1. Trang chủ
  2. » Mẫu Slide

hsg toan 9 toán học 9 võ thị nghiêm thư viện tài nguyên giáo dục long an

17 29 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 17
Dung lượng 369,51 KB

Nội dung

Phßng Gi¸o dôc- §µo t¹o ®Ò thi chän häc sinh giái cÊp huyÖn.. ThÝ sinh kh«ng ®îc sö dông tµi liÖu.[r]

(1)

phòng giáo dục đào tạo kim

bảng kiểm tra chất lợng học sinh giỏi năm học 2008 2009 môn toán lớp 8

Thi gian 150 phút – Không kể thời gian giao đề chớnh thc

Bài (3 điểm)Tính giá trị biÓu thøc

4 4

4 4

1 1

1+ 29

4 4

A=

1 1

2 + 30

4 4

       

  

       

       

       

  

       

       

Bµi (4 ®iĨm)

a/Với số a, b, c không đồng thời nhau, chứng minh a2 + b2 + c2 – ab – ac – bc  0

b/ Cho a + b + c = 2009 chøng minh r»ng

3 3

2 2

a + b + c - 3abc

= 2009 a + b + c - ab - ac - bc

Bài (4 điểm) Cho a  0, b  ; a vµ b thảo mÃn 2a + 3b 2a + b Tìm giá trị lớn giá trị nhỏ biểu thức A = a2 2a b

Bài (3 điểm) Giải toán cách lập phơng trình

Mt ụ tụ từ A đến B Cùng lúc ô tơ thứ hai từ B đến A vơí vận tốc vận tốc ô tô thứ Sau chúng gặp Hỏi ô tô quãng đờng AB bao lâu?

Bài (6 điểm) Cho tam giác ABC có ba góc nhọn, điểm M, N thứ tự trung điểm BC AC Các đờng trung trực BC AC cắt O Qua A kẻ đờng thẳng song song với OM, qua B kẻ đờng thẳng song song với ON, chúng cắt H

a) Nối MN, AHB đồng dạng với tam giác ?

b) Gọi G trọng tâm ABC , chứng minh AHG đồng dạng với MOG ? c) Chứng minh ba điểm M , O , G thẳng hàng ?

Phòng GD - ĐT đề thi học sinh giỏi năm học 2008 - 2009

Can lộc Môn: Toán lớp 8

Thời gian lµm bµi 120 phót Bµi 1 Cho biĨu thøc: A =

5

x x

x x x

 

a) Rút gọn biểu thức A b) Tìm x để A - A 0

c) Tìm x để A đạt giá trị nhỏ

Bµi 2: a) Cho a > b > vµ 2( a2 + b2) = 5ab Tính giá trị biểu thức: P =

3

a b a b

 

(2)

a)

2

1

2007 2008 2009

x x x

 

  

b) (12x+7)2(3x+2)(2x+1) = 3

Bài 4: Cho tam giác ABC; Điểm P n»m tam gi¸c cho ABP ACP , kỴ PH ,

AB PK AC

  Gọi D trung điểm cạnh BC Chứng minh. a) BP.KP = CP.HP

b) DK = DH

Bài 5: Cho hình bình hành ABCD, đờng thẳng d cắt cạnh AB, AD M K, cắt

đờng chéo AC G Chứng minh rằng:

AB AD AC

AMAKAG

UBND THµNH PHè HuÕ kú thi CHäN häc sinh giái tHµNH PHè

PHịNG Giáo dục đào tạo lớp thCS - năm học 2007 - 2008

Môn : Toán

Đề chÝnh thøc Thêi gian lµm bµi: 120

Bài 1: (2 điểm)

Phân tích đa thức sau thành nhân tử: x27x6

2 x42008x22007x2008 Bài 2: (2điểm)

Giải phơng trình:

2

3

xx  x 

2

 

2 2

2

2

2

1 1

8 x x x x x

x x x x

       

       

       

 

Bài 3: (2điểm)

1 Căn bậc hai 64 viết díi d¹ng nh sau: 64 6 

Hỏi có tồn hay khơng số có hai chữ số viết bậc hai chúng d-ới dạng nh số nguyên? Hãy tồn số

2 T×m sè d phÐp chia cđa biĨu thøc x2 x4 x6 x82008 cho ®a thøc 10 21

xx . Bài 4: (4 điểm)

Cho tam giỏc ABC vuông A (AC > AB), đờng cao AH (HBC) Trên tia HC lấy

®iĨm D cho HD = HA Đờng vuông góc với BC D cắt AC E

1 Chng minh rng hai tam giác BEC ADC đồng dạng Tính độ dài đoạn BE theo m AB .

2 Gọi M trung điểm đoạn BE Chứng minh hai tam giác BHM BEC đồng dạng Tính số đo ca gúc AHM

3 Tia AM cắt BC G Chøng minh:

GB HD

BCAH HC . HÕt

(3)

TRùC NINH

***** năm học 2008 - 2009môn: Toán 8

(Thi gian làm bài: 120 phút, không kể thời gian giao đề)

Đề thi gồm trang Bi 1 (4 điểm): Cho biểu thức

A=4xy y2− x2:(

1

y2− x2+

1

y2

+2 xy+x2) a) Tìm điều kiện x, y để giá trị A xác định b) Rút gọn A

c) Nếu x; y số thực làm cho A xác định thoả mãn: 3x2 + y2 + 2x – 2y = 1,

hãy tìm tất giá trị nguyên dương A?

Bài 2 (4 điểm):

a) Giải phương trình : x+11

115 +

x+22

104 =

x+33

93 +

x+44

82

b) Tìm số x, y, z biết :

x2 + y2 + z2 = xy + yz + zx

x2009

+y2009+z2009=32010

Bài 3 (3 điểm): Chứng minh với nN n5 n ln có chữ số tận giống

nhau

Bài 4 (7 điểm): Cho tam giác ABC vuông A Lấy điểm M cạnh AC Từ C vẽ đường thẳng vng góc với tia BM, đường thẳng cắt tia BM D, cắt tia BA E

a) Chứng minh: EA.EB = ED.EC EAD ECB b) Cho BMC1200 SAED 36cm2 Tính S

EBC?

c) Chứng minh điểm M di chuyển cạnh AC tổng BM.BD + CM.CA có giá trị không đổi

d) KẻDHBCHBC Gọi P, Q trung điểm đoạn thẳng BH, DH Chứng minh CQPD

Bài 5 (2 điểm):

a) Chứng minh bất đẳng thức sau: xy+y

x 2 (với x y dấu)

b) Tìm giá trị nhỏ biểu thức P =

2

2

x y x y

y x y x

 

    

  (vi x 0, y )

Phòng giáo dục - Đào tạo

huyện Vũ th Đề khảo sát chọn học sinh giỏi cấp huyệnMôn: Toán Lớp 8

năm học 2008 2009

Thời gian làm bài: 150 phút

Bài 1: (4 điểm)

1, Cho ba sè a, b, c tho¶ m·n

   

  

 2

a b c

a b c 2009, tÝnh   4

A a b c

2, Cho ba sè x, y, z tho¶ m·n x  y z Tìm giá trị lớn Bxyyzzx Bài 2: (2 điểm)

chớnh thc

(4)

Cho ®a thøc     

f x x px q

víi pZ, qZ Chøng minh r»ng tån t¹i sè

nguyên k để f k  f 2008 f 2009  Bi 3: (4 im)

1, Tìm số nguyên dơng x, y thoả mÃn 3xy x 15y 440

2, Cho sè tù nhiªn   2009

a

, b tổng chữ số a, c tổng chữ số b, d tổng chữ số c Tính d

Bài 4: (3 điểm)

Cho phơng tr×nh

2x m x

3

x x

 

 

  , tìm m để phơng trình có nghiệm dng.

Bài 5: (3 điểm)

Cho hỡnh thoi ABCD có cạnh đờng chéo AC, tia đối tia AD lấy điểm E, đờng thẳng EB cắt đờng thẳng DC F, CE cắt O Chứng minh AEC

đồng dạngCAF, tính EOF . Bài 6: (3 điểm)

Cho tam giác ABC, phân giác đỉnh A cắt BC D, đoạn thng DB,

DC lần lợt lấy điểm E vµ F cho EAD FAD Chøng minh r»ng:

2

2 BE BF AB CE CF AC Bài 7: (2 điểm)

Trờn bảng có số tự nhiên từ đến 2008, ngời ta làm nh sau lấy hai số thay hiệu chúng, làm nh đến cịn số bảng dừng lại Có thể làm để bảng cịn lại số đợc khơng? Giải thích

Hết Thí sinh khơng đợc sử dụng tài liệu Cán coi thi khơng giải thích thêm.

Hä vµ tên thí sinh: Số báo danh:

pgd &đt bỉm sơn đề thi học sinh giỏi lớp 8

trờng thcs xi măng năm học 2008-2009 mơn tốn 2008-2009 mơn tốn (150 phút khơng kể thời gian giao đề)

Câu 1(5điểm) Tìm số tự nhiên n để : a) A=n3-n2+n-1 số nguyên tố. b) B= n

4

+3n3+2n2+6n −2

n2+2 có giá trị số nguyên c) D=n5-n+2 số phơng (n 2

Câu 2: (5 điểm) Chứng minh : a) a

ab+a+1+ b

bc+b+1+ c

(5)

c) a

2 b2+

b2 c2+

c2 a2

c b+

b a+

a c

Câu 3: (5 điểm) giảI phơng trình sau: a) x −214

86 +

x −132

84 +

x −54

82 =6

b) 2x(8x-1)2(4x-1)=9

c) x2-y2+2x-4y-10=0 với x,y nguyên dơng.

cõu 4: (5 điểm).Cho hình thang ABCD (AB//CD) ,O giao điểm hai đờng chéo Qua O kẻ đờng thẳng song song với AB cắt DA E ,cát BC F

a)chøng minh r»ng : diƯn tÝch tam gi¸c AOD b»ng diƯn tÝch tam gi¸c BOC b) Chøng minh :

AB+ CD=

2 EF

c)Gọi K điểm thuộc OE.Nêu cách dựng dờng thẳng đI qua K chia đơI diện tích tam giác DEF

-hết -pgd thị x gia nghỉaã đề thi phát học sinh giỏi bậc thcs năm học 2008-2009

Mơn : tốn ( 120 phút không kể thời gian giao đề) Bài 1: (1 đ)

Cho biÕt a-b=7 tÝnh gi¸ trị biểu thức: a(a+2)+b(b-2)-2ab Bài 2: (1 đ)

Chứng minh biểu rhứ sau luôn dơng (hoặc âm) với giá trị chử cho :

-a2+a-3 Bài 3: (1 đ)

Chứng minh tứ giác có tâm đối xứng tứ giác hình bình hành Bài 4: (2 )

Tìm giá trị nhỏ cđa biĨu thøc sau: 4x2+8x −5 Bµi 5: (2 ®)

Chứng minh số tự nhiên có dạng 2p+1 p số nguyên tố , có số lập phơng số tự nhiên khác.Tìm số

Bµi 6: (2 ®)

Cho hình thang ABCD có đáy lớn AD , đờng chéo AC vng góc với cạnh bên CD, BAC=CAD Tính AD chu vi hình thang 20 cm góc D 600. Bài 7: (2 )

Phân tích đa thức sau thành nhân tử: a) a3m+2a2m+am

b) x8+x4+1

Bài 8: (3 đ) Tìm số d phép chia biĨu thøc : (x+1)(x+3)(x+5)(x+7)+ 2004 cho x2+8x+1

Bµi 9: (3 ®) Cho biĨu thøc : C= (

x −1

2x x3

+x − x21):(1

2x x2

+1)

a) Tìm điều kiện x để biểu thức C đợc Xác định b) Rút gọn C

c) Với giá trị x biểu thức C đợc xác định Bài 10 (3 đ)

Cho tam giác ABC vuông A (AC>AB) , đờng cao AH Trên tia HC lấy HD =HA, đờng vng góc với BC D cắt AC E

a) chøng minh AE=AB

b) Gäi M trung ®iĨm cđa BE TÝnh gãc AHM

(6)

i

Néi dung §iĨm

1. 1

Cho ba sè a, b, c tho¶ m·n

   

  

 2

a b c

a b c 2009, tÝnh  4 4

A a b c

2,00

Ta cã      

2

2 2

a b c  a b c  abbcca 2 abbcca

   

2

2 2

2

2 2 2 a b c 2009

a b b c c a ab bc ca 2abc a b c

2

   

          

 

 2  

4 4 2 2 2 2 2009

A a b c a b c a b b c c a

2           0,50 0,50 1,00 1. 2

Cho ba sè x, y, z tho¶ m·n x  y z Tìm giá trị lớn Bxyyzzx.

2,00                                                            

2 2 2

2 2

2

B xy z x y xy x y x y

xy x y x y x y xy 3x 3y

y 3y 6y y 3

x x y 3

2 4

DÊu = x¶y

y y

x x y z

2

x y z

                

Vậy giá trị lớn B lµ x = y = z =

1,25

0,50

0,25

2

Cho ®a thøc     

f x x px q

víi pZ, qZ Chøng minh r»ng tån t¹i sè

nguyên k để f k  f 2008 f 2009   

2,00                                 2 2 2

f f x x f x x p f x x q

f x 2.x.f x x p.f x p.x q

f x f x 2x p x px q

f x x px q 2x p

f x x p x q f x f x

                                                 

Víi x = 2008 chän kf 2008  2008  Suy f k  f 2008 f 2009   

1,25 0,50 0,25

3. 1

Tìm số nguyên dơng x, y thoả mÃn 3xy x 15y 440 2,00

3xy x 15y 44 0 x 3y 1 49

x, y nghuyêndơng x + 5, 3y + nguyên dơng lớn

Thoả mÃn yêu cầu toán x + 5, 3y + ớc lớn 49 nên có:

x x

3y y

      

Vậy phơng trình có nghiệm nguyên x = y =

0,75 0,50

(7)

3.

2 Cho sè tù nhiªn  

 2009

a

, b tổng chữ số a, c tổng chữ số b, d tổng chữ số c Tính d

2,00

     

  2009 3.2009 6027

9 3 6027

a 2 10 b 9.6027 54243

c 4.9 41 d 1.9 13

      

       

3

2 1mod 9 a1mod 9 mµ a  b c d mod 9 d1mod  2 Tõ (1) vµ (2) suy d =

1,00 0,75 0,25 4

Cho phơng trình

2x m x

3

x x

 

 

  , tìm m để phơng trình có nghiệm dơng.

3,00

§iỊu kiƯn: x2;x2

 

2x m x

3 x m 2m 14

x x

 

    

m = 1phơng trình có dạng = -12 vô nghiệm

m1 phơng trình trở thành

2m 14 x m

Phơng trình có nghiệm dơng

2m 14 m m 2m 14

1 m m

2m 14 m                          

VËy thoả mÃn yêu cầu toán

m

1 m

      . 0,25 0,75 0,25 0,50 1,00 0,25

5 Cho hình thoi ABCD có cạnh đờng chéo AC, tia đối tia AD lấy điểm E, đờng thẳng EB cắt đờng thẳng DC F Chứng minh AECđồng

d¹ngCAF, tÝnh EOF

3,00 O D B A C E F

AEB đồng dạng CBF (g-g)

2

AB AE.CF AC AE.CF

AE AC

AC CF

   

 

AEC đồng dạng CAF (c-g-c)

AEC đồng dạng CAF  AEC CAF mà

    

0

EOF AEC EAO ACF EAO

180 DAC 120

   

  

1,00

1,00

1,00

6 Cho tam giác ABC, phân giác đỉnh A cắt BC D, trờn cỏc on thng

DB, DC lần lợt lấy điểm E F choEAD FAD Chøng minh

(8)

r»ng:

2 BE BF AB CE CF AC

A

B E D F C

K H

Kẻ EHAB H, FKAC K

   

BAE CAF; BAF CAE

  

HAE

  đồng dạng KAF(g-g)

AE EH

AF FK

 

ABE

ACF

S BE EH.AB AE.AB BE AE.AB

S CF FK.AC AF.AC CF AF.AC

    

T¬ng tù

BF AF.AB CE AE.AC

2 BE BF AB CE CF AC

 

(®pcm)

1,00

1,25 0,50

0,25

7 Trên bảng có số tự nhiên từ đến 2008, ngời ta làm nh sau lấy hai số thay hiệu chúng, làm nh đến số bảng dừng lại Có thể làm để bảng cịn lại số đợc khơng? Giải thích

2,00

Khi thay hai số a, b hiệu hiệu hai số tính chất chẵn lẻ tổng số có bảng khơng đổi

 

2008 2008

S 2008 1004.2009 mod

2

       

; 1 mod 2

do vËy bảng lại số

1,00

1,00

UBND THµNH PHè HuÕ kú thi CHäN häc sinh giái tHµNH PHè

PHịNG Giáo dục đào tạo lớp thCS - năm học 2007 - 2008

(9)

B µ i 1

u Nội dung Điểm

1 .

2,0 1.1 (0,75 ®iĨm)

   

2

7 6 6

xx x  x x x x  x

x1 x6

0.5 0,5

1.2 (1,25 ®iĨm)

4 2

2008 2007 2008 2007 2007 2007

xxx xxxx  0,25

   2  

4 1 2007 1 1 2007 1

x x x x x x x x

            0,25

         

1 2007 1 2008

x x x x x x x x x x

             0,25

2

. 2,0

2.1 x2 3x 2 x 1 0

    

(1) + NÕu x1: (1)  

2

1

x x

    

(tháa m·n ®iỊu kiƯn x1)

+ NÕu x1: (1)

     

2 4 3 0 3 1 0 1 3 0

x x x x x x x

            

x1; x3 (cả hai khơng bé 1, nên bị loại)

VËy: Ph¬ng trình (1) có nghiệm x1

0,5

0,5 2.2

 

2 2

2

2

2

1 1

8 x x x x x

x x x x

       

       

       

        (2)

Điều kiện để phơng trình có nghiệm: x0

(2)   2 2 2

1 1

8 x x x x x

x x x x

                                        2 2 1

8 x x x x 16

x x

   

           

   

0

x hay x

   vµ x0.

Vậy phơng trình cho có nghiệm x8

0,25

0,5 0,25

Phòng Giáo dục- Đào tạo

TRựC NINH

*****

đáp án hớng dẫn chấm thi học sinh gii nm hc 2008 - 2009

môn: Toán 8

Bài : (4 điểm)

a) Điều kiện: x y; y0 (1 điểm)

b) A = 2x(x+y) (2 điểm)

c) Cần giá trị lớn A, từđó tìm tất giá trị nguyên dương A

+ Từ (gt): 3x2 + y2 + 2x – 2y =  2x2 + 2xy + x2 – 2xy + y2 + 2(x – y) =

 2x(x + y) + (x – y)2 + 2(x – y) + =  A + (x – y + 1)2 = 2

(10)

+ A =

 

x y 1 0

2x x y 2

x y;y 0

             1 x 2 3 y 2         

+ A =

 

2

(x y 1) 1

2x x y 1

x y;y 0

          

 Từđó, chỉ cần chỉ được một cặp giá trị của x y,

chẳng hạn:

2 1 x 2 2 3 y 2           

+ Vậy A có giá trị nguyên dương là: A = 1; A = (0,5 điểm) Bài 2: (4 điểm)

a)

x 11 x 22 x 33 x 44

115 104 93 82

   

  

x 11 x 22 x 33 x 44

( 1) ( 1) ( 1) ( 1)

115 104 93 82

   

      

(1 điểm) x 126 x 126 x 126 x 126

115 104 93 82

   

   

x 126 x 126 x 126 x 126

115 104 93 82

   

    

(0,5 điểm)

x 126

  

x 126

  (0,5 điểm)

b) x2 + y2 + z2 = xy + yz + zx

 2x2 +2y2 + 2z2 – 2xy – 2yz – 2zx = 0

 (x-y)2 + (y-z)2 + (z-x)2 = 0 (0,75 điểm) x y

y z z x

           

x y z

  

 x2009 = y2009 = z2009 (0,75 điểm)

Thay vào điều kiện (2) ta có 3.z2009 = 32010  z2009 = 32009  z =

Vậy x = y = z = (0,5 điểm)

Bài (3 điểm)

(11)

n5 – n = n(n2 – 1)(n2 + 1) = n(n – 1)(n + 1)(n2 + 1)  (vì n(n – 1) tích của hai số nguyên liên tiếp) (1 điểm)

- Chứng minh: n5 – n  5

n5 - n = = n( n - )( n + 1)( n2 – + 5)

= n( n – ) (n + 1)(n – 2) ( n + ) + 5n( n – 1)( n + ) lý luận dẫn đến tổng chia hết cho (1,25 điểm) - Vì ( ; ) = nên n5– n  2.5 tức n5– n  10

Suy n5 n có chữ số tận cũng giống nhau. (0,75 im) Bài 4: điểm

I P

Q

H E

D

A

B C

M

Câu a: điểm

* Chøng minh EA.EB = ED.EC (1 ®iĨm)

- Chứng minh EBD đồng dạng với ECA (gg) 0,5 điểm

- Từ suy

. .

EB ED

EA EB ED EC

ECEA   0,5 ®iĨm

* Chøng minh EAD ECB  (1 ®iĨm)

- Chứng minh EAD đồng dạng với ECB (cgc) 0,75 điểm - Suy EAD ECB 0,25 im

Câu b: 1,5 điểm

- Từ BMC = 120o  AMB = 60o  ABM = 30o 0,5 điểm - Xét EDB vuông D cã B = 30o

 ED = 1

2 EB 

1 2

ED

EB0,5 ®iĨm

- Lý ln cho

2

EAD ECB

S ED S EB

 

 

  từ  S

ECB = 144 cm2 0,5 điểm Câu c: 1,5 điểm

- Chng minh BMI đồng dạng với BCD (gg) 0,5 điểm - Chứng minh CM.CA = CI.BC 0,5 điểm

(12)

Câu d: điểm

- Chng minh BHD đồng dạng với DHC (gg) 0,5 điểm 2

2

BH BD BP BD BP BD DH DC DQ DC DQ DC

     

0,5 điểm - Chứng minh DPB đồng dạng với CQD (cgc)

 

 

` 90o

BDP DCQ

CQ PD ma BDP PDC

  

 

   1 ®iĨm

Bài 5: (2 điểm)

a) x, y dấu nên xy > 0,

 

x y

2

y x (*)  x2 y2 2xy

(x y) 0

   (**) Bất đẳng thức (**) đúng, suy bđt (*) đúng (đpcm) (0,75đ)

b) Đặt x y

t yx 

2 2 x y t y x    

(0,25đ) Biểu thức cho trở thành P = t2 – 3t +

P = t2 – 2t – t + + = t(t – 2) – (t – 2) + = (t – 2)(t – 1) + 1 (0,25đ) - Nếu x; y dấu, theo c/m câu a) suy t   t –  ; t – > 0

t t 1  

   

 P1 Đẳng thức xảy t =  x = y (1) (0,25đ)

- Nếu x; y trái dấu x

0 y

y

x  t <  t – < t – <

t t 1  

  

>  P > (2) (0,25đ)

- Từ (1) (2) suy ra: Với x  ; y  ln có P  Đẳng thức xảy x = y Vậy giá trị nhỏ biểu thức P Pm=1 x=y

phòng giáo dục đào tạo kim bảng

Kiểm tra chất lợng học sinh giỏi năm học 2008 2009 Đáp án , biểu điểm, hớng dẫn chấm

Môn Toán 8

Nội dung Điểm

Bài (3 điểm)

Có a4+ 4=

2

2 2

a a

2 a a a a

     

      

     

     

1,0

Khi cho a giá trị từ đến 30 thì: Tử thức viết đợc thành

(12+1+

2)(12-1+

2)(32+3+

2 )(32-3+

2)…….(292+29+

2)(292-29+ 2)

0,5

Mẫu thức viết đợc thành

(22+2+

2)(22-2+

2)(42+4+

2)(42-4+

2)……(302+30+

2)(302-30+ 2)

0,5

MỈt kh¸c (k+1)2-(k+1)+

2=………….=k2+k+

(13)

Nªn A=

2

1 1

2

1 1861 30 30

2  

 

0,5

Bài 2: điểm ý a: điểm

-Có ý tởng tách, thêm bớt thể đợc nh vậyđể sử dụng bớc sau 0,5 -Viết dạng bình phơng hiệu 0,5

- Viết bình phơng hiệu 0,5

- Lập luận kết luận 0,5

ý b: ®iĨm

Phân tích tủ thức thành nhân tử 1,0

Rút gọn kết luận 1,0

Bµi : ®iĨm

*Từ 2a + b ≤ b ≥ ta có 2a ≤ hay a ≤ 1,0 Do A=a2 - 2a - b ≤ 0 0,5 Nên giá trị lớn A a=2và b=0 0,5

* Tõ 2a + 3b ≤ suy b ≤ - 3a

1,0

Do A ≥ a2 – 2a – + 3a = (

2 a

)2 - 22

9 ≥ - 22

9

0,5

Vậy A có giá trị nhỏ lµ - 22

9 a =

3 vµ b =

0,5

Bài : điểm

- Chn ẩn đạt điều kiện 0,25

- Biểu thị đợc đại lợng theo ẩn số liệu biết(4 đại lợng) 0,25 x

- Lập đợc phơng trình 0,25

- Giải phơng trình 0,5

- Đối chiếu trả lời thời gian ô tô 0,5 - Lập luận , tính trả lời thời gian tơ lại 0,5 Bài : điểm

ý a : ®iĨm

Chứng minh đợc cặp góc

1.0

G H

O

N

M A

B C

Nêu đợc cặp góc

bằng cịn lại 0,5 Chỉ đợc hai tam giác đồng dạng 0,5 ý b : điểm

Từ hai tam giác đồng dạng ý a suy tỉ số cặp cạnh AH / OM

0,5

Tính tỉ số cặp cạnh AG / GM

0,5 Chỉ đợc cặp góc

0,5 Kết luận

tam giác đồng dạng

0,5

ý c : ®iĨm

- Từ hai tam giác đồng dạng câu b suy góc AGH = góc MGO (1)

0,5

- Mặt khác góc MGO +

(14)

- Tõ (1) vµ (2) suy gãc AGH + gãc AGO = 1800

0,5 - Do H, G, O thẳng

hµng 0,5

(15)(16)(17)

Ngày đăng: 06/03/2021, 00:37

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w