Thí sinh học chương trình nào thì làm chỉ được làm phần dành riêng cho chương trình đó.. Tính thể tích của khối tròn xoay tạo thành khi quay hình (H) quanh trục hoành.[r]
(1)ĐỀ THI THỬ MƠN TỐN ĐỀ 5
( Thời gian làm 150 phút ) I PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( điểm ) Câu I ( 3,0 điểm )
Cho hàm số
2x 1 y
x 1
có đồ thị (C) a) Khảo sát biến thiên vẽ đồ thị (C)
b) Viết phương trình tiếp tuyến với đồ thị (C) qua điểm M(1;8) Câu II ( 3,0 điểm )
a) Giải bất phương trình
x logsin2 x
3 1
b) Tính tìch phân : I =
1 x
(3 cos2x)dx 0
c) Giải phương trình x2 4x 0 tập số phức Câu III ( 1,0 điểm )
Một hình trụ có bán kính đáy R = , chiều cao h = 2 Một hình vng có đỉnh nằm hai đường trịn đáy cho có cạnh khơng song song khơng vng góc với trục hình trụ Tính cạnh hình vng
II PHẦN RIÊNG ( điểm )
Thí sinh học chương trình làm làm phần dành riêng cho chương trình 1 Theo chương trình chuẩn :
Câu IV.a ( 2,0 điểm ) :
Trong không gian với hệ tọa độ Oxyz , cho điểm M(1;0;5) hai mặt phẳng (P) :
2x y 3z 0 (Q) : x y z 0 a Tính khoảng cách từ M đến mặt phẳng (Q)
b Viết phương trình mặt phẳng ( R ) qua giao tuyến (d) (P) (Q) đồng thời vng góc với mặt phẳng (T) : 3x y 0
Câu V.a ( 1,0 điểm ) :
Cho hình phẳng (H) giới hạn đường y = x22x trục hồnh Tính thể tích khối trịn xoay tạo thành quay hình (H) quanh trục hồnh
2 Theo chương trình nâng cao : Câu IV.b ( 2,0 điểm ) :
Trong không gian với hệ tọa độ Oxyz , cho đường thẳng (d ) :
x y z 3
2 1 1
mặt phẳng (P) : x 2y z 0
a Tìm tọa độ giao điểm đường thẳng (d) mặt phẳng (P) b Tính góc đường thẳng (d) mặt phẳng (P)
c Viết phương trình đường thẳng () hình chiếu đường thẳng (d) lên mặt phẳng (P). Câu V.b ( 1,0 điểm ) :
Giải hệ phương trình sau :
y
4 log x 42 2y log x 22 4
ĐỀ 6
(2)I PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( điểm ) Câu I ( 3,0 điểm )
Cho hàm số y x 4 2x21 có đồ thị (C) a) Khảo sát biến thiên vẽ đồ thị (C)
b) Dùng đồ thị (C ) , biện luận theo m số nghiệm thực phương trình
x 2x m (*) . Câu II ( 3,0 điểm )
a) Giải phương trình
log x 2log cosx cos
3 log x x 1
3 2
b) Tính tích phân : I = 1
x x(x e )dx 0
c) Tìm giá trị lớn giá trị nhỏ hàm số y = 2x33x212x 2 [ 1;2]
Câu III ( 1,0 điểm )
Cho tứ diện SABC có ba cạnh SA,SB,SC vng góc với đôi với SA = 1cm, SB = SC = 2cm Xác định tân tính bán kính mặt cấu ngoại tiếp tứ diện , tính diện tích mặt cầu thể tích khối cầu
II PHẦN RIÊNG ( điểm )
Thí sinh học chương trình làm làm phần dành riêng cho chương trình 1 Theo chương trình chuẩn :
Câu IV.a ( 2,0 điểm ) :
Trong không gian với hệ tọa độ Oxyz , cho điểm A( 2;1; 1) ,B(0;2; 1) ,C(0;3;0) , D(1;0;1)
a Viết phương trình đường thẳng BC
b Chứng minh điểm A,B,C,D không đồng phẳng c Tính thể tích tứ diện ABCD
Câu V.a ( 1,0 điểm ) :
Tính giá trị biểu thức P (1 i)2(1 i)2 2 Theo chương trình nâng cao :
Câu IV.b ( 2,0 điểm ) :
Trong không gian với hệ tọa độ Oxyz cho điểm M(1; 1;1) , hai đường thẳng
x y z ( ) :1
1 1 4
,
x t ( ) : y 2t2
z 1
mặt phẳng (P) : y 2z 0 a Tìm điểm N hình chiếu vng góc điểm M lên đường thẳng (2)
b Viết phương trình đường thẳng cắt hai đường thẳng ( ) ,( )1 2 nằm mặt phẳng (P)
Câu V.b ( 1,0 điểm ) :
Tìm m để đồ thị hàm số
2
x x m (C ) : ym
x 1
với m 0 cắt trục hoành hai điểm
phân biệt A,B cho tuếp tuyến với đồ thị hai điểm A,B vng góc ĐỀ 7
(3)Câu I ( 3,0 điểm )
Cho hàm số y x 3 3x 1 có đồ thị (C) a) Khảo sát biến thiên vẽ đồ thị (C)
b) Viết phương trình tiếp tuyến với đồ thị (C) qua điểm M( 14
9 ; 1) Câu II ( 3,0 điểm )
a) Cho hàm số
2 x x
y e Giải phương trình yy2y 0
b) Tính tìch phân :
2 sin 2x
I dx
2 (2 sin x) 0
c) Tìm giá trị lớn giá trị nhỏ hàm số y 2sin x cos x 4sin x 1 3 2 Câu III ( 1,0 điểm )
Một hình nón có đỉnh S , khoảng cách từ tâm O đáy đến dây cung AB đáy a ,
SAO 30 , SAB 60 Tính độ dài đường sinh theo a II PHẦN RIÊNG ( điểm )
Thí sinh học chương trình làm làm phần dành riêng cho chương trình 1) Theo chương trình chuẩn :
Câu IV.a ( 2,0 điểm ) :
Trong không gian với hệ tọa độ Oxyz , cho hai đường thẳng
x y 2 z ( ) :1
2 2 1,
x 2t ( ) : y2 5 3t
z 4
a Chứng minh đường thẳng ( )1 đường thẳng ( )2 chéo
b Viết phương trình mặt phẳng ( P ) chứa đường thẳng ( )1 song song với đường thẳng ( )2
Câu V.a ( 1,0 điểm ) :
Giải phương trình x3 8 tập số phức 2) Theo chương trình nâng cao :
Câu IV.b ( 2,0 điểm ) :
Trong không gian với hệ tọa độ Oxyz cho điểm M(2;3;0) , mặt phẳng (P ) :
x y 2z 0 mặt cầu (S) : x2y2z2 2x 4y 6z 0 a Tìm điểm N hình chiếu điểm M lên mặt phẳng (P)
b Viết phương trình mặt phẳng (Q) song song với (P) tiếp xúc với mặt cầu (S) Câu V.b ( 1,0 điểm ) :
Biểu diễn số phức z = 1+ i dạng lượng giác ĐỀ 8
( Thời gian làm 150 phút ) I PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( điểm ) Câu I ( 3,0 điểm )
Cho hàm số
x 3 y
x 2
(4)a) Khảo sát biến thiên vẽ đồ thị (C)
b) Tìm tất giá trị tham số m để đường thẳng (d) : y = mx + cắt đồ thị hàm số cho hai điểm phân biệt
Câu II ( 3,0 điểm )
a) Giải bất phương trình
ln (1 sin )
2 2
2
e log (x 3x) 0
b) Tính tìch phân : I =
2 x x
(1 sin )cos dx 2 2 0
c) Tìm giá trị lớn giá trị nhỏ hàm số
x e y x
e e đoạn [ln2 ; ln 4]
Câu III ( 1,0 điểm )
Cho hình lăng trụ tam giác ABC.A’B’C’ có tất cà cạnh a Tính thể tích hình lăng trụ diện tích mặt cầu ngoại tiếp hình lăng trụ theo a
II PHẦN RIÊNG ( điểm )
Thí sinh học chương trình làm làm phần dành riêng cho chương trình 1) Theo chương trình chuẩn :
Câu IV.a ( 2,0 điểm ) :
Trong không gian với hệ tọa độ Oxyz , cho hai đường thẳng
x 2t (d ) : y 31
z t
và
x 2 y z
(d ) :2
1 1 2
a Chứng minh hai đường thẳng (d ),(d )1 2 vng góc khơng cắt b Viết phương trình đường vng góc chung (d ), (d )1 2
Câu V.a ( 1,0 điểm ) :
Tìm mơđun số phức z 4i (1 i) 3 2) Theo chương trình nâng cao :
Câu IV.b ( 2,0 điểm ) :
Trong không gian với hệ tọa độ Oxyz , cho mặt phẳng () : 2x y 2z 0 hai
đường thẳng (d1 ) :
x y 1 z
2 2 1
, (d2 ) :
x y z 7
2 3 2
a Chứng tỏ đường thẳng (d1) song song mặt phẳng () (d2) cắt mặt phẳng () b Tính khoảng cách đường thẳng (d1) (d2 )
c Viết phương trình đường thẳng () song song với mặt phẳng () , cắt đường thẳng (d1) (d2 ) M N cho MN =
Câu V.b ( 1,0 điểm ) :
Tìm nghiệm phương trình z z 2, z số phức liên hợp số phức z ***************************************
ĐỀ 9
(5)I PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( điểm ) Câu I ( 3,0 điểm )
Cho hàm số y = x 4 2x2 có đồ thị (C) a Khảo sát biến thiên vẽ đồ thị (C)
b Viết phương trình tiếp tuyến với đồ thị (C) qua điểm M ( 2;0) Câu II ( 3,0 điểm )
a Cho lg 392 a , lg112 b Tính lg7 lg5 theo a b
b Tính tìch phân : I =
2 1
x
x(e sin x)dx 0
c Tìm giá trị lớn giá trị nhỏ có hàm số
x 1 y
1 x
Câu III ( 1,0 điểm )
Tính tỉ số thể tích hình lập phương thể tích hình trụ ngoại tiếp hình lập phương
II PHẦN RIÊNG ( điểm )
Thí sinh học chương trình làm làm phần dành riêng cho chương trình 1.Theo chương trình chuẩn :
Câu IV.a ( 2,0 điểm ) :
Trong không gian với hệ tọa độ Oxyz , cho tam giác ABC với đỉnh A(0;2;1) , B(3;1;2) , C(1;1;4)
a Viết phương trình tắc đường trung tuyến kẻ từ đỉnh A tam giác
b Viết phương trình tham số đường thẳng qua điểm C vng góc với mặt phẳng (OAB) với O gốc tọa độ
Câu V.a ( 1,0 điểm ) :
Cho hình phẳng (H) giới hạn đường (C) : 1 y
2x 1 , hai đường thẳng x = , x = trục hoành Xác định giá trị a để diện tích hình phẳng (H) lna
2 Theo chương trình nâng cao : Câu IV.b ( 2,0 điểm ) :
Trong không gian với hệ tọa độ Oxyz , cho điểm M (1;4;2) hai mặt phẳng (P1) : 2x y z 0 , (P ) : x 2y 2z 02
a Chứng tỏ hai mặt phẳng (P1) (P2) cắt Viết phương trình tham số giao tuyến hai mặt phằng
b Tìm điểm H hình chiếu vng góc điểm M giao tuyến Câu V.b ( 1,0 điểm ) :