1. Trang chủ
  2. » Toán

Bài giảng Đồ họa máy tính: Bài 7 - Lê Tấn Hùng

7 11 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 7
Dung lượng 776,13 KB

Nội dung

Uniform/Periodic B-splines : The spacing is unform and the knots (control points) are equispaced e.g. [0,1,2,3,4,5] These have satisfactory smoothness but lack local control and the sta[r]

(1)

(c) SE/FIT/HUT 2002

Đường cong không gian

3D CURVE

(c) SE/FIT/HUT 2002

Đường cong - Curve

Why use curves? Quỹđạo chuyển động của điểm không gian

Đườngcong biu dinĐim-curve represents points:

ĐimBiểu diễnvà kiểm soát đường cong -Points represent-and control-the curve.

Cách tiếp cận sởcủa lĩnh vực Computer Aided Geometric Design (CAGD)

(c) SE/FIT/HUT 2002

Phân loại

Trên sởràng buộc điểm đường ứng dụng khoa học thiết kếta co thểphân làm loại:

Xấp xỉ-Approximation

-Được ứng dụng mơ hình hố hình học Nội suy-Interpolation

Trong thiết kếnôi suy cần thiết với đối tượng không phù hợp với đối tượng có hình dáng bất kỳ"free form“

(c) SE/FIT/HUT 2002

Biu din Đường cong

Tường minh y=f(x) y = f(x), z = g(x)

impossible to get multiple values for a single x

break curves like circles and ellipses into segments

not invariant with rotation

rotation might require further segment breaking

problem with curves with vertical tangentsinfinite slope is difficult to represent Khơng tường minh f(x,y)=0 - Implicit equations:

f(x,y,z) = 0

equation may have more solutions than we want

circle: x² + y² = 1, half circle: ? problem to join curve segments together

difficult to determine if their tangent directions agree at their joint point

Đường cong tham biến

Biểu diễn đường cong tham biến Parametric representation: x = x(t), y = y(t), z = z(t)

overcomes problems with explicit and implicit forms no geometric slopes (which may be infinite) parametric tangent vectors instead (never infinite) a curve is approximated by a piecewise polynomial curve

Define a parameter space

1D for curves 2D for surfaces

Define a mapping from parameter space to 3D points

A function that takes parameter values and gives back 3D points

The result is a parametric curve or surface

0 t

Mapping F :t (x, y, z)

Parametric Curves

We have seen the parametric form for a line:

Note that x, y and z are each given by an equation that involves:

The parameter t

Some user specified control points, x0and x1

This is an example of a parametric curve

1

1

1

) 1 (

) 1 (

) 1 (

z t t z z

y t t y y

x t t x x

− + =

− + =

(2)

(c) SE/FIT/HUT 2002

Đường cong đa thc bc ba

Phảiđảm bảo làđường cong không gian với3 trục toạ độx, y, z tránhđược tính tốn phức tạp phần nhấp nhơ ngồi ý muốn xuất hiệnởnhữngđườngđa thức bậc cao

Why cubic?

(c) SE/FIT/HUT 2002

P0

P1 p2

p3

P0

P '0 P 1

P'1

Đường cong bc 3

x= a1+ b1u+ c1u2+ d1u3

y= a2+ b2u+ c2u2+ d2u3

z= a3+ b3u+ c3u2+ d3u3

Với3 điểmP0, P1, P2, P3 phương trình xácđịnh

(c) SE/FIT/HUT 2002

Hermite Spline

A splineis a parametric curve defined by control points

The term spline dates from engineering drawing, where a spline was a piece of flexible wood used to draw smooth curves

The control points are adjusted by the userto control the shape of the curve

Phương pháp Hermite dựa sởcủa cách biểu diễn Ferguson hay Coons năm 60

AHermite splineis a curve for which the user provides: The endpoints of the curve

The parametric derivatives of the curve at the endpoints • The parametric derivatives are dx/dt, dy/dt, dz/dt

That is enough to define a cubic Hermite spline, more derivatives are required for higher order curves

(c) SE/FIT/HUT 2002 10

Đường cong Hermite

p = p(u) = k0+ k1u + k2u2+ k 3u3

p(u) = kiui in

p0 và p1ta có hai độdốc p0’ p1’ với u = u = tại hai điểm đầu cuối của đoạn [0,1].

We have constraints:

The curve must pass through p0when u=0 The derivative must be p0when u=0 The curve must pass through p1when u=1 The derivative must be p1when u=1

Basis Functions

A point on a Hermite curve is obtained by multiplying each control point by some function and summing

The functions are called basis functions Thay vào:

p= p(u) = p0(1-3u2+2u3) + p1(3u2-2u3)

+ p0’(u-2u2+u3) + p1’(-u2+u3)

(3)

(c) SE/FIT/HUT 2002 13

Đường cong Bezier

Sửdụngđiểm vector kiểm soátđượcđộdốc củađường cong tại nhưngđiểm mà nóđi qua.(Hermit)

khơngđược thuận lợi cho việc thiết kếtương tác, không tiếp cận vào cácđộdốc củađường cong bằng giá trịsố(Hermite).

Paul Bezier,RENAULT, 1970 đường bềmặt UNISURF

(c) SE/FIT/HUT 2002 14

po, p3 tương đương với p0, p1 đường Hermite diểm trung gian p1, p2được xác định bằng 1/3 theo độdài của vector tiếp tuyến tại điểm po p3

p0’ = 3(p1– p0) p3’ = 3(p3– p2)

p = p(u) = p0(1-3u2+2u3) + p1(3u2-2u3) + p0’(u-2u2+u3) + p 1 ’(-u2+ u3)

p = p(u) = p0(1 - 3u + 3u2- u3) + p

1(3u-6u2-3u3)

+ p2(3u2- 3u3) + p 3u3

(c) SE/FIT/HUT 2002 15

Biểu diễn Ma trận

p = p(u) = [ u u2u3]

   

 

   

 

   

 

   

 

− −

− −

3

1 3 3 1

0 3 6 3

0 0 3 3

0 0 0 1

p p p p

0 0.2 0.4 0.6 0.8 1.2

B0 B1 B2 B3

(c) SE/FIT/HUT 2002 16

Ưu điểm

dễdàng kiểm soát hi`nh dạng của đường cong hơn vector tiếp tuyến tại p0’ p1’ của Hermite

Nằm đa giác kiểm soát với sốđiểm trung gian tuỳý( số

bậc tuỳ ý)

đi qua điểm đầu điểm cuối của đa giác kiểm soát, tiếp xúc với cặp hai vector của đầu cuối đó

Example Bezier Curves

[UW]

Sub-Dividing Bezier Curves

P0

P1 P2

P3 M01

M12

M23

M012 M

(4)

(c) SE/FIT/HUT 2002 19

Sub-Dividing Bezier Curves

P0

P1 P2

P3

(c) SE/FIT/HUT 2002 20

Sub-Dividing Bezier Curves

Step 1: Find the midpoints of the lines joining the original control vertices Call them M01, M12, M23

Step 2: Find the midpoints of the lines joining M01, M12and M12, M23 Call

them M012, M123

Step 3: Find the midpoint of the line joining M012, M123 Call it M0123

The curve with control points P0, M01, M012and M0123exactly follows the

original curve from the point with t=0 to the point with t=0.5

The curve with control points M0123 , M123 , M23and P3exactly follows the

original curve from the point with t=0.5 to the point with t=1

(c) SE/FIT/HUT 2002 21

de Casteljau’s Algorithm

You can find the point on a Bezier curve for any parameter valuetwith a similar algorithm

Say you want t=0.25, instead of taking midpoints take points 0.25 of the way

P0

P1 P2

P3 M01

M12

M23 t=0.25

(c) SE/FIT/HUT 2002 22

Biu thc Bezier-Bernstain

Tổng quát hoá với n+1 điểm kiểm soát

p0 pn: vector vịtrí củađa giác n+1 đỉnh ) )( ( )

(

) ( ) (

1 ,

,

i i n

i in i n

i n i

P p u B n u p

p u B u p

− =

′ =

+ = − =

∑ ∑

i n i n

i u C ni u u

B, ( )= ( , ) (1− ) −

)! i n ( ! i

! n ) i , n ( C

− =

Tính chất

P0 Pn nằm đường cong

Đường cong liên tục có đạo hàm liên tục tất cảcác bậc Tiếp tuyến của đường cong tại điểm P0 đường P0P1 tại Pn đường Pn-1Pn

Đường cong nằm đường bao lồi convex hull của

điểm kiểm soát.

This is because each successive Pi(j) is a convex combination of the points Pi(j-1) and Pi-1(j-1) P1 ,P2 , … ,Pn-1 nằm đường cong chỉ

Review:

Bézier Curve Prop’s [1/6] We looked at some properties of Bézier curves Generally “Good” Properties

Endpoint Interpolation Smooth Joining Affine Invariance Convex-Hull Property

Generally “Bad” Properties

(5)

(c) SE/FIT/HUT 2002 25

Problem with Bezier Curves

To make a long continuous curve with Bezier segments requires using many segments

Maintaining continuity requires constraints on the control point positions

The user cannot arbitrarily move control vertices and automatically maintain continuity

The constraints must be explicitly maintained It is not intuitive to have control points that are not free

(c) SE/FIT/HUT 2002 26

Invariance

Translational invariancemeans that translating the control points and then evaluating the curve is the same as evaluating and then translating the curve

Rotational invariancemeans that rotating the control points and then evaluating the curve is the same as evaluating and then rotating the curve

These properties are essential for parametric curves used in graphics It is easy to prove that Bezier curves, Hermite curves and everything else we will study are translation and rotation invariant

Some forms of curves, rational splines, are also perspective invariant

Can perspective transform of control points and thenevaluate the curve

(c) SE/FIT/HUT 2002 27

Longer Curves

A single cubic Bezier or Hermite curve can only capture a small class of curves At most inflection points

One solution is to raise the degree

Allows more control, at the expense of more control points and higher degree polynomials

Control is not local, one control point influences entire curve

Alternate, most common solution is to join pieces of cubic curve together into

piecewise cubic curves

Total curve can be broken into pieces, each of which is cubic

Local control: Each control point only influences a limited part of the curve Interaction and design is much easier

(c) SE/FIT/HUT 2002 28

Piecewise Bezier Curve “knot” P0,0

P0,1 P0,2

P0,3 P1,0

P1,1

P1,2 P1,3

Continuity

When two curves are joined, we typically want some degree of continuity across the boundary (the knot)

C0, “C-zero”, point-wise continuous, curves share the same point where they

join

C1, “C-one”, continuous derivatives, curves share the same parametric

derivatives where they join

C2, “C-two”, continuous second derivatives, curves share the same parametric

second derivatives where they join Higher orders possible

Question: How we ensure that two Hermite curves are C1across a

knot?

Question: How we ensure that two Bezier curves are C0, or C1, or C2

across a knot?

Đường bc ba Spline

Spline đi qua n điểm cho trước mà mỗi đoạn đường bậc ba

độc lập có độdốc độcong liên tục tại mỗi điểm kiểm soát hay điểm nút

Với n điểm:n-1 đoạn với mỗi đoạn vector hệsố 4(n-1) cho n-1 đoạn, 2(n-1) điều kiện biên n-2 điều kiện vềđộdốc cùng n-2 vềđộcong

(6)

(c) SE/FIT/HUT 2002 31

Đường cong bc ba

Spline u0= với: (u0 un-1) uj+1> uj

ui+1= ui+ di+1

C0đểkhông cósựgiánđoạn giữahaiđoạncong

C1tính liêntục bậc nhấthayđạohàmbậc tạiđiểm nối

C2đạohàmbậchai liêntục củađườngcongtạiđiểm nối

(c) SE/FIT/HUT 2002 32

Achieving Continuity

For Hermite curves, the user specifies the derivatives, so C1is achieved

simply by sharing points and derivatives across the knot For Bezier curves:

They interpolate their endpoints, so C0is achieved by sharing control points

The parametric derivative is a constant multiple of the vector joining the first/last control points

So C1is achieved by settingP

0,3=P1,0=J, and making P0,2and Jand P1,1

collinear, with J-P0,2=P1,1-J

C2comes from further constraints on P 0,1and P1,2

(c) SE/FIT/HUT 2002 33

Bezier Continuity

P0,0

P0,1 P0,2

J

P1,1

P1,2 P1,3

Disclaimer: PowerPoint curves are not Bezier curves, they are interpolating piecewise quadratic curves! This diagram is an approximation

(c) SE/FIT/HUT 2002 34

B-splines

B-splines automatically take care of continuity, with exactly one control vertex per curve segment

Many types of B-splines: degree may be different (linear, quadratic, cubic,…) and they may be uniform or non-uniform

We will only look closely at uniform B-splines

With uniform B-splines, continuity is always one degree lower than the degree of each curve piece

Linear B-splines have C0continuity, cubic have C2, etc

Đường cong B-spline

Đường cong B-spline đường cong được sinh từđa giác kiểm soát mà bậc của khơng phụthuộc vào sốđỉnh của đa giác kiểm soát.

B-Splines: The Idea [1/2]

The repeated-lirping idea that produced the Bézier curves has the drawbacks that is produces polynomials with high degree that are nonzero almost everywhere

Using functions defined in pieces, we can fix these two

Start: An order-1 B-Spline has blending functions that are always either or When a function is 1, all the rest are zero

So an order-1 B-spline is just a sequence of points Any number of control points may be used

Now we make higher-order B-splines using a repeated-lirping procedure

(7)

(c) SE/FIT/HUT 2002 37

B-Splines: The Idea [2/2]

We form an order-2 B-Spline by lirping between the order-1 blending functions

As discussed, we get functions that start at 0, ramp up to and back down, then stay at zero Each function is most of the time

So each blending function is defined in pieces Each piece is a polynomial of degree (graph is a line)

So an order-2 B-spline is just the control polygon Again, any number of control points may be used

We form an order-3 B-Spline by lirping between the order-2 blending functions

Now blending functions are smooth They start at 0, curve up to then back down Again, each function is most of the time

Again, each blending function is defined in pieces Each piece is a polynomial of degree

We continue this repeated-lirping procedure to define B-splines of higher order

See the blue book for details and graphs

(c) SE/FIT/HUT 2002 38

Types of B-Splines Approximation Curves Used

B-Spline approximations can be classified based on the spacing of the knot vector and the use of weights

1 Uniform/Periodic B-splines: The spacing is unform and the knots (control points) are equispaced e.g [0,1,2,3,4,5] These have satisfactory smoothness but lack local control and the starting and ending poits are ill defined as above

2 Non-periodic:The knots are repeated at the ends m times and the interior is equispaced e.g [0 0 3 ] These can be used to force the control point to start and finish at a control point

3 Non-uniform B-Splines: The spacing is non-uniform and or repeated knots e.g [0 1 6 ] These can be used to obtain local control

B-Splines

(c) SE/FIT/HUT 2002 39

Ví dụ: Uniform Cubic B-spline on

[0,1]

Four control points are required to define the curve for 0t<1(tis the parameter)

Not surprising for a cubic curve with degrees of freedom

The equation looks just like a Bezier curve, but with different basis functions

Also called blending functions- they describe how to blend the control points to make the curve

( ) ( ) ( ) ( )3

3 2 3 61 3 6 61 3

61 t t t P t t P t t t P t

P t B P t P

i i i

+ − + + + + − + − + − = =∑ = ) ( ) ( ,

(c) SE/FIT/HUT 2002 40

Basis Functions on [0,1]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

t

Does the curve interpolate its endpoints? Does it lie inside its convex hull?

B0,4

B1,4 B

2,4

B3,4

( )

( )

( )

( )3 3 2 1 61 3 3 3 1 6 1 3 6 4 6 1 3 3 1 6 1 t P t t t P t t P t t t P t P + − + + + + − + − + − = ) (

Uniform Cubic B-spline on [0,1) The blending functions sum to one, and are positive everywhere

The curve lies inside its convex hull

The curve does not interpolate its endpoints

Requires hacks or non-uniform B-splines

There is also a matrix form for the curve:

[ ]                         − − − − = 1 0 0 0 1 1 3 3 3 4 0 6

31 3 3 1

6 1 3 t t t P P P P t P()

Uniform - B-spline

Ni,k(u) đa thức B-Spline cơ bản Với n+ sô điểm kiểm soát Piđiểm kiểm soát thứi k bậc của đường cong 1<k<n+2

Ui vector nút của đường cong U=[U1,U2 Un+k+1] i

n i ik

P u N u P ∑ = = , ). ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ,

2 1 , 1

, N u

U U u U u N U U U u u

N ik

Ngày đăng: 09/03/2021, 06:25

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN