[r]
(1)Thời gian làm bài: 120 phút(không kể thi gian giao )
Bài : (2đ)
Chứng minh đẳng thức sau:
P=(a+b+c)2 + (b+c-a)2+(c+a-b)2+(a+b-c)2= 4(a2+b2+c2)
Bài 2: (1,5đ) Chứng minh rằng:
a Nếu m số nguyên (2m+1)-1 chia hết cho 8; b Hiệu bình phơng hai số chẵn liên tiếp chia hết cho 4; c Hiệu bình phơng hai số lẻ liên tiếp chia hết cho
Bài 3: (2đ)
Phân tích thành nhân tử: A=(x+y+z)3-x3-y3-z3
Bài 4: (2đ)
Tìm giá trị nhỏ biÓu thøc sau: B = x2-2xy+2y2-4y+5
Bài 5: (2,5đ) Cho hình thang ABCD (BC//CD), đờng phân giác
A❑ vµ B❑ giao ë E, cđa C❑ vµ D❑ giao ë F Chøng minh EF qua trung điểm AB CD
2 Nếu đờng phân giác gặp điểm hình thang ABCD C có gỉ đặc biệt
Thời gian làm bài: 120 phút(không kể thời gian giao đề)
Bài : (2đ) Chứng minh đẳng thức sau:
P=(a+b+c)2 + (b+c-a)2+(c+a-b)2+(a+b-c)2= 4(a2+b2+c2)
Bµi 2: (1,5đ) Chứng minh rằng:
d Nếu m số nguyên (2m+1)-1 chia hết cho 8; e Hiệu bình phơng hai số chẵn liên tiếp chia hết cho 4; f Hiệu bình phơng hai số lẻ liên tiếp chia hết cho
Bài 3: (2đ) Phân tích thành nhân tử: A=(x+y+z)3-x3-y3-z3
Bài 4: (2đ) Tìm giá trị nhỏ biểu thức sau: B = x2-2xy+2y2-4y+5
Bài 5: (2,5đ) Cho hình thang ABCD (BC//CD), đờng phân giác
A❑ vµ B❑ giao ë E, cđa C❑ vµ D❑ giao ë F Chøng minh EF ®i qua trung điểm AB CD
4 Nu ng phân giác gặp điểm hình thang ABCD C có gỉ đặc biệt
-Hết đề
thi -Đáp án đề Toán 1 Bài : (2đ)
Viết vế trái đẳng thức dới dạng:
[(b+c)+a]2 + [(b+c)-a)]2+[a+(b-c)]2+[(a-(b-c)]2 0,5® Ta nhËn xét rằng:
(A+B)2+(A-B)2=2(A2+B2) 0,5đ Ta có (áp dụng cặp tơng ứng):
P=2[(b+c)2+a2] + 2[a2+(b-c)2] 0,5đ =4a2+2[(b+c)2+(b-c)2]
(2)=4(a2+b2+c2) (®pcm) 0,5®
Bài 2: (1,5đ) a 0,5đ Ta có:
(2m+1)2-1=(2m+1+1)(2m+1-1) 0,25đ =4m(m+1)
m(m+1) hai số nguyên liên tiếp nên chắn có số chẵn Do tÝch m(m+1) chia hÕt cho
VËy 4m(m+1) chia hÕt cho 0,25® b 0,5®
LÊy số chẵn 2n số chẵn liền sau nã lµ 2n+2 HiƯu:
(2n+2)2-(2n)2=4(n+2), chia hÕt cho 0,5đ c.0,5đ
Lấy số lẻ 2n+1 số lẻ liền trớc 2n-1 Ta xét hiÖu;
(2n+1)2- (2n-1)2
= [(2n+1)+ (2n-1)][ (2n+1)- (2n-1)] 0,25® = 8n, chia hÕt cho 0,25®
Bài 3: (2đ)
A=(x+y+z)3-x3-y3-z3
= [(x+y+z)3-x3] (y3+z3)
0,5®
= (x+y+z-x)[( x+y+z)2 + (x+y+z)x+x2]- (y+z)( y2-yz+z2) = (y+z)[( x+y+z)2 + (x+y+z)x+x2]- (y+z)( y2-yz+z2)
= (y+z)( x2+y2+z2 +2xy+2xz +2yz +x2+xy+xz+x2-y2+yz-z2) 0,5® = (y+z)( 3x2+3xy+3xz +3yz)
= (y+z)( 3x2+3xy+3xz +3yz) 0,5® = 3(y+z)[(x2+xy)+(xz +yz)]
= 3(y+z)[x(x+y)+z(x +y)]
= (x+y) (y+z)(x +z) 0,5đ
Bài 4: (2đ)
B = x2-2xy+2y2-4y+5 Tách số hạng ta đợc:
B = x2- 2xy+y2+y2- 4y +4 + 0,5® = (x2- 2xy+y2)+(y2- 4y +4) + 1
= (x-y)2 + (y - 2)2 + 0,5®
Do (x-y)2 0 ; (y - 2)2 0
0,5đ
Nên B = (x-y)2 + (y - 2)2 + 1 1 Khi x = y v y = th× B=1à
VËy giá trị nhỏ B = x2-2xy+2y2-4y+5 0,5đ
Bài 5: (2,5đ) Vẽ hình 0.5 đ
P B C A F E Q 1 N M D 0,5®
Giả sử đờng phân giác B❑ C❑ gặp AD M N Vì tứ giác ABCD hình thang cân nên A❑ + B❑ =2V
Mà A❑1 = A❑2 , B❑1 = B❑2 A❑2 nên A❑2 + B❑1 =1V Từ suy BE AE Tơng tự ta có cf DF
Ta l¹i cã AMB❑ = B❑
2 (slt) vµ B
❑
1 = B
❑
2 suy AMB
❑
= B❑
(3)Nếu E F trùng ta có đờng phân giác hình thang đồng quy, lúc PE+EF+FQ= AD+BC
2 , EF=0 nên PQ=
AD+BC (2) Kết hợp với (1) (2) ta có: BC+AD
2 =
AD+BC
2 , nghÜa lµ AB+CD=AD+BC