[r]
(1)phơng trình, bất phơng trình Lôgarit 1
2
log (x x 7x12) 2 2 log2x316 2 3 log (9 ) 32 x x
4 (§H§N-97) log (3.22 1)
x x
5 5
log ( 1) log
1
x x
x
6 3log3x log9x5
7 27
5
log log log
3
x x x
8 log (4.32 x 6) log (9 x6) 1 9
2
2 log xlog xlog
10.
1
5
1
log log ( 2)
3 x
11. (§H-A2002)
2
3
log x log x 1 2m1
a) Giải phơng trình m=2
b) m=? để phơng trình có no
[1;3 ]
12. (C§SPHP-2004)
a)
2
2
2
1
log ( 1) log ( 4) log (3 )
2 x x x
b) log (3 x22x1) log ( x22 )x 13. (C§CNHN-2004) Tìm TXĐ
2
2
2
1
4log log
y x x x
x
14 (CĐKTKTI-2005) Tìm TXĐ
2
log ( 2)
y x x
15 (C§BTre-2005)
1
log 16 log 64 3x
x
16 (§HQGHN-B2000) log5xlog (7 x2) 17 (§HBKHN-2000)
2
4
log (x1) 2 log 4 xlog (4x)
18 (§HH-A2000) log (9 ) 32 x
x
19 (§HH-D2000)
2
2
log (x 1) log ( x1)
20 (§HYHN-2000) lg (4 x1)2lg (2 x1)325 21 (§HCT-D2000) log log (log2 2x) 1
22 (§HAG-D2000) log (log4 2x) log (log 4x) 2 23 (§HNT-A2000)
2
3
log (x x 1) log x2x x
24. (§HTN-G2000)
1
1 lg x2 lg x 25. (§HCT-B2000)
2
2
(x1) log (x3) 2 m 2(x1) log (x3)m 1 a) Giải phơng trình với m=-1
b) m=? phơng trình có nghiệm [ 1;1] 26. (HVQHQT-A2000)
2 4
2 2
log (x x 1) log ( x x1) log ( x x 1) log ( x x 1)
27. (DHSPVinh-D2000)
5 5
(x 1) log log (3x 3) log (11.3x 9)
28. (HVCNBCVT-2000)
2
9 3
1
log ( 6) log log | |
2
x
(2)29. (DHCD-2000)
3 3
2
4
log log
3
x x
30. (§HKT-2000) log7xlog (3 x2) 31. (HVQY-2000)
2
2 3
log [x 2(m1) ] logx (2x m 2) 0
m=? ph-ơng trình có nghiệm
32. (ĐHCSND-G2000)
3
log (x1) ( x5) log (x1) 2 x 6
33. (C§CNHN-2000)
3
4
16
log xlog xlog x 5
34. (§HQGHN-A2001)
2 7
log x2log x 2 log logx x
35. (§HSPHN2-A2001) logxalogaxaloga x2 a0 36. (§HSPVinh-AB2001)
2 2
4 20
log (x x 1).log (x x 1) log ( x x 1)
37. (§HNNI-B2001) log (2x2 x) log 2x x2 38. (§HKTQD-2001)
2
3
log x (9 12 x4 ) logx x (6x 23x21) 4
39. (§HTM-2001)
1
2
(m1) log (x 2) ( m5)log (x 2)m1 0
40. (§HC§-2001)
1
2
2
log (4x 4) x log (2x 3)
41. (§HAN-A2001)
2
( 3)
1
log (3 1) log ( 1)
logx
x x
42. (§HTS-2001)
2
2 2 4
2
(log log ) log (log log ) log
2
x
x x x x
x
43. (§HCT-D2001)
a) log (22 4) log (22 12)
x x x
b)
2
5
log (x mx m 1) log
m=? pt cã nghiƯm
44. (§HDLP§-D2001) log (2 x1) log 16 x1 45. (HVKTQS-2001)
2 2
2
2
log xlog x 3m(log x 3)
m=? phơng trình có nghiệm [32;)
46. (§HDLP§-A2001)
1
log (9x 4.3x 2) 3x
47. (ĐHDLĐĐô-AV2001) log [log (9x x 6)] 48. (ĐHSPTPHCM-A2001)
2
2
log log
4log 2x x 2.3 x
49. (DHYDTPHCM-2001)
2 2
4
2
2log (2x x2m 4m ) log ( x mx 2m ) 0
m=? để phơng trình có nghiệm 2 x x 50. (ĐHCSND-2001)
2
16
2
logx x 14 log xx 40 log x x0 51. (§HQGHN-B96)
2 2
log 16.logx 15
x x x
52. (HVKTQS-97)
2
6
10 10
log x x (sin 3x sin ) logx x x (sin )x
53. (§HYTB-98)
2
2 3
log x x log x x
54. (§HYHN-98) log (6 4x8 x) log x 55. (§HTM-97)
2
logx (5x 18x16) 2
56. (§HYHN-97) log 64 log 16 32x x2 57. (§HBKHN-98)
2
3 1
3
1
log log log ( 3)
2
x x x x
58. (§HH-98)
1
log ( )
4
x x
59. (§HNT II-98) log2xlog3x 1 log log2x 3x 60. (§HNNIHN-98)
2
2 0,5
2xlog (x 4x4) ( x1) log (2 x) 61. (ĐHTLợi-97)
2
log (log | |)
e
x
62. (§HXD-96)
2
1
log 2
2
x x x x
63. (§HBKHN-97)
2
2
2
log ( 1) log ( 1)
0
3
x x
x x
64. (§HKTróc-97)
lg( 2) 2
lg lg
x x
x
65. (§HVH-D2001) log [log (3x x9)] 1
66. (§H§L-AB2001) logx m (x21) log x m (x2 x 2)
m=? để phơng trình có nghiệm 67. (ĐHDLTL-A2001)
2
log (x ax1) 1
68. (§YHN-2001) log (2 x2 3 x21) 2log 2x0 69. (C§XD1-2001)
2
2
`2
log (x x) log ( x3) 0 70. (V§HMëHN-2001)
2
1 5
5 25
log (x5) 3log (x5) 6log ( x5) 0
71. (§HAG-D1)
2 log (2 ) 1x x
72. (HVQHQT-D2001)
3
log
2
x x x
73. (§HDHN-2001)
2
1
2
(x1) log x(2x5) log x 6
74. (§HNNI-A2001)
2
1
log (log ) log (log ) log
2
a a x a ax a
75. (DHDLHV-B2000) log (4x2 x5) 1
76. (C§-A2000)
2
2
log (1 x x 4) 0
77. (§HTS-2000)
2
4 2
1
log ( 12) log ( 2) log | |
2
x x x x
78. (DHYTB-2000) log2xlog 42x
79. (§HLHN-2000)
5 lg
5 0
2x
x x x
80. (§HSPTPHCM-A2000)
2
9
(3)81. (§HSPHN-A2000)
2
2
log x 2x m 4 log (x 2x m ) 5
82. (§H-B2002) log [log (93 72)] x
x
82. (§H-D2002)
3
1
2
4
2
x x x
x
y y
y
83. (§HTL-2000)
2 2
3 3
3
log log log
2
log 12 log log
3
x
x y y
y
x x y
84. (§HTCKT-2000)
8 log log
4
4
log log
y x
x y
x y
85. (§H§N-A2001)
log (6 )
log (6 )
x y
x y
y x
86. (§HH-AB2001)
2
log (x y) log (a x y)
x y a
Với
a=? hệ phơng trình có nghiệm? 87. (§HCT-A2001)
2
3
2
2
log ( 1) log ( 1) log
log ( 5) logx x
x x
x x m
Víi m=? hệ phơng trình có nghiệm phân biệt
88. (§H-A2004)
1
4 2
1
log ( ) log
25
y x
y
x y
89. (§H-B2005)
2
9
1
3log (9 ) log
x y
x y
90. (C§SP-A2004)
2 2
4
log ( )
2log log
x y
x y
91. (C§SPBN-2004)
2
1
2
log ( 3) log ( 3)
0
x x
x
92. (C§SPKT-2004) log log5x 3xlog5xlog3x
93. (C§SPTPHCM-2005)
2
5
9
log (3 ) log (3 )
x y
x y x y
94. (CĐKTKTCThơ-A2005)
2
2
2
log (x 2x3) log ( x3) log ( x1)
95. (C§SPHN-2005)
2
1
log (3 1)
log (x 3 )x x
96. (C§SPVP-2005)
4 2
2 0,5 2
2
32
log log 9log 4log
8
x
x x
x
97. (C§KTKH§N-2005) log (3 x 4) log 2x1 2 98. (C§YTTH-2005)
2
0,5 16
log x4log x 2(4 log x )
99. (CĐSPQBình-2005)
2
2
log ( ) log ( )
2
x y x y
x y
100. (C§SPQNg·i-2005) 3
4 32
log ( ) log ( )
x y y x
x y x y