1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Mạng nơron và GA điều khiển Robot

6 388 2
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 405,89 KB

Nội dung

Sử dụng bộ điều khiển nơron được tối ưu bằng giải thuật di truyền trong mạch truyền thẳng điều khiển robot bằng phương pháp tính momen. Tác giả: Nguyễn Trần Hiệp - Học viện Kỹ thuật Quân sư. Phạm Thượng Cát - Viện Công nghệ Thông tin. Tóm tắt: Phương pháp tính momen là một phương pháp phổ biến trong điều khiển robot hiện đại. Nó cho phép loại bỏ được tất cả các thành phần phi tuyến liên kết chéo trong robot. Nhược điểm của phương pháp này là các tham số phi tuyến thường không được ước lượng chính xác quá trình tính toán phức tạp đòi h ỏi thời gian thực. Vì vậy trong thực tế dao động quá chỉnh thường xuyên xuất hiện khi điều khiển bằng phương pháp tính momen. Mạng nơron thuật di truyền có thể cho phép khắc phục được những nhược điểm này. Bài báo này giới thiệu việc sử dụng mạng nơron được tối ưu bằng thuật di truyền thực hiện tính toán chính xác các tham số phi tuyến liên kết chéo của hệ robot. Hệ điều khiển được kiểm chứng bằng MATLAB SIMULINK 6.0 trên cánh tay máy hai bậc tự do. Abstract: The computed torque method is very popular in modern in rorbot control. The computed torque method involes computation and cancellation of all non-linearities and cross-coupling terms. The disadvantage of this method is the misestimation of non – linear parametes and the computation complexity of the real-time implementation. In practice oscillation and overshoot always occurs when computed torque method applicated. The drawbacks of this method are overcome by Neural network and genetic algorithm. This paper presents a neural netwokr optimied by genetic algorithm to correct computation of all non-linearities and cross-coupling terms The controller was tested through simulation by MATLAB simulink 6.0 on the 2 – DOF manipulator. 1. Đặt vấn đề. Phương pháp tuyến tính hoá phản hồi hay còn được gọi là phương pháp tính momen là một phương pháp điều khiển hiện đại trong công nghiệp robot. Bộ điều khiển được thực hiện trên cơ sở tách riêng mô hình động lực học của robot thanh hai ph ần tuyến tính phi tuyến, do đó các thành phần như trọng lực, lực ma sát, momen hướng tâm, lực Coriolis .v.v. sẽ được bù đủ [18] [20]. Khi đó, bộ điều khiển PD hay PID được sử dụng để điều khiển vị trí của robot tiệm cận với quỹ đạo mong muốn. Sơ đồ hệ điều khiển tính momen được biểu diễn như sau: D ựa vào sơ đồ trên ta viết được phương trình: q),qh(H(q)uτ & += (11) eKde(τK eKqu &&& D t 0 IPd τ+ ∫ ++= ) (1.2) Trong đó e = q d – q; qqe &&& −= d K I , K P , K D là các ma trận đường chéo xác định dương. Nếu ma trận H vector h được xác định chính xác thì momen τ cũng được xác định chính xác robot sẽ được điều khiển bám sát quỹ đạo mong muốn. Vì ma trận H là xác định dương khả đảo nên từ hình 1 công thức 1.1 vòng điều khiển kín có dạng: uq= && (1.3) Như vậy hệ kín có dạng là n tích phân riêng biệt điều khiển độc lập n khớp tín hiệu điều khiển độc lập tại mỗi khớp sẽ là: iDi t 0 i iIPidi ekdτ(τe k i ekq i u &&& + ∫ ++= ) (1.4) Khi ma trận H vector h giả thiết được xác định chính xác, hệ thống sẽ là ổn định tiệm cận nếu các hệ số k Di , k Pi , k Ii thậm chí không còn xuất hiện dao động độ quá chỉnh trong hệ thống [18]. Thực tế, ma trân H vector h không thể biết được chính xác mà chúng ta chỉ nhận được một giá trị ước lượng H ~ h ~ ( HH ≠ ~ ; hh ≠ ~ ). Thay thế các giá trị ước lượng H ~ h ~ vào phương trình động lực học của robot ta nhận được: ( ) ( ) h-hHuHq ~~ 1-1- H += && (1.5) Rõ ràng phương trình này khác với phương trình 1.3 vì vậy luật điều khiển tính momen như trên sẽ gây ra sai số. Trong thực tế phương pháp này phần nào khắc phục được tính không xác định của mô hình vì hệ thống đã tính đến các thành phần phi tuyến của đối tượng điều khiển sai số của điều khiển phụ thuộc vào mức độ sai lệch giữa H(θ) ) ~ (θH ; . Một khó khăn nữa của phương pháp tính momen là đòi hỏi thực hiện ở chế độ thời gian thực. Việc tính toán như vậy đòi hỏi những hệ tính toán )qh(q, & )q(q,h & ~ Hình 1: Phương pháp điều khiển tính momen q d τ q & q Robot u Tính: q),qh(H(q)u & + ∫ ++ + eKdteK K D d I P & & d & + eq & q & d q & 1 phức tạp đắt tiền. Để nâng cao chất lượng của điều khiển theo phương pháp phản hồi tuyến tính trong kỹ thuật điều khiển nói chung hay trong điều khiển robot nói riêng đã có nhiều nghiên cứu được đề xuất. Chủ yếu tập trung vào việc tính toán một cách chính xác nhanh chóng các giá trị ước lượng ) ~ (θH , các hệ số K )q(q,h & ~ P , K I , K D của bộ điều khiển. Chẳng hạn như Keigo Mohamad sử dụng ANN hay như đề xuất của Nguyễn Công Định sử dụng GAs Fuzzy để xác định các hệ số K P , K I , K D tối ưu của bộ điều khiển [20]. Một phương pháp nữa là sử dụng ANN để xác định chính xác các giá trị ước lượng ) ~ (θH , ) .Rodi R.Safaric đã sử dụng [7][16][17]. Các phương pháp sử dụng ANN như đã trình bày ở trên đều sử dụng thuật học BP. Vấn đề chính là ở chỗ thuật học BP các thuật học khác sử dụng nguyên lý gradient suy giảm không có khả năng hội tụ toàn cục. Chỉ có giải thuật di truyền (GAs) mới có khả năng làm cho quá trình học của ANN tiến tới hội tụ toàn cục. Bài báo này đề xuất mộ t phương pháp sử dụng mạng nơron nhân tạo (ANN) được học bằng GAs để xác định chính xác các tham số phi tuyến H q(q,h & ~ mà M ~ )q(q,h & ~ khi điề khiể ot bằng phương pháp tính momen. Khi đó đối tượng điều khiển (robot) được coi như là một hệ tuyến tính các hệ số K u n rob P , K I , K D , đảm bảo cho hệ ổn định có tốc độ hội tụ nhanh trong trường hợp này có thể được xác định như với hệ điều khiển PID cho các đối tượng tuyến tính. Hình 1.2 mô tả hệ điều khiển tính momen có sử dụng ANN được tối ưu tham số bằng GAs để bù các thành phần không xác định của đối tượng. Số đầu vào của ANN như trên hình 1.2 chính là các biến tr ạng thái đạo hàm của chúng, tín hiệu u trên đầu ra của bộ lấy tích phân, tín hiệu điều khiển τ tác động lên đối tượng được tạo ra trên đầu ra của ANN. Thuật di truyền (GAs) đóng vai trò giám sát sẽ thay đổi các trọng số liên kết của ANN để tìm được tập hợp trọng số tối ưu sao cho chất lượng của điều khiển là tốt nhất. 2. Điều khiển robot hai bậc tự do sử dụng ANN được tối ưu bằng GAs theo phương pháp tính momen. Xét một mô hình robot hai bậc tự do được mô tả như hình 1.3. Phương trình chuyển động của robot hai bậc tự do có sơ đồ như hình 1.3 được viết như sau: τ),h()H( =θθ+θθ &&& (1.6) [ ] 2 T 2 Rτ 1 ∈ττ= , là momen của khớp robot. [ ] 2 T 21 Rθ ∈θθ= , Biểu diễn góc quay của khớp robot. ( ) 2x2 RH ∈θ là ma trận quán tính của robot có các phần tử được cho như sau: ( ) ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ +++++= 2 θcos g2 l n1 2l 2 g2 l 2 n1 l 2 m 2 g1 l 1 m 2 I 1 I 11 H (1.7) () ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ θ++== 22g1n 2 2g2221 12 cosll2lmIHH (1.8) 2 2g2222 lmIH += (1.9) I 1 , I 2 là momen quán tính của khớp thứ nhất khớp thứ hai l g1 , l g2 ;ag khoảng cách từ khớp thứ nhất khớp thứ hai đến trọng tâm của khớp một hai. l n1 ; l n2 là chiều dài của khớp một khớp hai. m 1 ; m 2 là khối lượng của khớp một khớp hai. m m1 ; m m2 là khối lượng của động cơ khớp một khớp hai. Vector biểu diễn thành phần của lực 2 R)qh(q, ∈ & Coriolis trọng lực của hai khớp: 22122g1n21 2llmh θθ+θθ−= &&& ))((sin (1.10) 122g1n22 llmh θθ= & )(sin (1.11) Với các tham số của robot được cho như sau: Khớp thứ nhất Khớp thứ hai Trọng lượng khớp m ij [kg] 50.0 50.0 Trọng lượng của động cơ m mi [kg] 5.0 5.0 Hình 1.3: Biểu diễn robot hai bậc tự do θ 2 l g1 l n1 y khớp I 2 , m 2 l n2 l g2 I 1 , m 1 khớp θ 1 x e Thuật học (GAs) e && Hình 2: H ệ điều khiển tính momen d ùng ANN v à thuật học G As e & Hệ số K P , K I , K D Chỉnh trọng số w ij Mạng Nơron (ANN) q d τ q & q Robot ∫ ++ ++ eKdteK eKq D d I P & && d q && d q & 2 Quán tính của khớp I li [kg.m 2 ] 10.0 10.0 Quán tính của động cơ I mi [kg.m 2 ] 0.01 0.01 Khoảng cách l i [m] 1.0 1.0 Khoảng cách l gi [m] 0.5 0.5 Hệ số giảm tốc của hộp số k ri 100 100 Quỹ đạo mong muốn của robot được giả thiết là hàm thời gian của vị trí, vận tốc gia tốc góc [21]: θ d1 (t) = 0.5 cos (πt); θ d2 (t) = 0.5 sin (πt) + 1.0 )(.)( t50t 1d ππ−=θ sin & ; )(.)( t50t 2d ππ=θ cos & )(.)( t50t 2 1d ππ−=θ cos && ; )(.)( t50t 2 2d ππ−=θ sin && Mục đích của bài toán điều khiển là tìm momen tác động lên các khớp của robot để robot chuyển động đến vị trí mong muốn thoả mãn các yêu cầu của quá trình điều khiển. Sai số của mô hình robot, sự thay đổi các tham số của robot, vị trí đạo hàm của tín hiệu phản hồi được dùng để tính toán chính xác tín hiệu điều khiển tác động lên robot. Do tính không xác định của mô hình robot nên phương trình 1.6 được viết: τ),(h)(H =θθ+θθ &&& ~~ (1.12) ) ~ (θH là các giá trị ước lượng của H(θ) . Kết hợp 1.8; 1.9; 1.10và 1.11 ta có: )q(q,h & ~ )qh(q, & ∫ +++= t 0 iPdd dteKeKeKθθ & &&&& (1.13) Tín hiệu e = [e 1 , e 2 ] T = [θ d - θ] là các giá trị sai lệch. Khi ) ~ (θH ~ hoàn toàn giống như H(θ) h(q, thì phương trình của vector sai lệch sẽ thoả mãn phương trình tuyến tính sau: )q(q,h & )q & 0dt t 0 IPD =+++ ∫ eKeKeKe &&& (1.14) Như vậy ta có thể chọn K P , K I , K D để hệ thống này ổn định như mong muốn. Hệ điều khiển khi đó được coi như là một hệ tuyến tính, các hệ số K P , K I , K D lúc đó được chọn như khi thiết kế bộ điều khiển PID với đối tượng tuyến tính cho hệ nhiều đầu vào/ra. Các hệ số này có thể chọn theo phương pháp dễ dàng nhất như phương pháp đặt điểm cực. Với ANN có cấu trúc 6-8-2 tức là có 6 nơron trên lớp vào [ ] 222111 uu θθθθ && ,,,,, , 8 nơron tại lớp ẩn 2 nơron trên đầu ra [ . Với cấu trúc như trên hình 1.4 số lượng các liên kết của ANN sẽ là (7x8) + (9x2) = 74. Hàm tác động của các nơron tại đầu vào là hàm tuyến tính, tại lớp ẩn là hàm sigmoid lưỡng ] cực obot trong trường hợp này có ơ đồ cấu trúc như sau: Cấu trúc mạng nơron được biểu diễn như sau: 21 ττ , của nơron tại lớp ra là hàm dấu bão hoà[10]. Hệ thống điều khiển r s Hình 1.4: Bộ điều k n sử dụng ANN thu hiển tính mome ật học GAs GAs Q muốn d2 d2 d1 θ,θ θθ θθ &&& && & uỹ đạo mong d2 d1 , d1 , ANN + + + + + + + + + + u 1 + + K I1 u 2 K I2 e & K D1 K P1 ∫ edt ∫ edt K P2 K D2 Ro bot Chỉnh trọng Chỉnh trọng W i j 1 1 Z 2 Z 3 Z 4 Z 5 Z 6 Z 7 τ 1 τ 2 Thuật học GAs Ch số W i j q q & q && q d d q & d q && ỉnh trọng Lớp đầu ra Lớp đầu vào Lớp ẩn Hình 1.5: Cấu trúc ANN thuật học GAs 3 Trong đó tập hợp đầu , z vào z = [z , z , z 5 , z 6 , z 7 ] 2 3 4 chính là tập hợp đầu vào [ ] 22 θ & , . Tín hiệu điều khiển [] 2 T 2 Rτ 1 ∈ττ= , tìm được ph 2111 uu θθθ & ,,,, ải thỏa mãn điều kiện làm việc th c tế của robot: tìm được một giá trị τ tối ủa giá trị sai số trung bình bình phương [2] [3] [6]: ự maxmin ττ≤ (1.14) Trong đó τ τ ≤ min τ max phụ thuộc vào công suất của động cơ điều khiển tại các khớp của robot bởi vì nếu giá trị τ tối ưu tìm được nằm ngoài khoảng này thì động cơ của robot không có khả năng tạo được tín hiệu điều khiển. Giải thiết quỹ đạo mong muốn của robot q d nằm trong vùng hoạt động cho phép của robot. Điều này cho phép ưu đảm bảo cho q →q d . Để sử dụng GAs trong quá trình học của ANN, hàm mục tiêu được chọn theo nghịc đảo c ⎪ ⎩ ⎪ ⎨ ⎧ ≤ > = max nÕu max nÕu qq qq ))(( 1 0 ))(,( c TqF tq i chromsF T u kỳ điều khiển. C là ch max q là giá trị tới hạn quy định vùng làm việc giá trị ước lượng theo hàm mục của cá th ng trung bình của các biếntrạng thái tại thời điểm T C . của robot. F(chroms i , q(t)) là tiêu ể thứ i. ))(( 1 C TqF là nghịgh đảo sai số bình phươ 222 1 1 ))(( eee qF &&& ∆+∆+∆ ; )()( 0 CC TT eee &&& = C T (1.15) )()( 0 CC TT eee −=∆ −=∆ ; )()( 0 CC TT eee &&&&&& −=∆ là sai lệch giữa sai số cho phép tại thời điểm T C sai số thực tế tại thời điểm T C . Chương trình mô phỏng được thực hiện trên MATLAB 6.0 với các tham số của GAs được cho ẫu sec P C) i min t dấu) 17 à P2 = 6. Kết quả mô phỏng được biểu diễn như sau: như sau: Chu kỳ điều khiển T C 3 sec Khoảng thời gian lấy m 10 m Tỷ lệ liên kết chéo ( 0.5 Tỷ lệ biến đổi (P m ) 0.1 Giá trị giới hạn của trọng số W i max , W ± 5 Số bit mã hóa nhị phân (có 1 bi Kích thước của tập hợp (P size ) 300 Các giá trị của hệ số K P , K I , K D như đã nói ở trên được xác định bằng phương pháp đặt điểm cực chọn được K i1 = 1; K P1 = 3; K D1 = 3; K I2 = 8; K D2 = 12 v K Biểu diễn góc dự định góc thực tế tại khớp một Biểu diễn vận tốc góc dự định thực tế tại khớp một Biểu diễn của momen dự định thực tế tại khớp một 4 Biểu diễn góc dự định góc thực tế tại khớp hai Biểu diễn vận tốc góc dự định thực tế tại khớp hai Biểu diễn của momen dự định thực tế tại khớp hai Kết luận: Trong bài báo này, tác giả đã trình bày phương pháp khắc phục được những nhược điểm của phương pháp điều khiển tính momen. Hệ điều khiển có đặc trưng phi tuyến đượcđược đưa về hệ tuyến tính trên cơ sở bù chính xác các thành phần phi tuyến là các giá trị ước lượng ) ~ (θH . Phương pháp này đảm bảo được độ chính xác hội tụ của hệ điều khiển. Độ chính xác chất lượng của quá trình điều khiển phụ thuộc vào độ chính xác của các giá trị ước lượng )q(q,h & ~ ) ~ (θH sự lựa chọn các hệ số K )q(q,h & ~ P , K I , K D của bộ điều khiển PID. Tác giả đề xuất một phương pháp sử dụng ANN được tối ưu bằng GAs để xác định chính xác các giá trị ước lượng ) ~ (θH . Các kết quả mô phỏng trên tay máy hai bậc tự do cho thấy rằng phương pháp mà tác giả đề xuất ở trên có thể là một đóng góp nhằm làm phong phú hơn các thuật học của ANN cũng như sự phong phú khi sử dụng ANN vào các quá trình điều khiển nói chung. )q(q,h & ~ Tài liệu tham khảo: [1] Nguyễn Trần Hiệp, Phạm Thượng Cát- Genetic Algorithm and its applications in Control Engineering. [2] Nguyễn Trần Hiệp, Phạm Thượng Cát- Nghiên cứu bài toán dao động con lắc ngược s ử dụng thuật Gen bằng MATLAB. Hội thảo toàn quốc về phát triển Phát triển công cụ tin học trợ giúp cho giảmg dạy nghiên cứu ứng dụng toán học – hà nội 4/199, trang 326-334 [3] Nguyễn Trần Hiệp, Phạm Thượng Cát - (1999) - Điều khiển con lắc ngược bằng phương pháp trượt sử dụng mạng nơron được tối ưu bằng thuật gen tr 30 – 38 Tạp chỉ KHKT số 90 năm 2000 - Họ c viện Kỹ thuật Quân sự [4] Nguyến Thanh Thuỷ, Trần Ngọc Hà, (1999) Tích hợp kỹ thuật mạng nơron giải thuật di truyền trong phân tích dữ liệu. Tạp chí tin học điều khiển học T15, S.2 [5] Trần Văn Hãn - Đại số tuyến tính trong kỹ thuật – Nhà xuất bản Đại học trung học chuyên nghiệp 1978. [6] A. Haeussler, K. C. Ng Y. Li, D. J. Murray- Smith, and K. C. Sharman - Neurocontrollers designed by a genetic algorithm. In Proc. First IEE/IEEE Int. Conf. on GA in Eng. Syst.: Innovations and Appl. , pages 536-542, Sheffield, U.K., September 1995. [7] Ales Hace, Riko Safaric, Karel Jezernik - Faculty of Electrical Engineering and computer Sciences University of Maribor Slovernia -Artificial 5 Neural Network control for Maipulators and Lyapunov theory. Web site: http://robin2.r.uni- mb.si/konference/ales/airtc95/airtc95.html. [8] A. Guez, J. L Eilbert, M. Kam - Neural network Architecture for control , International Conference on Neural Networks, San Diego, California, June 21-24,, 1987, pp 22 – 25. [9] Bernard Friedland - New Jersey Institute of Technology - Advanced Control System Design. Prentice-Hall International, Inc 1995. [10] Bart Kosko – Neural Networks and Fuzzy Systems, Prentice-Hall, Inc. Asimon & Schuster Company, 1992. [11] Chin - Teng Lin and C.S George Lee - Neural Fuzzy systems - Book is to the Chiao-Tung University Centennial 1996. [12] D. Psaltis, A Sideris, A. A Yamamura – A Multilayered neural network controller, International Conference on Neural Networks, San Diego, California, June 21-24,, 1987, Vol 4, pp 17 – 21. [13] D. Psaltis, A Sideris, A. A Yamamura – Neural controllers, International Conference on Neural Networks, San Diego, California, June 21-24,, 1987, Vol 4, pp 551 – 558. [14] Eric Ronco – Incremental polynomial controller networks: Two self-organising nonliear controllers, Ph.D. Thesis 1997, Glasgow University, Faculty of Engineering, Supervised by P.J. Gawthrop. [15] E.W. McGookin, D.J. Murray-Smith, and Y. Li - A population minimisation process for genetic algorithms and its application to controller optimisation, In Proc. 2nd Int. Conf. Genetic Algorithms in Eng. Syst.: Innovations and Applications, Glasgow , pages 79-84, Sept 1997. [16] M. Rodi, R. Safaric – Syntesis of the Sling mode NN Controller, Conference Proceding’ 97 Instanbul, 1997. [17] M. A. Unar, D. J Murray-Smith, S. F. Ali Shah – Design and Tuning of fixed structure PID Controllers A survay. Centre for Systems and Control of Engineering at Glasgow University – Technical Reports CSC-96016. 1996. [18] J.Somlo - B.Lantos - P.T.Cat - Advanced Robot Control. Akademiai Kiado. Budapest 1997. [19] John E. Gibson – Nonlinear automatic Control, Mc Graw-Hill Book Company, Inc. 1963. [20] Keigo Watanabe, Mohammad Teshnehlab – Intelligent Control Base on Flexible Neural Networks, Kluwer Academic Publishers 1999. [21] Mohammad Teshnehlab, Keigo Watanabe – Intelligent Control Based on Flexible Neural Networks, Kluwer Academic Publicshers Dordecht/ Boston/ London. 6 . thành phần phi tuyến của đối tượng điều khiển và sai số của điều khiển phụ thuộc vào mức độ sai lệch giữa H(θ) và ) ~ (θH ; và . Một khó khăn nữa của phương. tạp và đắt tiền. Để nâng cao chất lượng của điều khiển theo phương pháp phản hồi tuyến tính trong kỹ thuật điều khiển nói chung hay trong điều khiển robot

Ngày đăng: 07/11/2013, 02:15

HÌNH ẢNH LIÊN QUAN

Hình 1.5: Cấu trúc ANN và thuật học GAs - Mạng nơron và GA điều khiển Robot
Hình 1.5 Cấu trúc ANN và thuật học GAs (Trang 3)
Hình 1.4: Bộ điều k n sử dụng ANN và thuhiển tính momeật học GAs  - Mạng nơron và GA điều khiển Robot
Hình 1.4 Bộ điều k n sử dụng ANN và thuhiển tính momeật học GAs (Trang 3)

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN