hình E thoi 2.C/m DMBI nội tiếp Hình BC đường kính,I∈(O’) nên Góc BID=1v.Mà 3.C/m B;I;E thẳng hàng DMB=1v(gt) Do AEBD hình thoi ⇒BE//AD mà góc AD⊥DC (góc nội tiếp chắn nửa ⇒BID+DMB=2v⇒đpcm đường tròn)⇒BE⊥DC; CM⊥DE(gt).Do góc BIC=1v ⇒BI⊥DC.Qua điểm B có hai đường thẳng BI BE vuông góc với DC ⊥B;I;E thẳng hàng •C/m MI=MD: Do M trung điểm DE; ∆EID vuông I⇒MI đường trung tuyến tam giác vuông DEI ⇒MI=MD C/m MC.DB=MI.DC chứng minh ∆MCI∽ ∆DCB (góc C chung;BDI=IMB chắn cung MI DMBI nội tiếp) 5.C/m MI tiếp tuyến (O’) -Ta có ∆O’IC Cân ⇒góc O’IC=O’CI MBID nội tiếp ⇒MIB=MDB (cùng chắn cung MB) ∆BDE cân B ⇒góc MDB=MEB Do MECI nội tiếp ⇒góc MEB=MCI (cùng chắn cung MI) Từ suy góc O’IC=MIB ⇒MIB+BIO’=O’IC+BIO’=1v Vậy MI ⊥O’I I nằm đường tròn (O’) ⇒MI tiếp tuyến (O’) D Bài 3: Cho ∆ABC có góc A=1v.Trên AC lấy điểm M cho AMMC.Dựng đường tròn tâm O đường kính MC;đường tròn cắt BC E.Đường thẳng BM cắt (O) D đường thẳng AD cắt (O) S C/m ADCB nội tiếp C/m ME phân giác góc AED C/m: Góc ASM=ACD Chứng tỏ ME phân giác góc AED C/m ba đường thẳng BA;EM;CD đồng quy Gợi ý: 1.C/m ADCB nội tiếp: Hãy chứng minh: A Góc MDC=BDC=1v Từ suy A vad S DD làm với M hai đầu đoạn thẳng BC góc B E C vuông… 2.C/m ME phân Hình giác góc AED •Do ABCD nội tiếp ⇒ABD=ACD (Cùng chắn cung AD) nênchắn cung MD) •Do MECD nội tiếp nên MCD=MED (Cùng •Do MC đường kính;E∈(O)⇒Góc MEC=1v⇒MEB=1v ⇒ABEM nội tiếp⇒Góc MEA=ABD ⇒Góc MEA=MED⇒đpcm 3.C/m góc ASM=ACD Ta có A SM=SMD+SDM(Góc tam giác SMD) Mà góc SMD=SCD(Cùng chắn cung SD) Góc SDM=SCM(Cùng chắn cung SM)⇒SMD+SDM=SCD+SCM=MCD Vậy Góc A SM=ACD 4.C/m ME phân giác góc AED (Chứng minh câu 2) 5.Chứng minh AB;ME;CD đồng quy Gọi giao điểm AB;CD K.Ta chứng minh điểm K;M;E thẳng hàng •Do CA⊥AB(gt);BD⊥DC(cmt) AC cắt BD M⇒M trực tâm tam giác KBC⇒KM đường cao thứ nên KM⊥BC.Mà ME⊥BC(cmt) nên K;M;E thẳng hàng ⇒đpcm Bài 5: Cho tam giác ABC có góc nhọn AB r) Dựng tiếp tuyến chung BC (B nằm đường tròn tâm O C nằm đư ờng tròn tâm (I).Tiếp tuyến BC cắt tiếp tuyến A hai đường tròn E 1/ Chứng minh tam giác ABC vuông A 2/ O E cắt AB N ; IE cắt AC F Chứng minh N;E;F;A nằm đường tròn 3/ Chứng tỏ : BC2= Rr 4/ Tính diện tích tứ giác BCIO theo R;r Giải: 1/C/m ∆ABC vuông: Do BE AE hai tiếp tuyến cắt nênAE=BE; Tương tự B E AE=EC⇒AE=EB=EC= C1 BC.⇒∆ABC vuông N F A O A I 2/C/m A;E;N;F nằm trên… -Theo tính chất hai tiếp tuyến cắt EO Hình phân giác 10 cân AEB⇒EO đường trung trực ABtam haygiác OE⊥AB hay góc ENA=1v Tương tự góc EFA=2v⇒tổng hai góc đối……⇒4 điểm… 3/C/m BC2=4Rr Ta có tứ giác FANE có góc vuông(Cmt)⇒FANE hình vuông⇒∆OEI vuông E EA⊥OI(Tính chất tiếp tuyến).p dụng hệ thức lượng tam giác vuông có: AH2=OA.AI(Bình phương đường cao tích hai hình chiếu) BC BC Maø AH= vaø OA=R;AI=r⇒ = Rr⇒BC2=Rr 4/SBCIO=? Ta có BCIO hình thang vuông ⇒SBCIO= ⇒S= OB + IC × BC (r + R ) rR Bài 11: Trên hai cạnh góc vuông xOy lấy hai điểm A B cho OA=OB Một đường thẳng qua A cắt OB M(M nằm đoạn OB).Từ B hạ đường vuông góc với AM H,cắt AO kéo dài I C/m OMHI nội tiếp Tính góc OMI Từ O vẽ đường vuông góc với BI K.C/m OK=KH Tìm tập hợp điểm K M thay đổi OB Giải: 1/C/m OMHI nội tiếp: Sử dụng tổng hai góc đối 2/Tính góc OMI A Do OB⊥AI;AH⊥AB(gt) OB∩AH=M Nên M trực tâm tam giác ABI ⇒IM đường cao thứ ⇒IM⊥AB ⇒góc OIM=ABO(Góc có cạnh Mà ∆vuông vuônggóc) OAB có tương ứng OA=OB ⇒∆OAB vuông O M B cân O ⇒góc OBA=45o⇒góc OMI=45o H 3/C/m OK=KH Ta có OHK=HOB+HBO K (Góc ∆OHB) I Do AOHB nội tiếp(Vì góc Hình AOB=AHB=1v) ⇒Góc 11 HOB=HAB (Cùng chắn o cung HB) Cùng chắn cung OH)⇒OHK=HAB+HAO=OAB=45 ⇒∆OKH vuông cân K⇒OH=KHOBH=OAH(Cùng chắn 4/Tập hợp điểm K… Do OK⊥KB⇒ OKB=1v;OB không đổi M di động ⇒K nằm đường tròn đường kính OB Khi M≡Othì K≡O Khi M≡B K điểm cung AB.Vậy quỹ tích điểm K đường tròn đường kính OB Bài 12: Cho (O) đường kính AB dây CD vuông góc với AB F.Trên cung BC lấy điểm M.Nối A với M cắt CD E C/m AM phân giác góc CMD C/m EFBM nội tiếp Chứng tỏ:AC2=AE.AM Gọi giao điểm CB với AM N;MD với AB I.C/m NI//CD Chứng minh N tâm đường trèon nội tiếp ∆CIM 1/C/m AM phân giác Giải: góc CMD Do AB⊥CD ⇒AB phân giác tam giác cân COD.⇒ C COA=AOD N M Các góc tâm AOC AOD nên cung bị A F O B chắn ⇒cung I AC=AD⇒các góc nội tiếp D chắn cung nhau.Vậy CMA=AMD 2/C/m EFBM nội tiếp 10 Ta có AMB=1v(Góc nội tiếp chắn nửa đường tròn) O I B C E D Hình 81 Sđ DFC= sđ cung EC (góc nt cung bị chắn)⇒EDC=DFC ⇒∆DCE~∆DFC ⇒đpcm 3/Cm: DCOI nội tiếp:Ta có sđ DIC= sđ(AF+EC) Vì FD//AD ⇒Cung AF=BE ⇒sđ DIC= sđ(BE+EC)= sñ cung BC 2 Sñ BOC=sñ cung BC.Mà DOC= BOC⇒sđ DOC= sđBC⇒DOC=DIC ⇒Hai điểm O I làm với hai đầu đoạn thẳng DC góc ⇒đpcm 4/C/m I trung điểm EF Do DCIO nội tiếp⇒DIO=DCO (cùng chắn cung DO).Mà DCO=1v(tính chất tiếp tuyến)⇒DIO=1v hay OI⊥FE.Đường kính OI vuông góc với dây cung FE nên phải qua trung điểm FE⇒đpcm Bài 82: Cho đường tròn tâm O,đường kính AB dây CD vuông góc với AB F Trên cung BC,lấy điểm M.AM cắt CD E 1/Chứng minh AM phân giác góc CMD 2/Chứng minh tứ giác EFBM nội tiếp đường tròn 3/Chứng tỏ AC2=AE.AM 4/Gọi giao điểm CB với AM N;MD với AB I.Chứng minh NI//CD C M E A F N O I Hình 82 B D 73 1/C/m AM phân giác góc CMD: Ta có: Vì OA⊥CD ∆COD cân O ⇒OA phân giác góc COD Hay COA=AOD⇒cung AC=AD ⇒góc CMA=AMD(hai góc nội tiếp chắn hai cung nhau)⇒đpcm 2/cm EFBM nội tiếp: VìCD⊥AB(gt)⇒EFB=1v;và EMB=1v(góc nt chắn nửa đường tròn)⇒ EFB+ EMB=2v⇒đpcm 3/Cm: AC2=AE.AM Xét hai tam giác:ACM ACE có A chung.Vì cung AD=AC⇒hai góc ACD=AMC(hai góc nt chắn hai cung nhau) ⇒∆ACE~∆AMC⇒đpcm 4/Cm NI//CD: Vì cung AC=AD⇒góc AMD=CBA(hai góc nt chắn hai cung nhau) Hay NMI=NBI ⇒Hai điểm M B cung làm với hai đầu đoạn thẳng NI góc ⇒NIBM nội tiếp ⇒Góc NIB+NMB=2v mà NMB=1v(cmt) ⇒NIB=1v hay NI⊥AB.Mà CD⊥AB(gt)⇒NI//CD Bài 83: Cho ∆ABC có A=1v;Kẻ AH⊥BC.Qua H dựng đường thẳng thứ cắt cạnh AB E cắt đường thẳng AC G.Đường thẳng thứ hai vuông góc với đường thẳng thứ cắt cạnh AC F,cắt đường thẳng AB D C/m:AEHF nội tiếp Chứng tỏ:HG.HA=HD.HC Chứng minh EF⊥DG FHC=AFE Tìm điều kiện hai đường thẳng HE HF để EF ngắn G A E F B H Hình 83 C D 1/Cm AEHF nội tiếp: Ta có BAC=1v(góc nt chắn nửa đtròn) FHE=1v ⇒ BAC+ FHE=2v⇒đpcm 2/Cm: HG.HA=HD.HC Xét hai ∆ vuông HAC HGD có:BAH=ACH (cùng phụ với góc ABC).Ta lại có GAD=GHD=1v⇒GAHD nội tiếp ⇒DGH=DAH ( chắn cung DH ⇒DGH=HAC ⇒∆HCA~∆HGD⇒đpcm 3/•C/m:EF⊥DG:Do GH⊥DF DA⊥CG AD cắt GH E ⇒E trực tâm ∆CDG⇒EF đường cao thứ ∆CDG⇒FE⊥DG • C/m:FHC=AFE: Do AEHF nội tiếp ⇒AFE=AHE(cùng chắn cung AE).Mà AHE+AHF=1v AHF+FHC=1v⇒AFE=FHC 4/ Tìm điều kiện hai đường thẳng HE HF để EF ngắn nhất: 74 Do AEHF nội tiếp đường tròn có tâm trung điểm EF Gọi I tâm đường tròn ngoại tiêùp tứ giác AEHF⇒IA=IH⇒Để EF ngắn I;H;A thẳng hàng hay AEHF hình chữ nhật ⇒HE//AC HF//AB Bài 84: Cho ∆ABC (AB=AC) nội tiếp (O).M điểm cung nhỏ AC, phân giác góc BMC cắt BC N,cắt (O) I Chứng minh A;O;I thẳng hàng Kẻ AK⊥ với đường thẳng MC AI cắt BC J.Chứng minh AKCJ nội tiếp C/m:KM.JA=KA.JB A 1/C/m A;O;I thẳng K hàng: Vì BMI=IMC(gt) ⇒ cung IB=IC ⇒Góc O • M BAI=IAC(hai góc nt chắn hai cung E nhau)⇒AI B J N C phân gíc ∆ cân ABC I ⇒AI⊥BC.Mà ∆BOC cân O⇒ có Hình 84 góc tâm chắn cung ⇒đpcm ⇒OI phân giác 2/C/m AKCJ nội tiếp: Theo cmt ta có AI đường kính qua trung điểm góc BOC dây BC ⇒AI⊥BC hay AJC=1v mà AKC=1v(gt)⇒AJC+AKC=2v ⇒đpcm 3/Cm: KM.JA=KA.JB Xét hai tam giác vuông JAB KAM có: Góc KMA=MAC+MCA(góc tam giác AMC) 1 2 sđ(MC+AM)= sđAC=sđ góc ABC Vậy góc ABC=KMA Mà sđ MAC= sđ cung MC sđMCA= sđ cung AM ⇒sđKMA= ⇒∆JBA~∆KMA⇒đpcm Bài 85: Cho nửa đường tròn (O) đường kính AB.Gọi C điểm nửa đường tròn.Trên nửa mặt phẳng bờ AB chứa điểm C,kẻ hai tiếp tuyến Ax By Một đường tròn (O’) qua A C cắt AB tia Ax theo thứ tự D E Đường thẳng EC cắt By F Chứng minh BDCF nội tiếp Chứng tỏ:CD2=CE.CF FD tiếp tuyến đường tròn (O) AC cắt DE I;CB cắt DF J.Chứng minh IJ//AB Xác định vị trí D để EF tiếp tuyến (O) Hình 85 75 F C E I J • O’ A • O D B 1/Cm:BDCF nội tiếp: Ta có ECD=1v(góc nt chắn nửa đường tròn tâm O’)⇒FCD=1v FBD=1v(tính chất tiếp tuyến)⇒đpcm 2/•C/m: CD2=CE.CF Ta có Do CDBF nt⇒DFC=CBD(cùng chắn cung CD).Mà CED=CAD(cùng chắn cung CD (O’) Mà CAD+CBD=1v (vì góc ACB=1v-góc nt chắn nửa đt) ⇒CED+CFD=1v nên EDF=1v hay ∆EDF tam giác vuông có DC đường cao.p dụng hệ thức lượng tam giác vuông ta có CD2=CE.CF •Vì ∆EDF vuông D(cmt)⇒FD⊥ED hay FD⊥O’D điểm D nằm đường tròn tâm O’.⇒đpcm 3/C/m IJ//AB Ta có ACB=1v(cmt) hay ICJ=1v EDF=1v (cmt) hay IDJ=1v ⇒ICJD nt CJI=CDI(cùng chắn cung CI).Mà CFD=CDI (cùng phụ với góc FED) Vì BDCF nt (cmt)⇒CFD=CBD (cùng chắn cung CD)⇒CJI=CBD ⇒đpcm 4/ Xác định vị trí D để EF tiếp tuyến (O) Ta có CD⊥EF C nằm đường tròn tâm O.Nên để EF tiếp tuyến (O) CD phải bán kính ⇒D≡ O Bài 86: Cho (O;R (O’;r) R>r, cắt Avà B Gọi I điểm đường thẳng AB nằm đoạn thẳng AB Kẻ hai tiếp tuyến IC ID với (O) (O’) Đường thẳng OC O’D cắt K Chứng minh ICKD nội tiếp Chứng tỏ:IC2=IA.IB Chứng minh IK nằm đường trung trực CD IK cắt (O) E F; Qua I dựng cát tuyến IMN a/ Chứng minh:IE.IF=IM.IN b/ E; F; M; N nằm đường tròn 1/C/m ICKD nt: Vì CI DI hai tt I hai đtròn Hình 86 ⇒ICK=IDK=1v ⇒đpcm C 2/C/m: IC2=IA.IB E Xét hai tam giác M ICE ICBcó A D góc I chung • O sđ ICE= sđ cung •O’ CE (góc tt B N dây) F K 76 sđ CE (góc nt cung bị chắn)⇒ICE=IBC⇒∆ICE~∆IBC⇒đpcm 3/Cm IK nằm đường trung trực CD Theo chứng minh ta có: IC2=IA.IB Chứng minh tương tự ta có:ID2=IA.IB -Hai tam giác vuông ICK IDK có Cạnh huyền IK chung cạnh góc vuông IC=ID ⇒∆ICK=∆IDK⇒CK=DK⇒K nằm đường trung trực CD.⇒đpcm 4/ a/Bằng cách chứng minh tương tự câu ta có: IC2=IE.IF ID2=IM.IN Mà IC=ID (cmt)⇒IE.IF=IM.IN b/ C/m Tứ giác AMNF nội tiếp: Theo chứng minh có E.Ì=IM.IN.p IF IN = dụng tính chất tỉ lệ thức ta có: Tức hai cặp cạnh tam IM IE giác IFN tương ứng tỉ lệ với hai cặp cạnh tam giác IME.Hơn góc EIM chung ⇒∆IEM~∆INF⇒IEM=INF.Mà IEM+MEF=2v⇒MEF+MNF=2v⇒đpcm Sđ CBI= Bài 87: Cho∆ABC có góc nhọn.Vẽ đường tròn tâm O đường kính BC.(O) cắt AB;AC D E.BE CD cắt H Chứng minh:ADHE nội tiếp C/m:AE.AC=AB.AD AH kéo dài cắt BC F.Cmr:H tâm đường tròn nội tiếp ∆DFE Gọi I trung điểm AH.Cmr IE tiếp tuyến (O) A I E D B x H F O Hình 87 C 1/Cm:ADHE nội tiếp: Ta có BDC=BEC=1v(góc nt chắn nửa đường tròn) ⇒ADH+AEH=2v⇒ADHE nt 2/C/m:AE.AC=AB.AD Ta chứng minh ∆AEB ∆ADC đồng dạng 3/C/m H tâm đường tròn ngoại tiếp tam giác DEF: Ta phải c/m H giao điểm đường phân giác tam giác DEF 77 -Tứ giác BDHF nt⇒HED=HBD(cùng chắn cung DH).Mà EBD=ECD (cùng chắn cung DE).Tứ gáic HECF nt⇒ECH=EFH(cùng chắn cung HE) ⇒EFH=HFD⇒FH phân giác DEF -Tứ gáic BDHF nt⇒FDH=HBF(cùng chắn cung HF).Mà EBC=CDE(cùng chắn cung EC)⇒EDC=CDF⇒DH phân giác góc FDE⇒H là… 4/ C/m IE tiếp tuyến (O):Ta có IA=IH⇒IA=IE=IH= AH (tính chất trung tuyến tam giác vuông)⇒∆IAE cân I⇒IEA=IAE.Mà IAE=EBC (cùng phụ với góc ECB) AEI=xEC(đối đỉnh)Do ∆OEC cân O⇒ OEC=OCE ⇒xEC+CEO =EBC +ECB=1v Hay xEO=1v Vậy OE⊥IE điểm E nằm đường tròn (O)⇒đpcm Bài 88: Cho(O;R) (O’;r) cắt Avà B.Qua B vẽ cát tuyến chung CBD⊥AB (C∈(O)) cát tuyến EBF bất kỳ(E∈(O)) Chứng minh AOC AO’D thẳng hàng Gọi K giao điểm đường thẳng CE DF.Cmr:AEKF nt Cm:K thuộc đường tròn ngoại tiếp ∆ACD Chứng tỏ FA.EC=FD.EA A E • O C • O’ Hình 88 B F D K 1/C/m AOC AO’D thẳng hàng: -Vì AB⊥CD ⇒Góc ABC=1v⇒AC đường kính (O)⇒A;O;C thẳng hàng.Tương tự AO’D thẳng hàng 2/C/m AEKF nt: Ta có AEC=1v(góc nt chắn nửa đường tròn tâm O.Tương tự AFD=1v hay AFK=1v ⇒AEK+AFK=2v⇒đpcm 3/Cm: K thuộc đường tròn ngoại tếp ∆ACD Ta có EAC=EBC(cùng chắn cung EC).Góc EBC=FBD(đối đỉnh).Góc FBD=FAD(cùng chắn cung FD).Mà EAC+ECA=90 o ⇒ADF=ACE ACE+ACK=2v⇒ADF+ACK=2v⇒K nằm đường tròn ngoại tiếp … 4/C/m FA.EC=FD.EA Ta chứng minh hai tam giác vuông FAD EAC đồng dạng EAC=EBC(cùng hcắn cung EC)EBC=FBD(đối đỉnh) FBD=FAD(cùng chắn cung FD)⇒EAC=FAD⇒đpcm Bài 89: 78 Cho ∆ABC có A=1v.Qua A dựng đường tròn tâm O bán kính R tiếp xúc với BC B dựng (O’;r) tiếp xúc với BC C.Gọi M;N trung điểm AB;AC,OM ON kéo dài cắt K Chứng minh:OAO’ thẳng hàng CM:AMKN nội tiếp Cm AK tiếp tuyến hai đường tròn K nằm BC Chứng tỏ 4MI2=Rr Hìn O’ A O M B I N K C 1/C/m AOO’ thẳng hàng: -Vì M trung điểm dây AB⇒OM⊥AB nên OM phân giác góc AOB hay BOM=MOA Xét hai tam giác BKO AKO có OA=OB=R; OK chung BOK=AOK (cmt) ⇒∆KBO=∆KAO ⇒ góc OBK=OAK mà OBK=1v ⇒OAK=1v Chứng minh tương tự ta có O’AK=1v Nên OAK+O’AK=2v ⇒đpcm 2/Cm:AMKN nội tiếp:Ta có Vì AMK=1v(do OMA=1v) ANK=1v ⇒AMK+ANK=2v ⇒đpcm Cần lưu ý AMKN hình chữ nhật 3/C/m AK tiếp tuyến (O) O’) -Theo chứng minh Góc OAK=1v hay OA⊥AK điểm A nằm đường tròn (O)⇒đpcm.Chứng minh tương tự ta có AK tt (O’) -C/m K nằm BC: Theo tính chất hai tt cắt ta có:BKO=OKA AKO’=O’KC Nhưng AMKN hình chữ nhật⇒MKN=1v hay OKA+O’KA=1v tức có nghóa góc BKO+O’KC=1v BKO+OKA+AKO’+O’KC=2v⇒K;B;C thẳng hàng ⇒đpcm 4/ C/m: 4MI2=Rr Vì ∆OKO’ vuông K có đường cao KA.p dụng hệ thue=ức lượng tam giác vuông có AK2=OA.O’A.Vì MN=AK MI=IN hay MI= AK⇒đpcm Bài 90: Cho tứ giác ABCD (AB>BC) nội tiếp (O) đường kính AC; Hai đường chéo AC DB vuông góc với Đường thẳng AB CD kéo dài cắt E; BC AD cắt F Cm:BDEF nội tiếp Chứng tỏ:DA.DF=DC.DE Gọi I giao điểm DB với AC M giao điểm đường thẳng AC với đường tròn ngoại tiếp ∆AEF Cmr: DIMF nội tiếp 79 Gọi H giao điểm AC với FE Cm: AI.AM=AC.AH E Hìn B A O I C H M D F 1/ Cm:DBEF nt: Do ABCD nt (O) đường kính AC⇒ABC=ADC=1v (góc nt chắn nửa đường tròn)⇒ FBE=EDF=1v⇒đpcm 2/ C/m DA.DF=DC.DE: Xét hai tam giác vuông DAC DEF có: Do BF⊥AE ED⊥AF nên C trực tâm ∆AEF⇒Góc CAD=DEF(cùng phụ với góc DFE)⇒đpcm 3/ Cm:DIMF nt: Vì AC⊥BD(gt) ⇒DIM=1v I trung điểm DB(đường kính vuông góc với dây DB)⇒∆ADB cân A⇒ AEF cân A (Tự c/m yếu tố này)⇒Đường tròn ngoại tiếp ∆AEF có tâm nằm đường AM ⇒góc AFM=1v(góc nt chắn nửa đường tròn)⇒DIM+DFM=2v⇒đpcm Bài 91: Cho (O) (O’) tiếp xúc A.Đường thẳng OO’ cắt (O) (O’) B C (khác A) Kẻ tiếp tuyến chung DE(D∈(O)); DB CE kéo dài cắt M Cmr: ADEM nội tiếp Cm: MA tiếp tuyến chung hai đường tròn ADEM hình gì? Chứng tỏ:MD.MB=ME.MC 1/Cm:ADEM nt: Vì AEC=1v ADB=1v(góc nt chắn nửa đtròn) B O A O’ ⇒ADM+AEM=2v⇒đpcm C 2/C/m MA tiếp tuyến hai đường tròn; E D -Ta có sđADE= sđ cungAD=sđ DBA.Và ADE=AME(vì chắn cung AE tứ Tương tự ta có AMB=ACM⇒Hai giác ABM ACM có hai giáctam ADME cặp góc tương ứng nhau⇒Cặp góc cònlại nhau.Hay nt)⇒ABM=AMC M Hìn 80 BAM=MAC.Ta lại có BAM+MAC=2v⇒BAM=MAC=1v hay OA⊥AM điểm A nằm đtròn… 3/ADEM hình gì? Vì BAM=1v⇒ABM+AMB=1v.Ta có MA tt đtròn⇒DAM=MBA (cùng nửa cung AD).Tương tự MAE=MCA.Mà theo cmt ta có ACM=AMB Nên DAM+MAE=ABM+ACM=ABM+AMB=1v.Vậy DAE=1v nên ADEM hình chữ nhật 4/Cm: MD.MB=ME.MC Tam giác MAC vuông A có đường cao AE.p dụng hệ thức lượng tam giác vuông ta có:MA2=ME.MC.Tương tự tam giác vuông MAB có MA2=MD.MB⇒đpcm Bài 92: Cho hình vuông ABCD.Trên BC lấy điểm M Từ C hạ CK⊥ với đường thẳng AM Cm: ABKC nội tiếp Đường thẳng CK cắt đường thẳng AB N.Từ B dựng đường vuông góc với BD, đường cắt đường thẳng DK E Cmr: BD.KN=BE.KA Cm: MN//DB Cm: BMEN hình vuông A Hìn B N M E K D C 1/Cm: ABKC noäi tiếp: Ta có ABC=1v (t/c hình vuông); AKC=1v(gt) ⇒ đpcm 2/Cm: BD.KN=BE.KA.Xét hai tam giác vuông BDE KAN có: Vì ABCD hình vuông nên nội tiếp đường tròn có tâm giao điểm hai đường chéo.Góc AKC=1v⇒A;K;C nằm đtròn đường kính AC.Vậy điểm A;B;C;D;K nằm đường tròn.⇒Góc BDK=KDN (cùng chắn cung BK)⇒∆BDE~∆KAN⇒ BD BE = KA KN ⇒đpcm 3/ Cm:MN//DB.Vì AK⊥CN CB⊥AN ;AK cắt BC M⇒M trực tâm tam giác ANC⇒NM⊥AC.Mà DB⊥AC(tính chất hình vuông)⇒MN//DB 4/Cm:BNEM hình vuông: Vì MN//DB⇒DBM=BMN(so le) mà DBM=45o⇒BMN =45o⇒∆BNM tam giác vuông cân⇒BN=BM.Do BE⊥DB(gt)và BDM=45o⇒MBE=45o⇒∆MBE tam giác vuông cân BM phân giác tam giác MBN;Ta dễ 81 dàng c/m MN phân giác góc BMN⇒BMEN hình thoi lại có goác B vuông nên BMEN hình vuông Bài 93: Cho hình chữ nhật ABCD(AB>AD)có AC cắt DB O Gọi M điểm OB N điểm đối xứng với C qua M Kẻ NE; NF NP vuông góc với AB; AD; AC; PN cắt AB Q Cm: QPCB nội tiếp Cm: AN//DB Chứng tỏ F; E; M thẳng hàng Cm: ∆PEN tam giác cân F A P I Q N E B O M D C 1/C/m QPCB nội tiếp:Ta có:NPC=1v(gt) QBC=1v(tính chất hình chữ nhật).⇒đpcm 2/Cm:AN//DB O giao điểm hai đường chéo hình chữ nhật⇒O trung điểm AC.Vì C N đối xứng với qua M⇒M trung điểm NC ⇒OM đường trung bình ∆ANC⇒OM//AN hay AN//DB 3/Cm:F;E;M thẳng hàng Gọi I giao điểm EF AN.Dễ dàng chứng minh AFNE hình chữ nhật⇒∆AIE OAB tam gíc cân⇒IAE=IEA ABO=BAO.Vì AN//DB⇒ IAE=ABO(so le)⇒IEA=EAC⇒EF//AC hay IE//AC Vì I trung điểm AN;M trung điểm NC⇒IM đường trung bình ∆ANC⇒MI//AC .Từ và Ta có I;E;M thẳng hàng.Mà F;I;E thẳng hàng ⇒F;F;M thẳng hàng 4/C/m∆PEN cân:Dễ dàng c/m ANEP nội tiếp⇒PNE=EAP(cùng chắn cung PE).Và PNE=EAN(cùng chắn cung EN).Theo chứng minh câu ta suy NAE=EAP⇒ENP=EPN⇒∆PEN cân E Bài 94: Từ đỉnh A hình vuông ABCD,ta kẻ hai tia tạo với góc 45o Một tia cắt cạnh BC E cắt đường chéo DB P Tia cắt cạnh CD F cắt đường chéo DB Q Cm:E; P; Q; F; C nằm đường tròn 82 Cm:AB.PE=EB.PF Cm:S∆AEF=2S∆APQ Gọi M trung điểm AE.Cmr: MC=MD A B M P E Q D F C 1/Cm:E;P;Q;C;F nằm đường tròn: Ta có QAE=45o.(gt) QBC=45o(t/c hình vuông)⇒ABEQ nội tiếp ⇒ABE+AQE=2v mà ABE=1v⇒AQE=1v.Ta có ∆AQE vuông Q có góc QAE=45o⇒∆AQE vuông cân⇒AEQ=45o.Ta lại có EAF=45o(gt) PDF=45o ⇒APFD nội tiếp⇒APF+ADF=2v mà ADF=1v⇒APF=1v ECF=1v Từ ⇒E;P;Q;F;C nằm đường tròn đường kính EF 2/Chứng minh: AB.PE=EB.PF.Xét hai tam giác vuông ABE có: -Vì ABEQ nt⇒BAE=BQE(Cùng chắn cung BE) ⇒BAE=PFE -Vì QPEF nt⇒PQE=PEF(Cùng chắn cung PE) ⇒đpcm 3/Cm: :S∆AEF=2S∆APQ Theo cm ∆AQE vuông cân Q⇒AE= AQ + QE = AQ Vì QPEF nt ⇒PEF=AQP(cùng phụ với góc PQF);Góc QAP chung S AE ⇒∆AQP~∆AEF⇒ AEF = = S AQP AQ ( 2) =2⇒đpcm 4/Cm: MC=MD.Học sinh chứng minh hai ∆MAD=MBC có BC=AD; MBE=MEB=DAE;AM=BM Bài 95: Cho hình chữ nhật ABCD có hai đường chéo cắt O.Kẻ AH BK vuông góc với BD AC.Đường thẳng AH BK cắt I.Gọi E F trung điểm DH BC.Từ E dụng đường 1/Cm:OHIK nt thẳng song song với AD.Đường cắt AH J (Hs tự chứng C/m:OHIK nội tiếp minh) Chứng tỏ KH⊥OI HK⊥OI cắt AH Từ E kẻ đườngthẳng song song 2/Cm với AD.Đường Tam giác ABI J.Chứng tỏ:HJ.KC=HE.KB Chứng minh tứ giác ABFE nộicó tiếp đượchai đường đường cao tròn DH AK A cắtB O ⇒OI J O đường cao thứ ba 83 ⇒OI⊥AB H K E D F C I Ta có OKIH nt⇒OKE=OIE(cùng chắn cung OH).Vì OI⊥AB AD⊥AB ⇒OI//AD⇒OIH=HAD(so le).Mà HAD=HBA(cùng phụ với góc D).Do ABCD hình chữ nhật nên ABH+ACE ⇒OKH=OCE⇒HK//AB.Mà OI⊥AB ⇒OI⊥KH 3/Cm: HJ.KC=HE.KB Chứng minh hai tam giác vuông HJE KBC đồng dạng 4/Chứng minh ABFE nội tiếp: VìAH⊥BE;EJ//AD AD⊥AB⇒EJ⊥AB⇒BJ đường cao thứ ba tam giác ABE⇒BJ⊥AE Vì E trung điểm DH;EJ//AD⇒EJ đường trung bình 2 tam giác ADH⇒EJ//= AB;BF= BC mà BC//=AD⇒JE//=BF⇒BJEF hình bình hành⇒JB//EF.Mà BJ⊥AE⇒EF⊥AE hay AEF=1v;Ta lại có ABF=1v⇒ABFE nt Bài 96: Cho ∆ABC, phân giác góc góc góc B C gặp theo thứ tự I J.Từ J kẻ JH; JP; JK vuông góc với đường thẳng AB; BC; AC Chứng tỏ A; I; J thẳng hàng Chứng minh: BICJ nt BI kéo dài cắt đường thẳng CJ E Cmr:AE⊥AJ C/m: AI.AJ=AB.AC A E I B P C K H Bài 97: J 84 Từ đỉnh A hình vuông ABCD ta kẻ hai tia Ax Ay cho: Ax cắt cạnh BC P,Ay cắt cạnh CD Q.Kẻ BK⊥Ax;BI⊥Ay DM⊥Ax,DN⊥Ay Chứng tỏ BKIA nội tiếp Chứng minh AD2=AP.MD Chứng minh MN=KI Chứng tỏ KI⊥AN B P x C K y Q M I N A D Bài 98: Cho hình bình hành ABCD có góc A>90 o.Phân giác góc A cắt cạnh CD đường thẳng BC I K.Hạ KH KM vuông góc với CD AM Chứng minh KHDM nt Chứng minh:AB=CK+AM Bài 99: Cho(O) tiếp tuyến Ax.Trên Ax lấy điểm C gọi B trung điểm AC Vẽ cát tuyến BEF.Đường thẳng CE CF gặp lại đường tròn điểm thứ hai M N.Dựng hình bình hành AECD Chứng tỏ D nằm đường thẳng EF Chứng minh AFCD nội tiếp Chứng minh:CN.CF=4BE.BF Chứng minh MN//AC A M C D E B N F 1/Chứng minh D nằm đường thẳng EF:Do ADCE hình bình hành nên E;B;D thẳng hàng.Mà F;E;B thẳng hàng⇒đpcm 2/Cm:AFCD nội tiếp: 85 -Do ADCE hình bình hành⇒BC//AE⇒góc BCA=ACE(so le) 2 -sđCAE= sđcung AE(góc tt dây) sđ AFE= sđ cung AE ⇒CAE=AFE.⇒BCN=BFA⇒AFCD nội tiếp 2/Cm CN.CF=4BE.BF -Xét hai tam gáic BAE BFA có góc ABF chung AFB=BAE(chứng minh trên)⇒∆BAE~∆BFA⇒ AB BE = ⇒AB2=BE.BF BF AB Tương tự hai tam giác CAN CFA đồng dạng⇒AC2=CN.CF.Nhưng ta lại có AB= AC.Do đó trở thành: AC2=BE.BF hay AC2=4BE.BF Từ ⇒đpcm 4/cm MN//AC Do ADCE hbh⇒BAC=ACE(so le).Vì ADCF nt ⇒DAC=DFC(cùng chắn cung DC).Ta lại có EMN=EFN(cùng chắn cung EN)⇒ACM=CMN⇒MN//AC Bài 100: Trên (O) lấy điểm A;B;C.Gọi M;N;P theo thứ tự điểm cung AB;BC;AC AM cắt MP BP K I.MN cắt AB E Chứng minh ∆BNI cân PKEN nội tiếp Chứng minh AN.BD=AB.BN Chứng minh I trực tâm ∆MPN IE//BC 1/C/m ∆BNI cân Ta có A sñBIN= sñ(AP+BN) P M F K sđIBN= sđ(CP+CN) O Mà Cung AP=CP; E I BN=CN(gt) B C ⇒BIN=IBN⇒∆BNI cân N 2/Chứng tỏ PKEN N nội tiếp: Vì cung AM=MB⇒ANM=MPB hay KPE=KNE⇒Hai điểm P;N làm với hai đầu đoạn thẳng KE…⇒đpcm 3/C/m AN.DB=AB.BN Xét hai tam giác BND ANB có góc N chung;Góc NBD=NAB(cùng chắn cung NC=NB)⇒đpcm 4/ •Chứng minh I trực tâm ∆MNP: Gọi giao điểm MP với AB;AC F D.Ta có: sđ AFD= sđ cung (AP+MB)(góc có đỉnh đường tròn.) sđ ADF= sđ cung(PC+AM) (góc có đỉnh đường tròn.) Mà Cung AP=PC;MB=AM⇒AFD=ADF⇒∆AFD cân A có AN phân giác góc BAC(Vì Cung BN=NC nên BAN=NAC)⇒AN⊥MP hay NA đường cao ∆NMP.Bằng cách làm tương tự ta chứng minh I trực tâm tam gáic MNP 86 •C/m IE//BC.Ta có ∆BNI cân N có NE phân giác ⇒NE đường trung trực BI⇒EB=EI⇒∆BEI cân E.Ta có EBI=EIB.Do EBI=ABP=PBC (hai góc nội tiếp chắn hai cung PA=PC).Nên PBC=EIB⇒EI//BC aa Hết 87 ... để MQ.AN+MP.BN có giác trị lớn Giải:Có hình vẽ,cách c/m tương tự.Sau C/m hình 9a Hình 9a A M I Q H B P Hình 9b O N 1/ C/m:A,Q,H,M nằm đường tròn.(Tuỳ vào hình vẽ để sử dụng phương pháp sau:-Cùng... 1/C/m INCQ hình vuông: MI//AP//BN(gt)⇒MI=AP=BN ⇒NC=IQ=PD ∆NIC vuông N F có ICN=45o(Tính chất đường E chéo hình vuông)⇒∆NIC P I N vuông cân N B Q C⇒INCQ hình vuông 2/C/m:NQ//DB: Hình Do ABCD hình vuông... ⇒ADBE hình bình A M O B O’ C hành Mà BD=BE(AB đường trung trực DE) ADBE ;là hình E thoi 2.C/m DMBI nội tiếp Hình BC đường kính,I∈(O’) nên Góc BID=1v.Mà 3.C/m B;I;E thẳng hàng DMB=1v(gt) Do AEBD hình