Câu I (6 điểm). Cho phương trình sau: 1) Giải phương trình khi . 2) Xác định tham số m để phương trình có đúng một nghiệm Câu II (4 điểm) Trên mặt phẳng cho tứ giác lồi ABCD có AB = BC = CD = a. 1) Nếu biết Hãy tính diện tích tứ giác ABCD theo a. 2) Giả sử tứ giác ABCD thay đổi, mà AB = BC = CD = a không đổi. Hãy tìm giá trị lớn nhất của diện tích tứ giác ABCD. Câu III (7 điểm) Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a. 1) Ta coi hình chóp đã cho là tứ diện SABC có trọng tâm O, gọi là góc giữa mp(SAB) và mp(ABC). Hãy tínhđể O cách đều tất cả các mặt của SABC. 2) Biết Xét mặt phẳng (P) thay đổi đi qua A, sao cho mp(P) cắt các đoạn thẳng SB, SC thứ tự tại B', C'. Tìm giá trị nhỏ nhất của chu vi tam giác AB'C' theo a. Câu IV (3 điểm). Cho phương trình: Chứng minh rằng phương trình có 3 nghiệm phân biệt x 1 , x 2 , x 3 . Giả sử x 1 < x 2 < x 3 , chứng minh rằng: và . Câu I (6 điểm). Cho phương trình sau: 1) Giải phương trình khi . 2) Xác định tham số m để phương trình có đúng một nghiệm Câu II (4 điểm) Trên mặt phẳng. giác đều S.ABC có cạnh đáy bằng a. 1) Ta coi hình chóp đã cho là tứ diện SABC có trọng tâm O, gọi là góc giữa mp(SAB) và mp(ABC). Hãy tính để O cách đều