1. Trang chủ
  2. » Giáo án - Bài giảng

ĐỀ ĐÁP ÁN THI HSG TOÁN 9 CẤP HUYỆN 2010 - 2011

5 4,2K 152
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 300 KB

Nội dung

PHÒNG GIÁO DỤC - ĐÀO TẠO HUYỆN TRỰC NINH ĐỀ THI CHỌN HỌC SINH GIỎI HUYỆN NĂM HỌC 2010-2011 MÔN: TOÁN LỚP 9 Thời gian làm bài 120 phút không kể thời gian giao đề Phần 1-Trắc nghiệm (2,0 điểm) Mỗi câu sau có nêu bốn phương án trả lời, trong đó chỉ có một phương án đúng. Hãy chọn phương án đúng (viết vào bài làm chữ cái đứng trước phương án được lựa chọn). Câu 1. Biểu thức 7 4 3 7 4 3− + + có giá trị là: A. 4 B. 2 3− C. 0 D. 3 2 − Câu 2. Biểu thức 2 1 2x x − xác định khi: A. 1 x 2 ≥ B. 1 x và x 0 2 ≤ ≠ C. 1 x 2 ≤ D. 1 x và x 0 2 ≥ ≠ Câu 3. Cho hàm số ( ) y 2m 1 x 0,5= + − . Đồ thị của hàm số là một đường thẳng không song song với đường thẳng y 3x= − khi và chỉ khi A. m 2≠ − B. m 1≠ C. 3 m 2 ≠ − D. 1 m 2 ≠ − Câu 4. Cho tam giác đều cạnh bằng 3 cm. Khi đó bán kính đường tròn ngoại tiếp có độ dài bằng A. 3 3 cm 2 B. 2 cm C. 3 cm D. 3 cm 2 Phần 2-Tự luận. (18 điểm) Câu 1. (1 điểm).Thực hiện phép tính: 1 1 3 +1 + : 17 2 5 - 3 2 5 + 3    ÷   Câu 2. (2 điểm). Cho biểu thức ( ) x 3 x 2 x x 1 1 P : x 0 và x 1 x 1 x x 2 x 1 x 1   + + +   = − + > ≠  ÷  ÷  ÷ − + − + −     a) Rút gọn P. b) Tìm x để 1 x 1 1 P 8 + − ≥ Câu 3 (5 điểm). Giải các phương trình: a) x 1 2 x 6+ + − = b) 2 2 4x 3x 1 x 1 7x 1+ − − = + Câu 4. (8 điểm). Cho (O; R), dây cung AB R 2= . Các tiếp tuyến tại A và tại B với đường tròn cắt nhau tại M. Từ điểm P thuộc đoạn thẳng AM (P không trùng với A và M), vẽ tiếp tuyến PC với đường tròn (C là tiếp điểm). Gọi Q là giao điểm của đường thẳng PC với BM. a) Chứng minh tứ giác MAOB là hình vuông. b) Chứng minh chu vi tam giác MPQ bằng nửa chu vi hình vuông MAOB. Tính · POQ . c) Xác định vị trí của các điểm P, Q để độ dài đoạn thẳng PQ nhỏ nhất, khi đó chứng minh tam giác MPQ có diện tích lớn nhất. Câu 5. (2 điểm). Cho x 0; y 0; x y 2> > + ≤ . a) Chứng minh rằng 1 1 4 x y x y + ≥ + b) Tìm giá trị nhỏ nhất của biểu thức 2 2 1 3 A 2xy xy x y = + + + ĐỀ CHÍNH THỨC -----------Hết---------- Họ và tên thí sinh: . . . . . . . . . . . . . . . . . . . Giám thị1: . . . . . . . . . . . . . . . . . Số báo danh:. . . . . . . . . . . . . . . . . . . . . . . Giám thị2: . . . . . . . . . . . . . . . . . PHÒNG GIÁO DỤC- ĐÀO TẠO TRỰC NINH ĐÁP ÁN VÀ HƯỚNG DẪN CHẤM THI KỲ THI CHỌN HỌC SINH GIỎI CẤP HUYỆN 2010-2011 Môn: TOÁN LỚP 9 Phần I. Trắc nghiệm (2 điểm) Câu 1 2 3 4 Đáp án A B A C Phần II. Tự luận Đáp án Điểm Câu 1. (1 điểm). Thực hiện phép tính. 1 1 3 +1 + : 17 2 5 - 3 2 5 + 3    ÷   ( ) ( ) 2 5 3 2 5 3 17 . 3 1 2 5 3 2 5 3 + + − = + − + 0,5 ( ) ( ) ( ) 2 2 4 5 3 1 4 5 17 4 5 17 . . 2 15 2 5 17 3 1 3 1 3 1 2 5 3 − = = = = − − + + − 0,5 Câu 2. (2 điểm). a) Rút gọn P (1 điểm). ( ) x 3 x 2 x x 1 1 P : x 0 và x 1 x 1 x x 2 x 1 x 1   + + +   = − + > ≠  ÷  ÷  ÷ − + − + −     ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) x 1 x 2 x x 1 x 1 x 1 : x 2 x 1 x 1 x 1 x 1 x 1   + + + − + +   = −   + − + − + −   0,25 ( ) ( ) x 1 x 2 x : x 1 x 1 x 1 x 1   + = −  ÷  ÷ − − + −   0,25 ( ) ( ) x 1 x 1 1 x 1 2 x + − = × − 0,25 x 1 2 x + = 0,25 b) ( ) 1 x 1 2 x x 1 1 1 0 x 0; x 1 P 8 8 x 1 + + − ≥ ⇔ − − ≥ > ≠ + 0,25 ( ) 16 x x 2 x 1 8 x 8 0 8 x 1 − − − − − ⇔ ≥ + 0,25 6 x x 9 0⇔ − − ≥ ( vì ( ) 8 x 1 0+ > với mọi x 0; x 1> ≠ ) ( ) 2 x 6 x 9 0 x 3 0 x 3 0 x 9⇔ − + ≤ ⇔ − ≤ ⇔ − = ⇔ = 0,25 2 x = 9 thỏa mãn điều kiện. Vậy x = 9 là giá trị cần tìm. 0,25 Câu 3. (5 điểm) Giải các phương trình: a. x 1 2 x 6+ + − = (1) Điều kiện x 1 0 1 x 2 2 x 0 + ≥  ⇔ − ≤ ≤  − ≥  (*) 0,25 ( ) ( ) ( ) ( ) ( ) 1 x 1 2 x 2 x 1 2 x 6 2 x 1 2 x 3⇔ + + − + + − = ⇔ + − = 0,5 ( ) 2 4 x x 2 9⇔ − + + = 0,5 2 2 2 9 1 1 1 x x 2 x x 0 x 0 x 4 4 2 2   ⇔ − − = ⇔ − + = ⇔ − = ⇔ =  ÷   0,5 1 x 2 = thỏa mãn điều kiện (*). Vậy phương trình có nghiệm duy nhất 1 x 2 = 0,25 b) 2 2 4x 3x 1 x 1 7x 1+ − − = + (1) Điều kiện x 1 ≥ 0,25 2 2 2 2 2 (1) 7x 1 4x 3x 1 x 1 0 3x 1 4x 3x 1 4x x 1 0⇔ + − + + − = ⇔ + − + + + − = 0,5 ( ) 2 2 3x 1 2x x 1 0⇔ + − + − = 0,5 Ta có ( ) 2 2 3x 1 2x 0+ − ≥ với mọi x . x 1 0− ≥ với mọi x ( ) 2 2 3x 1 2x x 1 0⇒ + − + − ≥ 0,5 Dấu bằng xảy ra 2 2 2 2 3x 1 4x x 1 3x 1 2x 0 x 1 x 1 x 1 x 1 0    + = =  + − = ⇔ ⇔ ⇔ ⇔ =    = = − =     1 x = 1 thỏa mãn điều kiện. Vậy phương trình có nghiệm duy nhất x = 1 0,25 Câu 4 (8 điểm). M P Q C A B O a) Chứng minh MAOB là hình vuông (1,5 điểm) OA R OB R AOB AB R 2  =  = ⇒ ∆   =  vuông tại O 0,5 Chứng minh MAOB là hình chữ nhật 0,5 Chứng minh MAOB là hình vuông 0,5 b) Chứng minh chu vi tam giác MPQ bằng nửa chu vi hình vuông MAOB (2 điểm) Chứng minh QC = OB; PC = PA 0,5 Chu vi tam giác MPQ MPQ P MP PC CQ QM MP PA QB QM= + + + = + + + 0,5 3 = MA + MB 0,5 MAOB 1 P 2 = 0,5 Tính · POQ (1,5 điểm) Chứng minh · · 1 QOC BOC 2 = 0,5 Chứng minh · · 1 COP AOC 2 = 0,5 · · · 0 0 1 1 QOC COP AOB .90 45 2 2 ⇒ + = = = 0,5 c) Xác định vị trí của các điểm P, Q để độ dài đoạn thẳng PQ nhỏ nhất, khi đó chứng minh tam giác MPQ có diện tích lớn nhất. ( 3 điểm). Đặt MQ = m; MP = n; PQ = x. Theo câu b có m + n + x = 2R m n 2R x⇒ + = − . Ta cần tìm GTNN của x. Chứng minh bất đẳng thức ( ) ( ) 2 2 2 2 m n m n+ ≥ + 0,5 Ta có ( ) ( ) 2 2 2R 2x 2R x x 2 2R x x 2 1 2R x 1 2 ≥ − ⇒ ≥ − ⇒ + ≥ ⇒ ≥ + 0,5 Dấu "=" xảy ra khi và chỉ khi m n QM PM= = = 0,5 Khi đó các điểm O, C, M thẳng hàng. OQ là tia phân giác của · BOM . OP là tia phân giác của · AOM 0,5 OPQ AOBQP PQM OAPQB MAOB 1 S S ; S S S 2 = + = không đổi. Tam giác OPQ có chiều cao OC = R không đổi 0,5 PQ nhỏ nhất khi và chỉ khi OPQ S nhỏ nhất suy ra AOPQB S nhỏ nhất 0,25 Suy ra diện tích tam giác MPQ lớn nhất. 0,25 Câu 5. (2 điểm). a) Chứng minh rằng ( ) ( ) 2 2 1 1 4 x y 4 x y 4xy x y 0 x y x y xy x y + + ≥ ⇔ ≥ ⇔ + ≥ ⇔ − ≥ + + luôn đúng. Vậy bất đẳng thức đã cho luôn đúng. Đẳng thức xảy ra khi và chỉ khi x = y 0,5 b) Tìm giá trị nhỏ nhất của biểu thức 2 2 1 3 A 2xy xy x y = + + + 2 2 1 1 2 1 A 2xy 2xy xy 2xy x y     = + + + +  ÷  ÷ +     0,5 Áp dụng câu a ta có ( ) 2 2 2 2 2 2 1 1 4 4 4 1 2xy x y x y 2xy 2 x y + ≥ = ≥ = + + + + ( vì x y 2+ ≤ ). Đẳng thức xảy ra 2 2 x y 2xy x y 1 x y 2  + = ⇔ ⇔ = =  + =  0,25 4 Chứng minh được 2 2 2xy 2 2xy. 4 xy xy + ≥ = . Đẳng thức xảy ra 2 2 2 2xy x y 1 xy ⇔ = ⇔ = 0,25 Chứng minh ( ) ( ) 2 2 2 1 2 2 1 x y 4xy 2xy 2 2 x y + ≥ ⇒ ≥ ≥ = + . Đẳng thức xảy ra x y⇔ = 0,25 Vậy 1 11 A 1 4 2 2 ≥ + + = . Đẳng thức xảy ra 2 2 x y 1 x y 1 x y 1 = =  ⇔ ⇔ = =  =  vậy min A = 11 x y 1 2 ⇔ = = 0,25 Lưu ý: Nếu HS giải theo cách khác, mà đúng và phù hợp với kiến thức trong chương trình thì Hội đồng chấm thi thống nhất việc phân bố điểm của cách giải đó, sao cho không làm thay đổi tổng điểm của câu (hoặc ý) đã nêu trong hướng dẫn này. --------------------HẾT----------------------- 5 . của câu (hoặc ý) đã nêu trong hướng dẫn này. -- -- - -- - -- - -- - -- - -- - HẾT -- - -- - -- - -- - -- - -- - -- - -- 5 . trị nhỏ nhất của biểu thức 2 2 1 3 A 2xy xy x y = + + + ĐỀ CHÍNH THỨC -- -- - -- - -- - Hết -- - -- - -- - - Họ và tên thí sinh: . . . . . . . . . . . . . . . . . .

Ngày đăng: 07/11/2013, 19:11

HÌNH ẢNH LIÊN QUAN

a) Chứng minh tứ giác MAOB là hình vuông. - ĐỀ  ĐÁP ÁN THI HSG TOÁN 9 CẤP HUYỆN 2010 - 2011
a Chứng minh tứ giác MAOB là hình vuông (Trang 1)
a) Chứng minh MAOB là hình vuông (1,5 điểm) OA R - ĐỀ  ĐÁP ÁN THI HSG TOÁN 9 CẤP HUYỆN 2010 - 2011
a Chứng minh MAOB là hình vuông (1,5 điểm) OA R (Trang 3)

TỪ KHÓA LIÊN QUAN

w