1. Trang chủ
  2. » Lịch sử lớp 12

2 de thi thu DH mon Toan va dap an Thai Binh HaiPhong

14 15 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 14
Dung lượng 308,84 KB

Nội dung

SỞ GIÁO DỤC - ĐÀO TẠO THÁI BÌNH.. TRƯỜNG THPT TÂY THỤY ANH.[r]

(1)

SỞ GIÁO DỤC - ĐÀO TẠO THÁI BÌNH KỲ THI THỬ ĐẠI HỌC NĂM 2010. TRƯỜNG THPT TÂY THỤY ANH Mơn Tốn

Thời gian làm 180 phút

A /Phần chung cho tất thí sinh ( điểm ) Câu I : ( điểm ).

Cho hàm số y = x3 + ( – 2m)x2 + (2 – m )x + m + (C m) 1.Khảo sát biến thiên vẽ đồ thị hàm số m =

2 Tìm m để đồ thị hàm số (Cm) có cực trị đồng thời hoành độ cực tiểu nhỏ Câu II : ( điểm ).

1 Giải phương trình: sin 2x 2(sinx+cosx)=5

2 Tìm m để phương trình sau có nghiệm : 2x2 mx x.  Câu III : ( điểm ).

Tính tích phân sau :

2

3

1 x

I dx

x x

 

Cho hệ phương trình :

3

x y m(x y)

x y

   

  

Tìm m để hệ có nghiệm phân biệt (x1;y1);(x2;y2);(x3;y3) cho x1;x2;x3 lập thành cấp số cộng d 0 .Đồng thời có hai số xi thỏa mãn xi >

Câu IV : ( điểm ).

Trong không gian oxyz cho hai đường thẳng d1 :

x y z 1 2; d2

x 2t

y t z t

  

  

   

và điểm M(1;2;3)

1.Viết phương trình mặt phẳng chứa M d1 ; Tìm M’ đối xứng với M qua d2 2.Tìm A d ; B d  cho AB ngắn

B.

PHẦN TỰ CHỌN: ( điểm ).

( Thí sinh làm câu Va Vb sau đây.) Câu Va

Trong mặt phẳng Oxy cho ABC có A(2;1) Đường cao qua đỉnh B có

phương trình x- 3y - = Đường trung tuyến qua đỉnh C có phương trình x + y +1 = Xác định tọa độ B C Tính diện tích ABC.

2.Tìm hệ số x6 khai triển

n

x x

 

 

  biết tổng hệ số khai triển

bằng 1024 Câu Vb.

Giải bất phương trình :

2

1

5 x 5 x

(2)

2.Cho lăng trụ ABC.A’B’C’đáy ABC tam giác cạnh a .A’ cách điểm A,B,C Cạnh bên AA’ tạo với đáy góc 600 Tính thể tích khối lăng trụ.

SỞ GIÁO DỤC VÀ ĐÀO TẠO THÁI BÌNH KỲ THI THỬ ĐẠI HỌC NĂM 2010. TRƯỜNG THPT TÂY THỤY ANH Mơn Tốn

ĐÁP ÁN

Câu Ý Nội dung Điểm

I . 200

1 Khảo sát biến thiên vẽ đồ thị hàm số m = 1,00 Với m = ta y = x3 – 3x2 +

a ;Tập xác định : D = R 0,25

b ; Sự biến thiên Tính đơn điệu …… Nhánh vô cực……

j

o

4 +

-

+ 0 - 0 +

2

0 +

-

y y' x

0,25

c ; Đồ thị :

+ Lấy thêm điểm

+ Vẽ hướng lõm vẽ mực màu mực với phần trình bầy

(3)

8

-2 -4 -6 -8

-15 -10 -5 10 15 0,25

2 Tìm m để đồ thị hàm số (Cm) có cực trị đồng thời hoành độ cực tiểu nhỏ

1,00 Hàm số có cực trị theo yêu cầu đầu thỏa

mãn ĐK sau :

+ y’ =0 có nghiệm phân biệt x

1 < x2 

'

4m m

    

 m < - m >

5

0,25

0,25 + x1 < x2 < ( Vì hệ số x2 y’ mang dấu dương )

 …    ' 2m  … 

21 m

15

0,25

Kết hợp ĐK ta được… Đáp số m    ; 1

5 ;

 

 

  0,25

II 2,00

1

1.Giải phương trình: sin 2x 2(s inx+cosx)=5 ( I ) 1,00

Đặt sinx + cosx = t ( t  2)  sin2x = t2 -  ( I ) 0,25

 t2 2t 0   t 2) 0,25

+Giải phương trình sinx + cosx =  2 …  cos(x 4) 

 

+ Lấy nghiệm

0,25

Kết luận :

x k2

4

  

( kZ) dạng khác 0,25

2 Tìm m để phương trình sau có nghiệm :

2x mx x. 

(4)

 hệ

2

2x mx x 6x x

    

 

 có nghiệm nhất 0,25

 x2 + 6x – = -mx (1)

+; Ta thấy x = nghiệm 0,25 + ; Với x 0 (1) 

2

x 6x m x

 



Xét hàm số : f(x) =

2

x 6x x

 

 ;3 \ 0   có f’(x) =

2

x x

>  x

0,25

+ , x =  f(3) = , có nghiệm – m >  m < - 6 0,25

III 2,00

1

Tính tích phân sau :

2 1 x I dx x x     2 1 x I dx x x     = 2 1 x dx x x    = 1 d(x ) x x x     = - 1 ln(x ) x  = … = ln ( Hoặc 2 1 x I dx x x     = 2 1 2x dx x x

         =……) 1,00 0,25 0,50 0,25 2

2.Cho hệ phương trình :

3

x y m(x y)

x y

   

  

Tìm m để hệ có nghiệm phân biệt (x1;y1);(x2;y2);(x3;y3) cho x1;x2;x3 lập thành cấp số cộng d 0.Đồng thời có hai số xi thỏa mãn xi >

3

x y m(x y)

x y

   

 

 

2

(x y)(x y xy m) x y

(5)

1 x y

2 y x

(x) x x m

  

 

 

 

     

 

Trước hết (x)phải có nghiệm phân biệt x

1 ; x2 

4m m

     

0,25

Có thể xảy ba trường hợp sau theo thứ tự lập thành cấp số cộng

+Trường hợp :

; x1 ; x2 +Trường hợp : x1 ; x2 ;

1

+Trường hợp : x1 ;

; x2

0,25

Xét thấy Trường hợp ; không thỏa mãn Trường hợp ta có

1

1

x x

x x m

 

 

 

 với m >

3

Đồng thời có hai số xi thỏa mãn xi > ta cần có thêm điều kiện sau

2

1 4m

x 4m 3 m

2

  

      

Đáp số : m >

0,25

IV

Trong không gian Oxyz cho hai đường thẳng d1 :

x y z

1 1 2; d2

x 2t

y t z t

  

  

   

và điểm M(1;2;3)

1.Viết phương trình mặt phẳng chứa M d1 ; Tìm M’ đối xứng với M qua d2

+ Phương trình mặt phẳng chứa M d1 … Là (P) x + y – z = + Mp(Q) qua M vng góc với d2 có pt 2x – y - z + =

2,00

0,25 0,25 + Tìm giao d2 với mp(Q) H(-1 ;0 ;1)

…  Điểm đối xứng M’ M qua d

2 M’(-3 ;-2 ;-1)

0,25 0,25 2.Tìm A d ; B d  cho AB ngắn

Gọi A(t;t;2t) B(-1-2t1 ;-t1 ;1+t1) AB ngắn đoạn

(6)

vng góc chung hai đường thẳng d1 d2

1

2

AB.v AB.v

 

 

 

                           

 

……. tọa độ

3 ; ; 35 35 35 A 

 

1 17 18 ; ; 35 35 35 B  

  0,50

Va 2,00

1

-2

Trong mặt phẳng oxy cho ABC có A(2;1) Đường cao qua

đỉnh B có phương trình x- 3y - = Đường trung tuyến qua đỉnh C có phương trình x + y +1 = Xác định tọa độ B C

M

C B

H

A

+AC qua A vng góc với BH có VTPT n(3;1)

AC có phương trình 3x + y - =

+ Tọa độ C nghiệm hệ AC CM

 

 …… C(4;- 5)

+

B B

M M

2 x y

x ; y

2

 

 

; M thuộc CM ta

B B

2 x y

1

2

 

  

+ Giải hệ

B B

B B

2 x y

1

2

x 3y

 

  

 

   

 ta B(-2 ;-3)

0,25

0,25

Tính diện tích ABC.

+ Tọa độ H nghiệm hệ

14 x x 3y 5

3x y 7

y

  

  

 

 

  

  

 

… Tính BH = 10

5 ; AC = 2 10 Diện tích S =

1 10

AC.BH 10 16

2 2  ( đvdt)

0,25

(7)

2.Tìm hệ số x6 khai triển

n

x x

 

 

  biết tổng hệ số khai

triển 1024

+ ; C0n C1n  C nn 1024  1 1 1024

n

   2n = 1024  n = 10

0,25 0,25

+ ;  

10 10 10 k

k

3 k

10 k o

1

x C x

x x

   

 

   

     ; …….

Hạng tử chứa x6 ứng với k = hệ số cần tìm 210

0,25 0,25

Vb 2,00

1

1 Giải bất phương trình :

2

1

5 x 5x

 > 24 (2)

-

-(2)     

2 2

x x

5  24  0

 5x2 5  x2 > 1

x x

 

  

1,00 -0,5

0,5

2 2.Cho lăng trụ ABC.A’B’C’đáy ABC tam giác cạnh a .A’ cách điểm A,B,C Cạnh bên AA’ tạo với đáy góc 600 Tính thể tích khối lăng trụ

-

-G N

M

C

B A

B'

C' A'

Từ giả thiết ta chóp A’.ABC chóp tam giác A AG ' là góc cạnh bên đáy

 A AG ' = 600 , … AG =

a 3 ;

Đường cao A’G chóp A’.ABC đường cao lăng trụ

1,00

-0,25

0,25

(8)

Vậy A’G = a

3 .tan600 = a

3 . 3= a.

…… Vậy Thể tích khối lăng trụ cho V =

3

1 a a a .a

2  0,25

Ghi : + Mọi phương pháp giải khác công nhận cho điểm

+ Điểm thi tổng điểm thành phần làm tròn ( lên ) đến

0,5 điểm

SỞ GIÁO DỤC – ĐÀO TẠO HẢI PHÒNG ĐỀ THI THỬ ĐẠI HỌC LẦN – THÁNG 2/2010 TRƯỜNG THPT CHUYÊN TRẦN PHÚ Mơn thi: TỐN HỌC – Khối A, B

Thời gian: 180 phút

ĐỀ CHÍNH THỨC

Câu I:

Cho hàm số   x

y C

x

 

1 Khảo sát vẽ  C

2 Viết phương trình tiếp tuyến  C , biết tiếp tuyến qua điểm A 6;5   Câu II:

1 Giải phương trình: cos x cos3x sin 2x

 

     

 .

2 Giải hệ phương trình:

3

2

x y

x y 2xy y

  

 

  

 

Câu III:

Tính  

4

2 3x

4

dx I

cos x e

 

(9)

Hình chóp tứ giác SABCD có khoảng cách từ A đến mặt phẳng SBC Với giá trị góc  mặt bên mặt đáy chóp thể tích chóp

nhỏ nhất? Câu V:

Cho a, b,c : abc 1.  Chứng minh rằng:

1 1

1 a b b c c a 1        

Câu VI:

1 Trong mặt phẳng Oxy cho điểm A 1;0 , B 2;4 ,C 1;4 , D 3;5        đường thẳng d : 3x y 0   Tìm điểm M d cho hai tam giác MAB, MCD có

diện tích

2 Viết phương trình đường vng góc chung hai đường thẳng sau:

1

x 2t x y z

d : ; d : y t

2 1

z

  

  

    

  

Câu VII: Tính:

0 1 2 3 2010 2010

2010 2010 2010 2010 2010

2 C C C C C

A

1.2 2.3 3.4 4.5 2011.2012

     

ĐÁP ÁN ĐỀ THI THỬ ĐH LẦN Câu I:

1 a) TXĐ: \\ 2 

b) Sự biến thiên hàm số: -) Giới hạn, tiệm cận:

+) x 2lim y   , lim yx2   x 2 tiệm cận đứng

+) xlim y   xlim y 1    y 1 tiệm cận ngang

-) Bảng biến thiên :

 2

4

y' x

x

   

c) Đồ thị :

(10)

2 Phương trình đường thẳng qua A 6;5   d : y k x 6    5 (d) tiếp xúc (C) hệ sau có nghiệm :

 

 

   

 

       

   

2

2 2

2 2

2

4 x

x x 6 5

k x x 2

x x

4 4

k k

x x 2

4x 24x

4 x x x x x 0;k 1

4

4 k

k x 6;k

x

x

 

     

   

   

 

 

   

  

 

            

  

     

  

   

 

 Suy ra

có tiếp tuyến :  1  2

x d : y x 1; d : y

4

   

(11)

 

   

2

1 cos x cos3x sin 2x 2cos x cos 2x sin 2x cos2x

2cos x 2sin x cos x 2cos x cos 2x cos x cos x sinx cos2x

cos x cos x sinx sinx cosx

x k

2 cos x

cos x sinx x k

4 sinx cosx

sin x                                                         x k

2 x k

2

x k

4 x k

4 x k2 x k2 4 x k2 4                                                                    

1 1 3

2x x y

y x y x x y

2

1 1 3

2y 2x

x y y x

x y x y

2 x y

xy xy

1 3

2x 2x

y x y x

x y

1 x y

2x

x x x y 1

2 x 2, y 2

y x

x 2, y

(12)

   

2

1 1

2

4 2 2

0 0

3

1

2

2

1

0 2

2 d x

xdx 1 dt

I

x x x x 1 t t

1 dt du

2 1 3 3

t u

2 2

  

     

 

   

 

    

 

     

  

 

Đặt

3 dy

u tan y, y ; du

2 2 cos y

 

 

     

 

 

3

2

6

1

u y ;u y

2

3dy

1 2

I dy

3

2 cos y 1 tan y

4

 

 

 

     

   

  

 

Câu IV:

Gọi M, N trung điểm BC, AD, gọi H hình chiếu vng góc từ N xuống SM Ta có:

      

2

ABCD

SABCD 2

2 2

2 2

2

2 SABCD

SMN ,d A; SBC d N; SBC NH

NH

MN S MN

sin sin sin

tan

SI MI.tan

sin cos

1 4

V

3 sin cos 3.sin cos

sin sin 2cos

sin sin 2cos

3

1 sin cos

3

V sin cos max s

   

     

  

   

 

    

   

    

    

   

  

 in2 2cos2 cos

3

     

Câu V: Ta có:

N

M I

D

A B

C S

(13)

    

     

 

2

3

3 3 3

3 3 3 3 3 3

3

3 3

3 3

a b a b a ab b ab a b

a b ab a b ab a b abc ab a b c

1 c

a b ab a b c a b c

      

           

  

     

Tương tự suy … Câu VI:

1 Giả sử M x; y  d 3x y 0.  

            AB CD MAB MCD

AB 5,CD 17

AB 3;4 n 4;3 PT AB : 4x 3y CD 4;1 n 1; PT CD : x 4y 17

S S AB.d M;AB CD.d M;CD

4x 3y x 4y 17

5 17 4x 3y x 4y 17

5 17

3x y

4x 3y x 4y 17 3x y

3x 7y 21

                                                                                    

M ;2 , M 9; 32

3x y 5x y 13

                         

2 Gọi M d 1 M 2t;1 t; t , N d       N 2t ';1 t ';3   

                  1

MN 2t 2t ' 1; t t '; t

2 2t 2t ' t t ' t MN.u

2 2t 2t ' t t ' MN.u

6t 3t '

t t ' 3t 5t '

M 2;0; , N 1;2;3 , MN 1;2;4 x y z

PT MN :

1

                                                                 Câu VII:

0 1 2 3 2010 2010

2010 2010 2010 2010 2010

2 C C C C C

A

1 2011

     

(14)

 

 

 

   

 

   

 

     

     

   

k k

k k

k 2010

k

k k 1

2011

1 1 2 2011 2011

2011 2011 2011

2011 0

2011

2 2010! 2010!

2 C

k k! 2010 k ! k k ! 2010 k ! 2011!

1

2 C

2011 k ! 2011 k ! 4022

A C C C

4022

1

2 C

4022 2011

 

 

  

    

    

  

 

        

 

 

      

Ngày đăng: 04/03/2021, 21:24

w