✶ ✵✶✸✵ Số hóa Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn ✣❸■ ❍➴❈ ❚❍⑩■ ◆●❯❨➊◆ ❚❘×❮◆● ✣❸■ ❍➴❈ ❙× P❍❸▼ ◆●❯❨➍◆ ❚❍➚ ❍❯➏ ❈⑩❈ ❇⑨■ ❚❖⑩◆ ❚Ü❆ ❈❹◆ ❇➀◆● ❚✃◆● ◗❯⑩❚ ❱⑨ Ù◆● ❉Ö◆● ▲❯❾◆ ❱❿◆ ❚❍❸❈ ❙ß ❚❖⑩◆ ❍➴❈ ❚❤→✐ ◆❣✉②➯♥ ✲ ✷✵✶✶ Số hóa Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn ✣❸■ ❍➴❈ ❚❍⑩■ ◆●❯❨➊◆ ❚❘×❮◆● ✣❸■ ❍➴❈ ❙× P❍❸▼ ◆●❯❨➍◆ ❚❍➚ ❍❯➏ ❈⑩❈ ❇⑨■ ❚❖⑩◆ ❚Ü❆ ❈❹◆ ❇➀◆● ❚✃◆● ◗❯⑩❚ ❱⑨ Ù◆● ❉Ö◆● ❈❤✉②➯♥ ♥❣➔♥❤✿ ●■❷■ ❚➑❈❍ ▼➣ số ò ữớ ữợ ❞➝♥ ❦❤♦❛ ❤å❝ ●❙✳❚❙❑❍ ◆●❯❨➍◆ ❳❯❹◆ ❚❻◆ ❚❤→✐ ◆❣✉②➯♥ ✲ ✷✵✶✶ Số hóa Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn ✐ ▼ö❝ ❧ö❝ ▼Ð ✣❺❯ ✶ ▼ët sè ❦✐➳♥ t❤ù❝ ❝❤✉➞♥ ❜à ✶✳✶ ▼ët sè ❦❤æ♥❣ ❣✐❛♥ ❝ì ❜↔♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶ ✹ ✹ ✶✳✶✳✶ ❑❤æ♥❣ ❣✐❛♥ ♠❡tr✐❝ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹ ✶✳✶✳✷ ❑❤æ♥❣ ❣✐❛♥ ✤à♥❤ ❝❤✉➞♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺ ✶✳✶✳✸ ❑❤æ♥❣ ❣✐❛♥ ❍✐❧❜❡rt ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺ ✶✳✶✳✹ ❑❤æ♥❣ tổ ổ t t ỗ ữỡ ss r ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✻ ✶✳✷ ⑩♥❤ ①↕ ✤❛ trà ✈➔ ♠ët sè ❦❤→✐ ♥✐➺♠ ❧✐➯♥ q✉❛♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✼ ✶✳✸ ▼ët sè ✤à♥❤ ❧➼ ✤✐➸♠ ❜➜t ✤ë♥❣ ❝ì ❜↔♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✵ ✷ ❇➔✐ t♦→♥ tü❛ ❝➙♥ ❜➡♥❣ tê♥❣ q✉→t ❧♦↕✐ ■ ✷✳✶ ✣➦t ❜➔✐ t♦→♥ ✈➔ ❝→❝ ❜➔✐ t♦→♥ ❧✐➯♥ q✉❛♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✶ ✶✶ ✷✳✶✳✶ ✣➦t ❜➔✐ t♦→♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✶ ✷✳✶✳✷ ❈→❝ ❜➔✐ t♦→♥ ❧✐➯♥ q✉❛♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✷ ✷✳✷ ✣à♥❤ tỗ t ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✼ ✷✳✸ ⑩♣ ❞ö♥❣ ❝❤♦ ❝→❝ ❜➔✐ t♦→♥ ❧✐➯♥ q✉❛♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✾ ✸ ❇➔✐ t♦→♥ tü❛ ❝➙♥ ❜➡♥❣ tê♥❣ q✉→t ❧♦↕✐ ■■ ✸✳✶ ✸✳✷ ✣➦t ❜➔✐ t♦→♥ ✈➔ ❝→❝ ❜➔✐ t♦→♥ ❧✐➯♥ q✉❛♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✷ ✸✷ ✸✳✶✳✶ ✣➦t ❜➔✐ t♦→♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✷ ✸✳✶✳✷ ❈→❝ ❜➔✐ t♦→♥ ❧✐➯♥ q✉❛♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ tỗ t↕✐ ♥❣❤✐➺♠ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✻ Số hóa Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn ✐✐ ✸✳✸ ⑩♣ ❞ö♥❣ ❝❤♦ ❝→❝ ❜➔✐ t♦→♥ ❧✐➯♥ q✉❛♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ❑➌❚ ▲❯❾◆ ❚➔✐ ❧✐➺✉ t❤❛♠ ❦❤↔♦ Số hóa Trung tâm Học liệu – Đại học Thái Nguyên ✸✽ ✹✾ ✺✶ http://www.lrc-tnu.edu.vn ✶ é ỵ tt tố ữ t út ữủ sỹ q t rt ợ t♦→♥ ❤å❝ tr➯♥ t❤➳ ❣✐ỵ✐✳ ▲➼ t❤✉②➳t ♥➔② ✤➣ t❤➙♠ ♥❤➟♣ ✈➔♦ r➜t ♥❤✐➲✉ ❧➽♥❤ ✈ü❝ tr♦♥❣ t❤ü❝ t➳ ✈➔ ❝→❝ ♥❣➔♥❤ ❦❤♦❛ ❤å❝ ❦➽ t❤✉➟t ❦❤→❝ ♥❤❛✉✳ ❚r♦♥❣ t❤ü❝ t✐➵♥ ❝✉ë❝ sè♥❣ ❛✐ ❝ơ♥❣ ♠✉è♥ ❝ỉ♥❣ ✈✐➺❝ ❤➔♥❣ ♥❣➔② ❝õ❛ ♠➻♥❤ ✤÷đ❝ ❤♦➔♥ t❤➔♥❤ ♠ët ❝→❝❤ tèt ♥❤➜t✱ ✈➔ t➻♠ ♣❤÷ì♥❣ →♥ tè✐ ÷✉ ✤➸ t❤ü❝ ❤✐➺♥ ♥â✳ ◆❤÷ ✈➟②✱ ♠å✐ ♥❣÷í✐ ❝ơ♥❣ ♣❤↔✐ ❣✐↔✐ ❝→❝ ❜➔✐ t♦→♥ tè✐ ÷✉ ❝õ❛ ♠➻♥❤ t❤❡♦ ♠ët ♥❣❤➽❛ ♥➔♦ ✤â✳ ❱➜♥ ✤➲ q✉❛♥ trå♥❣ ♥❤➜t ✤➦t r❛ ✤è✐ ✈ỵ✐ ❝→❝ ❜➔✐ t♦→♥ õ t tố ữ õ r ợ ✤✐➲✉ ❦✐➺♥ ♥➔♦ ❜➔✐ t♦→♥ ❝â ♥❣❤✐➺♠✱ ✈➔ ♥➳✉ ❝â ♥❣❤✐➺♠ ✤✐➲✉ ❣➻ s➩ ①↔② r❛❄ ▲➼ t❤✉②➳t tè✐ ÷✉ tỡ ữủ t tứ ỳ ỵ tữ ❝➙♥ ❜➡♥❣ ❦✐♥❤ t➳✱ ❧➼ t❤✉②➳t ❣✐→ trà ❝õ❛ ❊❞❣❡✇♦rt❤ tø ♥➠♠ ✶✽✽✶ ✈➔ P❛r❡t♦ tø ♥➠♠ ✶✾✵✻✳ ❈ì sð t♦→♥ ❤å❝ ❝õ❛ ❧➼ t❤✉②➳t ♥➔② ❧➔ ♥❤ú♥❣ ❦❤æ♥❣ ❣✐❛♥ ❝â t❤ù tü ✤÷❛ r❛ ❜ð✐ ❈❛♥t♦r ♥➠♠ ✶✽✾✼✱ ❍❛✉s❞♦r❢❢ ♥➠♠ ✶✾✵✻✱ ✈➔ ♥❤ú♥❣ →♥❤ ①↕ ✤ì♥ trà ❝ơ♥❣ ♥❤÷ ✤❛ trà tø ♠ët ❦❤æ♥❣ ❣✐❛♥ ♥➔② ✈➔♦ ♠ët ❦❤æ♥❣ ❣✐❛♥ ❝â t❤ù tü ❦❤→❝ ✈ỵ✐ ♥❤ú♥❣ t➼♥❤ ❝❤➜t ♥➔♦ ✤â✳ ▲➼ t❤✉②➳t trá ❝❤ì✐ ❝õ❛ ❇♦r❡❧ ♥➠♠ ✶✾✷✶ ✈➔ ❱♦♥ ◆❡✉♠❛♥♥ ♥➠♠ ✶✾✷✻✱ ❧➼ t❤✉②➳t ✈➲ ❧÷✉ t❤ỉ♥❣ ❤➔♥❣ ❤â❛ ❝õ❛ ❑♦♦♣♠❛♥s ♥➠♠ ✶✾✹✼ ❧➔ ♥❤ú♥❣ ❝æ♥❣ tr➻♥❤ ✤➛✉ t✐➯♥ tr♦♥❣ ❧➽♥❤ ✈ü❝ ♥➔②✳ ◆❤÷♥❣ ♣❤↔✐ ♥â✐ r➡♥❣ ❝❤♦ tỵ✐ ♥❤ú♥❣ ♥➠♠ ✶✾✺✵ trð ❧↕✐ ✤➙②✱ s❛✉ ♥❤ú♥❣ ❝ỉ♥❣ tr➻♥❤ ✈➲ ✤✐➲✉ ❦✐➺♥ ❝➛♥ ✈➔ ✤õ ❝❤♦ tè✐ ÷✉ ❝õ❛ ❑✉❤♥✲ ❏✉❝❦❡r ♥➠♠ ✶✾✺✶✱ ✈➲ ❣✐→ trà ❝➙♥ ❜➡♥❣ ✈➔ tè✐ ÷✉ P❛r❡t♦ ❝õ❛ ❉❡✉❜r❡✉ ♥➠♠ ✶✾✺✹✱ ❧➼ t❤✉②➳t tố ữ tỡ ợ tỹ sỹ ữủ ổ ❧➔ ♠ët ♥❣➔♥❤ t♦→♥ ❤å❝ q✉❛♥ trå♥❣ ✈➔ ❝â ♥❤✐➲✉ ù♥❣ ❞ư♥❣ tr♦♥❣ t❤ü❝ t➳✳ ❈❤♦ tỵ✐ ♥❤ú♥❣ ♥➠♠ ❝✉è✐ ❝õ❛ t❤➳ ❦➾ ✷✵✱ ❤➔♥❣ tr➠♠ ❝✉è♥ s→❝❤ ✈➔ ❤➔♥❣ ♥❣❤➻♥ ❜➔✐ ❜→♦ ✈✐➳t ✈➲ ❧➽♥❤ ✈ü❝ ♥➔② ❝✉♥❣ ❝➜♣ ❝❤♦ t❛ ♥❤ú♥❣ ♣❤÷ì♥❣ ♣❤→♣ ♥❣❤✐➯♥ ❝ù✉ ✈➔ ù♥❣ ❞ư♥❣ tr♦♥❣ ♥❤ú♥❣ ❧➽♥❤ ✈ü❝ ❦❤→❝ Số hóa Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn ✷ ♥❤❛✉ ❝õ❛ ❝→❝ ♥❣➔♥❤ ❦❤♦❛ ❤å❝ ✈➔ ❦➽ t❤✉➟t ❝ơ♥❣ ♥❤÷ t❤ü❝ t➳✳ ✣➛✉ t✐➯♥ ♥❣÷í✐ t❛ ♥❣❤✐➯♥ ❝ù✉ ♥❤ú♥❣ ❜➔✐ t♦→♥ ❧✐➯♥ q✉❛♥ tỵ✐ →♥❤ ①↕ ✤ì♥ trà tø ❦❤ỉ♥❣ ❣✐❛♥ ❊✉❝❧✐❞❡ ❝â sè ❝❤✐➲✉ ❤ú✉ ❤↕♥ ♥➔② s❛♥❣ ❦❤æ♥❣ ❣✐❛♥ ❝â sè ❝❤✐➲✉ ❤ú✉ ❤↕♥ ❦❤→❝ ♠➔ t❤ù tü tr♦♥❣ ♥â ✤÷đ❝ s✐♥❤ r❛ ❜ð✐ ♥â♥ ♦rt❤❛♥ ❞÷ì♥❣✳ ❚rå♥❣ t➙♠ ❧➔ ❜➔✐ t♦→♥✿ ❚➻♠ x ¯ ∈ D ✤➸ f (¯ x) = f (x) x∈D tr♦♥❣ ✤â f : D → R ❧➔ ❤➔♠ sè✱ D ❧➔ t➟♣ ❝♦♥ ❦❤→❝ ré♥❣ ❝õ❛ ❦❤æ♥❣ ❣✐❛♥ ✤à♥❤ ❝❤✉➞♥ X ✳ ❚ø ❜➔✐ t♦→♥ ♥➔② ✈ỵ✐ ❝➜✉ tró❝ ❦❤→❝ ♥❤❛✉ ❝õ❛ t➟♣ D ✈➔ t➼♥❤ ❝❤➜t ❝õ❛ ❤➔♠ F ✱ ♥❣÷í✐ t❛ ♣❤➙♥ ❧♦↕✐ t❤➔♥❤ ♥❤✐➲✉ ❜➔✐ t♦→♥ tè✐ ÷✉ ❦❤→❝ ♥❤❛✉ ♥❤÷✿ q✉✐ ❤♦↕❝❤ t✉②➳♥ t➼♥❤✱ q✉✐ ❤♦↕❝❤ ♣❤➙♥ t✉②➳♥✱ q✉✐ ❤♦↕❝❤ t♦➔♥ ♣❤÷ì♥❣✱✳✳✳❱➔ s❛✉ ✤â ♣❤→t tr✐➸♥ r❛ ❝→❝ ❜➔✐ t♦→♥ ❦❤→❝ ♥❤÷✿ ✲ ❇➔✐ t♦→♥ ❜➜t ✤➥♥❣ t❤ù❝ ❜✐➳♥ ♣❤➙♥ ❙t❛♠♣❛❝❤✐❛✿ ❚➻♠ x ¯ ∈ D s❛♦ ❝❤♦ T (¯ x), x − x¯ ≥ 0, ∀x ∈ D tr♦♥❣ ✤â D ⊂ Rn ✱ T : D → Rn ✳ ✲ ❇➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ❇❧✉♠✲ ❖❡tt❧✐✿ ❚➻♠ x ¯ ∈ D s❛♦ ❝❤♦ f (x, x¯) ≥ 0, ∀x ∈ D tr♦♥❣ ✤â D ❧➔ t ỗ õ tr ổ tỡ tổ ổ X ✱ ✈➔ f : D × D → R ❧➔ ❤➔♠ sè t❤ä❛ ♠➣♥ f (x, x) = 0✳ t ỗ ữ ỳ trữớ ủ ❜✐➺t ❝→❝ ❜➔✐ t♦→♥✿ tè✐ ÷✉✱ ❝➙♥ ❜➡♥❣ ◆❛s❤✱ ❜➔✐ t ũ t t tự ỗ t tư❝ ♠ð rë♥❣ ❝❤♦ ❝→❝ ❜➔✐ t♦→♥ tr♦♥❣ ❦❤ỉ♥❣ ❣✐❛♥ ❝â sè ❝❤✐➲✉ ✈ỉ ❤↕♥ ✈ỵ✐ ♥â♥ ❜➜t ❦➻✳ ❱✐➺❝ ữ r ự ữủ sỹ tỗ t↕✐ ❝õ❛ ❝→❝ ❧♦↕✐ ✤✐➸♠ ❤ú✉ ❤✐➺✉ ❝õ❛ ♠ët t➟♣ ❤đ♣ tr♦♥❣ ❦❤ỉ♥❣ ❣✐❛♥ ❝â t❤ù tü s✐♥❤ ❜ð✐ ♥â♥ ✤➣ ❞➝♥ tỵ✐ ✈✐➺❝ ♥❣❤✐➯♥ ❝ù✉ ❝→❝ ❜➔✐ t♦→♥ tè✐ ÷✉ ❦❤→❝ ♥❤❛✉✳ ❙❛✉ ✤â ❧➼ t❤✉②➳t ♥➔② ✤÷ñ❝ ♣❤→t tr✐➸♥ ❝❤♦ ♥❤ú♥❣ ❜➔✐ t♦→♥ ❧✐➯♥ q✉❛♥ ✤➳♥ →♥❤ ①↕ ✤❛ trà tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ ✈æ ❤↕♥ ❝❤✐➲✉✳ ◆❤ú♥❣ ✤à♥❤ ♥❣❤➽❛✱ t➼♥❤ ❝❤➜t✱ sü ♣❤➙♥ ❧ỵ♣✱✳✳✳ ❝→❝ →♥❤ ①↕ ✤ì♥ trà ❞➛♥ ❞➛♥ ✤÷đ❝ ♠ð rë♥❣ ❝❤♦ →♥❤ ①↕ ✤❛ trà✳ ❇❡r❣❡ ✤➣ ✤÷❛ r❛ ❝→❝ ❦❤→✐ ♥✐➺♠ ❦❤→❝ ♥❤❛✉ ❝õ❛ →♥❤ ①↕ ✤❛ trà✳ Số hóa Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn ✸ ✣â t ỷ tử tr ỷ tử ữợ r ữỡ tỹ ỗ tr ỗ ữợ st tr st ữợ t ữợ ụ ữủ ữ r ứ ỳ ❦❤→✐ ♥✐➺♠ ♥➔② ♥❣÷í✐ t❛ t➻♠ ✤÷đ❝ ♥❤ú♥❣ ✤✐➲✉ ❦✐➺♥ ❝➛♥ ✈➔ ✤õ ❦❤→❝ ♥❤❛✉ ❝❤♦ ❝→❝ ❜➔✐ t♦→♥ tè✐ ÷✉✱ ✈➔ ❝ơ♥❣ ①➙② ❞ü♥❣ ✤÷đ❝ ❧➼ t❤✉②➳t tè✐ ÷✉ ợ t ữ ỗ stỗ rở ❦➳t q✉↔ ❝❤♦ ❝→❝ ❜➔✐ t♦→♥ tü❛ ♥❤÷✿ ❜➔✐ t♦→♥ tü❛ tè✐ ÷✉✱ ❜➔✐ t♦→♥ tü❛ ❝➙♥ ❜➡♥❣✱✳✳✳ ▼ư❝ ✤➼❝❤ ❝õ❛ ❧✉➟♥ ✈➠♥ ❧➔ tr➻♥❤ ❜➔② ✤✐➲✉ ❦✐➺♥ ✤õ ❝❤♦ sỹ tỗ t t tỹ tê♥❣ q✉→t ❧♦↕✐ ■ ✈➔ ❜➔✐ t♦→♥ tü❛ ❝➙♥ ❜➡♥❣ tờ qt ỗ tớ ự ố q ❤➺ ❣✐ú❛ ❤❛✐ ❜➔✐ t♦→♥ ♥➔② ✈ỵ✐ ♠ët sè ❜➔✐ t♦→♥ ❦❤→❝ ♥❤÷ ❜➔✐ t♦→♥ ❜❛♦ ❤➔♠ t❤ù❝ tü❛ ❜✐➳♥ ♣❤➙♥✱ ❜➔✐ t♦→♥ q✉❛♥ ❤➺ tü❛ ❜✐➳♥ ♣❤➙♥✱✳✳✳❚ø ✤â ❝❤♦ t❛ ❝→❝❤ ♥❤➻♥ ❜❛♦ q✉→t ✈➲ ♠è✐ q✉❛♥ ❤➺ ❣✐ú❛ ❝→❝ ❜➔✐ t♦→♥ ❦❤→❝ ♥❤❛✉ tr♦♥❣ ❧➼ t❤✉②➳t tè✐ ÷✉ tỡ ỗ ữỡ ✈➔ t➔✐ ❧✐➺✉ t❤❛♠ ❦❤↔♦✳ ❈ư t❤➸ ❧➔ ❈❤÷ì♥❣ ✶✿ ▼ët sè ❦✐➳♥ t❤ù❝ ❝❤✉➞♥ ❜à ❈❤÷ì♥❣ ✷✿ ❇➔✐ t♦→♥ tü❛ ❝➙♥ ❜➡♥❣ tê♥❣ q✉→t ❧♦↕✐ ■ ❈❤÷ì♥❣ ✸✿ ❇➔✐ t♦→♥ tü❛ ❝➙♥ ❜➡♥❣ tê♥❣ q✉→t ❧♦↕✐ ■■ ❈✉è✐ ❝ò♥❣✱ tỉ✐ ①✐♥ ❜➔② tä ❧á♥❣ ❜✐➳t ì♥ s➙✉ s➢❝ tỵ✐ t❤➛② ❣✐→♦ ●❙✳ ❚❙❑❍ ◆❣✉②➵♥ ❳✉➙♥ ❚➜♥✱ ♥❣÷í✐ ✤➣ t➟♥ t ữợ t ú ù tổ ❤♦➔♥ t❤➔♥❤ ❧✉➟♥ ✈➠♥ ♥➔②✳ ❚æ✐ ①✐♥ ❝❤➙♥ t❤➔♥❤ ❝↔♠ ì♥ ❇❛♥ ❝❤õ ♥❤✐➺♠ ❑❤♦❛ ❙❛✉ ✤↕✐ ❤å❝✱ ❇❛♥ ❝❤õ ♥❤✐➺♠ ❑❤♦❛ ❚♦→♥ ✕ ❚r÷í♥❣ ✣❍ ❙÷ ♣❤↕♠ ✕ ✣❍ ❚❤→✐ ◆❣✉②➯♥ ❝ị♥❣ ❝→❝ t❤➛② ❣✐→♦✱ ❝ỉ ❣✐→♦ ✤➣ t❤❛♠ ❣✐❛ ❣✐↔♥❣ ❞↕② ❦❤♦→ ❤å❝✱ ①✐♥ ❝❤➙♥ t❤➔♥❤ ❝↔♠ ì♥ ỗ ũ ❧ỵ♣ ❝❛♦ ❤å❝ ❚♦→♥ ❑✶✼ ✤➣ ❧✉ỉ♥ q✉❛♥ t➙♠✱ ✤ë♥❣ ✈✐➯♥ ✈➔ ❣✐ó♣ ✤ï tỉ✐ tr♦♥❣ s✉èt t❤í✐ ❣✐❛♥ ❤å❝ t➟♣ ✈➔ ❧➔♠ ❧✉➟♥ ✈➠♥✳ Số hóa Trung tâm Học liệu – Đại học Thái Ngun http://www.lrc-tnu.edu.vn ✹ ❈❤÷ì♥❣ ✶ ▼ët sè ❦✐➳♥ t❤ù❝ ❝❤✉➞♥ ❜à ❚r♦♥❣ ❝❤÷ì♥❣ ♥➔② tr➻♥❤ ❜➔② ♠ët sè ❦✐➳♥ t❤ù❝ ✈➲ ❝→❝ ❦❤æ♥❣ ❣✐❛♥ t❤÷í♥❣ ❞ị♥❣✱ →♥❤ ①↕ ✤❛ trà ✈➔ ♠ët sè t➼♥❤ ❝❤➜t ❝õ❛ ♥â ❞ü❛ tr➯♥ t➔✐ ❧✐➺✉ ❬✻❪✳ ✶✳✶ ▼ët sè ❦❤ỉ♥❣ ❣✐❛♥ ❝ì ❜↔♥ ❚r♦♥❣ t♦→♥ ❤å❝ ❤❛② ❜➜t ❦➻ ♠ët ♥❣➔♥❤ ❦❤♦❛ ❤å❝ ♥➔♦ ❦❤→❝✱ ♠ët ❜➔✐ t♦→♥ ữủ t r ụ ợ ởt ổ ❣✐❛♥ ♥➔♦ ✤â✳ ❱➻ ✈➟② ✈✐➺❝ ♥❣❤✐➯♥ ❝ù✉ t♦→♥ ❤å❝ ♥â✐ ❝❤✉♥❣✱ ✈➔ ♥❤ú♥❣ ❜➔✐ t♦→♥ ❝ö t❤➸ tr♦♥❣ t♦→♥ õ r trữợ t t q t tợ ❝→❝ ❦❤æ♥❣ ❣✐❛♥ ❝õ❛ ❜➔✐ t♦→♥✳ ▼é✐ ❜➔✐ t♦→♥ ♣❤↔✐ ❣➢♥ ✈ỵ✐ ♠ët ❤❛② ♥❤✐➲✉ ❦❤ỉ♥❣ ❣✐❛♥ ♥❤➜t ✤à♥❤✳ ❚r♦♥❣ ❝❤÷ì♥❣ ♥➔② t❛ ♥❤➢❝ ❧↕✐ ♥❤ú♥❣ ❦❤ỉ♥❣ ❣✐❛♥ ❝ì ❜↔♥ ♠➔ tr♦♥❣ ❝→❝ ❝❤÷ì♥❣ s❛✉ ❝õ❛ ❧✉➟♥ ✈➠♥ t❤÷í♥❣ ✤➲ ❝➟♣ ✤➳♥✳ ✶✳✶✳✶ ❑❤æ♥❣ ❣✐❛♥ ♠❡tr✐❝ ✣à♥❤ ♥❣❤➽❛ ✶✳✶✳ ❛✮ ❱ỵ✐ ♠é✐ ❝➦♣ ♣❤➛♥ tû x, y ❝õ❛ t➟♣ ❤đ♣ X ✤➲✉ ❝â ①→❝ ✤à♥❤ t❤❡♦ ♠ët q✉✐ t➢❝ ♥➔♦ ✤â✱ ♠ët sè t❤ü❝ ρ(x, y),✱ ❣å✐ ❧➔ ❦❤♦↔♥❣ ❝→❝❤ ❣✐ú❛ x ✈➔ y❀ ❜✮ ◗✉✐ t➢❝ ♥â✐ tr➯♥ t❤ä❛ ♠➣♥ ❝→❝ ✤✐➲✉ ❦✐➺♥ s❛✉ ✤➙②✿ ✭✐✮ ρ(x, y) > 0, ♥➳✉ x = y❀ ρ(x, y) = 0, ♥➳✉ x = y❀ ✭✐✐✮ ρ(x, y) = ρ(y, x)✱ ∀x, y❀ Số hóa Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn ✺ ✭✐✐✐✮ ρ(x, y) ≤ ρ(x, z) + ρ(z, y)✱ ∀x, y, z ❍➔♠ sè ρ(x, y) ✤÷đ❝ ❣å✐ ❧➔ ♠❡tr✐❝ ❝õ❛ ❦❤ỉ♥❣ ❣✐❛♥ X ✱ ✈➔ (X, ρ) ✤÷đ❝ ❣å✐ ❧➔ ❦❤ỉ♥❣ ❣✐❛♥ ♠❡tr✐❝✳ ✶✳✶✳✷ ❑❤æ♥❣ ❣✐❛♥ ✤à♥❤ ❝❤✉➞♥ ✣à♥❤ ♥❣❤➽❛ ✶✳✷✳ ❑❤æ♥❣ ❣✐❛♥ t✉②➳♥ t➼♥❤ ✤à♥❤ ❝❤✉➞♥ ❧➔ ❝➦♣ (X, )✱ tr♦♥❣ ✤â X ❧➔ ❦❤æ♥❣ ❣✐❛♥ t✉②➳♥ t➼♥❤ ❝á♥ ❧➔ ♠ët →♥❤ ①↕ X → R t❤ä❛ ♠➣♥ ✭✐✮ ∀x ∈ X ✱ x ≥ ✈➔ x = ❦❤✐ ✈➔ ❝❤➾ ❦❤✐ x = 0❀ ✭✐✐✮ ∀x, y ∈ X ✱ x + y ≤ x + y ❀ ✭✐✐✐✮ ∀x ∈ X ✱ ∀λ ∈ K ✱ λx = λ x ✳ ✶✳✶✳✸ ❑❤æ♥❣ ❣✐❛♥ ❍✐❧❜❡rt ✣à♥❤ ♥❣❤➽❛ ✶✳✸✳ ❈❤♦ X ❧➔ ❦❤ỉ♥❣ ❣✐❛♥ t✉②➳♥ t➼♥❤ tr➯♥ tr÷í♥❣ K {R, C}✳ ❍➔♠ sè , : X × X K ữủ t ổ ữợ tr = X ♥➳✉ ✭✐✮ y, x = x, y , ∀x, y ∈ X ✳ ✭ ❦➼ ❤✐➺✉ x, y ❝❤➾ sè ♣❤ù❝ ❧✐➯♥ ❤ñ♣ ❝õ❛ sè ♣❤ù❝ y, x ✮❀ ✭✐✐✮ x + y, z = x, z + y, z , ∀x, y ∈ X; ✭✐✐✐✮ λx, z = λ x, z , ∀λ ∈ K; ✭✐✈✮ x, x ≥ 0; x, x = ⇔ x = ổ X ữủ tr t ổ ữợ ❣å✐ ❧➔ ❦❤æ♥❣ ❣✐❛♥ t✐➲♥ ❍✐❧❜❡rt✳ ❚r♦♥❣ ❦❤æ♥❣ ❣✐❛♥ t✐➲♥ ❍✐❧❜❡rt t❛ ❧✉æ♥ ❝â ❜➜t ✤➥♥❣ t❤ù❝ ❈❛✉❝❤②✲ ❙❝❤✇❛r③ s❛✉ | x, y |2 ≤ x, x y, y , ∀x, y ∈ X Số hóa Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn ✸✼ ✭✈✮ ❱ỵ✐ t ∈ D ❝è ✤à♥❤ t➟♣ B = {t ∈ D | ∈ F (y, x, t) ✈ỵ✐ ♠ët ✈➔✐ y ∈ Q(x, t)} ❧➔ ♠ð tr♦♥❣ D❀ ✭✈✐✮ F : K × D × D → 2Y ❧➔ →♥❤ ①↕ ✤❛ trà ◗✲ ❑❑▼✳ ❈❤ù♥❣ ♠✐♥❤✳ ⑩♥❤ ①↕ ✤❛ trà M : D → 2D ✤÷đ❝ ①→❝ ✤à♥❤ ♥❤÷ s❛✉✿ M (x) = {t ∈ D | ∈ F (y, x, t) ✈ỵ✐ ♠ët ✈➔✐ y ∈ Q(x, t)} ❚❛ t❤➜② r➡♥❣ ✈ỵ✐ x ¯ ∈ D✱ x¯ ∈ P1 (¯ x)✱ ♠➔ M (¯ x) ∩ P2 (¯ x) = ∅✱ t❤➻ ∈ F (y, x¯, t), ∀t ∈ P2 (¯ x) ✈➔ y ∈ Q(¯ x, t) ❉♦ ✤â ✤à♥❤ ❧➼ ✤÷đ❝ ❝❤ù♥❣ t r sỹ tỗ t ❝õ❛ x ¯✳ ❚❤➟t ✈➟②✱ ❣✐↔ sû r➡♥❣ ✈ỵ✐ ❜➜t ❦➻ x ∈ P1 (x) t❤ä❛ ♠➣♥ M (x) ∩ P2 (x) = ∅✳ ❳➨t →♥❤ ①↕ ✤❛ trà H : D → 2D ①→❝ ✤à♥❤ ❜ð✐ H(x) = (coM )(x) ∩ (coP2 )(x), ❦❤✐ x ∈ P1 (x); P2 (x), ❦❤✐ x ∈ P1 (x) Ð ✤➙② (coN )(x) = coN (x)✳ ❚✐➳♣ ✤➳♥ t❛ ❦❤➥♥❣ ✤à♥❤ r➡♥❣ ♥➳✉ ✈ỵ✐ ❜➜t ❦➻ y ∈ D✱ N −1 (y) ❧➔ ♠ð t❤➻ (coN )−1 (y) ♠ð✳ ❚❤➟t ✈➟② ❣✐↔ sû y ∈ D ✈➔ x ∈ co(N (x)) t❤➻ y ∈ (coN ) (y)✱ y = −1 n n αi yi ✱ ✈ỵ✐ ≤ αi ≤ 1✱ i=1 αi = 1✱ yi ∈ N (x)✱ s✉② r❛ x ∈ N −1 (yi )✱ i = 1, 2, , n✳ ❚ø N −1 (yi )✱ i=1 i = 1, 2, , n ❧➔ ♠ð✱ ❝â ♠ët ❧➙♥ ❝➟♥ U (x) ❝õ❛ x s❛♦ ❝❤♦ U (x) ⊆ N −1 (yi )✱ ∀i = 1, 2, , n✱ ❦➨♦ t❤❡♦ yi ∈ N (z)✱ ∀z ∈ U (x) ✈➔ i = 1, 2, , n✳ ❉♦ ✤â y = n αi yi ∈ (coN )(z) ✈ỵ✐ z ∈ U (x) ✈➔ U (x) ⊆ (coN )−1 (y) ✈➻ t❤➳ i=1 (coN ) (y) ❧➔ ♠ð✳ ❇➙② ❣✐í t❛ ❝❤➾ r❛ ❍ t❤ä❛ ♠➣♥ ❝→❝ ❣✐↔ t❤✐➳t ❝õ❛ ✣à♥❤ ❧➼ ✶✳✶✽✳ ❚❤➟t ✈➟②✱ ✈ỵ✐ x ∈ D✱ x ∈ P1 (x)✱ M (x) ∩ P2 (x) = ∅✱ t❛ ❝â H(x) = ∅ ✈➔ D = ∪x∈D H −1 (x)✳ ❚ø ❣✐↔ t❤✐➳t (v) t❤➻ ✈ỵ✐ ❜➜t ❦➻ x ∈ D✱ M −1 (x) ❧➔ t➟♣ ♠ð✱ ❦➨♦ t❤❡♦ −1 H −1 (x) = (coM )−1 (x) ∩ (coP2 )−1 (x) ∪ (P2 −1 (x)\D0 ), Số hóa Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn ✸✽ tr♦♥❣ ✤â D0 = {x ∈ D : x ∈ P1 (x)} ❧➔ t➟♣ ❝♦♥ ✤â♥❣ tr♦♥❣ D✳ ❉♦ ✤â H −1 (x) ❧➔ t➟♣ ♠ð tr♦♥❣ ❉✱ ∀x ∈ D✳ ❍ì♥ ♥ú❛✱ ♥➳✉ ❝â x¯ ∈ D s❛♦ ❝❤♦ x¯ ∈ H(¯ x) = coM (¯ x) ∩ coP2 (¯ x)✱ t❤➻ ❝â t❤➸ t➻♠ ✤÷đ❝ t1 , t2 , , tn ∈ M (¯ x) s❛♦ ❝❤♦ x ¯= n αi ti ✱ αi ≥ 0✱ i=1 n αi = 1✳ ❚ø ✤à♥❤ ♥❣❤➽❛ ❝õ❛ M t❛ ❝â i=1 ∈ F (y, x, tj ) ✈ỵ✐ ♠ët ✈➔✐ y ∈ Q(x, tj )}, ∀i = 1, 2, , n ợ F Q KKM õ t t ữủ ♠ët ❝❤➾ sè j = 1, 2, , n s❛♦ ❝❤♦ ∈ F (y, x, tj ), ∀y ∈ Q(x, tj ) ❉♦ ✤â t❛ ❝â sü ♠➙✉ t❤✉➝♥✳ ❱➟② ✈ỵ✐ ❜➜t ❦➻ x ∈ D✱ x ∈ H(x)✳ s r tỗ t x ∈ D s❛♦ ❝❤♦ H(¯ x) = ∅✳ ◆➳✉ x¯ ∈ P1 (¯ x) t❤➻ H(¯ x) = P2 (¯ x) = ∅✱ ✤✐➲✉ ♥➔② ❦❤æ♥❣ t❤➸ ①↔② r❛✳ ❉♦ ✤â✱ t❛ ❦➳t ❧✉➟♥ r➡♥❣ x ¯ ∈ P1 (¯ x) ✈➔ H(¯ x) = coM (¯ x) ∩ coP2 (¯ x) = ∅✳ ◆❤÷ ✈➟② t❛ ❝â sü ♠➙✉ t❤✉➝♥ ✈➔ ✤à♥❤ ❧➼ ✤÷đ❝ ❝❤ù♥❣ ♠✐♥❤ ①♦♥❣✳ ✸✳✸ ⑩♣ ❞ö♥❣ ❝❤♦ ❝→❝ ❜➔✐ t♦→♥ ❧✐➯♥ q✉❛♥ ▼ët sè ù♥❣ ự sỹ tỗ t↕✐ ♥❣❤✐➺♠ ❝õ❛ ❜➔✐ t♦→♥ tü❛ ❝➙♥ ❜➡♥❣✱ ❜➔✐ t♦→♥ ❜❛♦ ❤➔♠ t❤ù❝ ❜✐➳♥ ♣❤➙♥✱✳✳✳✱ ❝â t❤➸ ❝❤➾ r❛ tr♦♥❣ ❝→❝ ❤➺ q✉↔ s❛✉✳ ❍➺ q✉↔ ✸✳✷✳ ❈❤♦ D, K, P1, P2, Q ♥❤÷ tr♦♥❣ ✣à♥❤ ❧➼ ✸✳✶✳ ●✐↔ sû Φ : K × D × D → R ❧➔ số (Q, R+ )tỹ ỗ t ữớ ợ Φ(y, x, x) = 0✱ ∀y ∈ K, x ∈ D✳ ●✐↔ sû ✈ỵ✐ t ∈ D ❝è ✤à♥❤✱ ❤➔♠ sè Φ(., , t) : K × D → R ỷ tử tr t tỗ t x D s❛♦ ❝❤♦ x¯ ∈ P1 (¯ x) ✈➔ Φ(y, x¯, t) ≥ 0, ∀t ∈ P2 (¯ x) Số hóa Trung tâm Học liệu – Đại học Thái Nguyên ✈➔ y ∈ Q(¯x, t) http://www.lrc-tnu.edu.vn ✸✾ ❈❤ù♥❣ ♠✐♥❤✳ ✣➦t F (y, x, t) = Φ(y, x, t) − R+ ợ (y, x, t) K ì D ì D✳ ❚❛ t❤➜② r➡♥❣ ✈ỵ✐ t ∈ D ❝è ✤à♥❤ t➟♣ B = {x ∈ D | ∈ F (y, x, t) ✈ỵ✐ ❜➜t ❦➻ y ∈ Q(x, t)} = {x ∈ D | Φ(y, x, t) < 0} ❧➔ ♠ð tr♦♥❣ D✳ ❚ø Φ ❧➔ (Q, R+ )−tü❛ ỗ t ữớ ố ợ tự s r❛ ✈ỵ✐ ❜➜t ❦➻ t➟♣ ❤ú✉ ❤↕♥ {t1 , t2 , , tn } ⊆ D✱ x ∈ co{t1 , t2 , , tn } ❝â ♠ët j ∈ {1, 2, , n} s❛♦ ❝❤♦ Φ(y, x, tj ) ∈ Φ(y, x, x) + R+ , ∀y ∈ Q(x, tj ) ✣✐➲✉ ♥➔② ♥❣❤➽❛ ❧➔ Φ(y, x, tj ) ≥ ✈➔ ∈ F (y, x, tj )✱ ∀y ∈ Q(x, tj )✳ ❉♦ ✤â F ❧➔ →♥❤ ①↕ ✤❛ trà Q − KKM tø K × D × D ✈➔♦ 2R ✳ ❱➻ ✈➟② P1 , P2 , Q ✈➔ F t❤ä❛ ♠➣♥ ♠å✐ ✤✐➲✉ ❦✐➺♥ ❝õ❛ ✣à♥❤ s r tỗ t x D s ❝❤♦ x¯ ∈ P1 (¯ x) ✈➔ ∈ F (y, x¯, t), ∀t ∈ P2 (¯ x) ✈➔ y Q( x, t) tữỡ ữỡ ợ (y, x¯, t) ≥ 0, ∀t ∈ P2 (¯ x) ✈➔ y ∈ Q(¯ x, t) ❍➺ q✉↔ ✸✳✸✳ ❈❤♦ D, K, P1, P2 ✈➔ Q ♥❤÷ tr♦♥❣ ✣à♥❤ ❧➼ ✸✳✶✳ ●✐↔ sû G, H : K × D × D → 2Y ❧➔ ❝→❝ →♥❤ ①↕ ✤❛ trà ✈ỵ✐ ❣✐→ trà ❝♦♠♣➢❝ ✈➔ G(y, x, x) ⊆ H(y, x, x) + C(y, x) ợ (y, x) K ì D ●✐↔ sû C : K × D → 2Y ❧➔ →♥❤ ①↕ ♥â♥ ✤❛ trà ✈ỵ✐ ❣✐→ trà ❦❤→❝ ré♥❣✱ ỗ õ ỡ ỳ ợ t D ❝è ✤à♥❤✱ →♥❤ ①↕ ✤❛ trà G(., , t) : K × D → 2Y ❧➔ (−C) − ❧✐➯♥ tư❝ ữợ tr N : K ì D → 2Y ①→❝ ✤à♥❤ ❜ð✐ N (y, x) = H(y, x, x) ❧➔ C − ❧✐➯♥ tö❝ tr➯♥❀ Số hóa Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn ✹✵ ✭✐✐✮ G ❧➔ (Q, C) − tü❛ ỗ tr t ữớ ố ợ tự t tỗ t x D s x P1 (¯ x) ✈➔ G(y, x¯, t) ⊆ H(y, x¯, x¯) + C(y, x¯), ∀t ∈ P2 (¯ x) ✈➔ y ∈ Q(¯x, t) ❈❤ù♥❣ ♠✐♥❤✳ ❈→❝ →♥❤ ①↕ ✤❛ trà M : K × D → 2X , F : K ì D ì D 2D ữủ ✤à♥❤ ❜ð✐✿ M (y, x) = {t ∈ D | G(y, x, t) ⊆ H(y, x, x) + C(y, x)}, (y, x) ∈ K × D; F (y, x, t) = t − M (y, x), (y, x, t) ∈ K ì D ì D ợ t D ố ✤à♥❤✱ t➟♣ A = {x ∈ D | ∈ F (y, x, t), ∀y ∈ Q(x, t)} = {x ∈ D | t ∈ M (y, x), ∀y ∈ Q(x, t)} = {x ∈ D | G(y, x, t) ⊆ H(y, x, x) + C(y, x), ∀y ∈ Q(x, t)} ❧➔ ✤â♥❣ tr♦♥❣ D✳ ❚❤➟t ✈➟②✱ ❣✐↔ sû ❞➣② {xα } ⊂ A ✈➔ xα → x✱ ❧➜② tò② þ y ∈ Q(x, t)✳ ❚ø Q(., t) ❧➔ →♥❤ ①↕ ♥û❛ ❧✐➯♥ tö❝ tr➯♥ ✈➔ xα → x s✉② r tỗ t {y } y Q(x , t) s❛♦ ❝❤♦ yα → y ✳ ❱ỵ✐ ❜➜t ❦➻ ❧➙♥ ❝➟♥ V ❝õ❛ ❣è❝ tr♦♥❣ Y ❝â ♠ët ❝❤➾ sè α0 s❛♦ ❝❤♦ ∀α ≤ α0 t❛ ❝â G(y, x, t) ⊆ G(yα , xα , t) + V + C(yα , xα ) ⊆ H(yα , xα , xα ) + V + C(yα , xα ) ⊆ H(y, x, x) + 2V + C(y, x) ✣✐➲✉ ♥➔② ✈➔ ❣✐→ trà ❝♦♠♣➢❝ ❝õ❛ H ❞➝♥ ✤➳♥ G(y, x, t) ⊆ H(y, x, x) + C(y, x), ✈➔ ❞♦ ✤â x ∈ A✳ ❱➟② A ❧➔ ✤â♥❣ tr♦♥❣ D ✈➔ t➟♣ B = D\A = {x ∈ D | ∈ F (y, x, t), ✈ỵ✐ ♠ët ✈➔✐ y ∈ Q(x, t)} Số hóa Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn ✹✶ ❧➔ ♠ð tr♦♥❣ D ❍ì♥ ♥ú❛✱ tø G(y, x, x) ⊆ H(y, x, x)+C(y, x) ợ t (y, x) K ìD G (Q, C) tỹ ỗ tr t ữớ ố ợ tự s r ợ ❜➜t ❦➻ t➟♣ ❤ú✉ ❤↕♥ {t1 , t2 , , tn } ⊆ D✱ x ∈ co{t1 , t2 , , tn } ❝â ♠ët j ∈ {1, 2, , n} s❛♦ ❝❤♦ G(y, x, tj ) ⊆ G(y, x, x) + C(y, x) ⊆ H(y, x, x) + C(y, x), ∀y ∈ Q(x, t) ✣✐➲✉ ♥➔② ❞➝♥ ✤➳♥ ∈ F (y, x, tj ) ✈➔ F ❧➔ →♥❤ ①↕ ✤❛ trà Q − KKM ✳ ❱➟② →♣ ❞ö♥❣ s r tỗ t x D s❛♦ ❝❤♦ x¯ ∈ P1 (¯ x) ✈➔ ∈ F (y, ξ, x¯, t), ∀t ∈ P2 (¯ x) ✈➔ (y, ξ) ∈ Q(¯ x, t) ✣✐➲✉ ♥➔② tữỡ ữỡ ợ G(y, x, t) H(y, x, x) + C(y, x¯), ∀t ∈ P2 (¯ x) ✈➔ y ∈ Q(¯ x, t) ❚÷ì♥❣ tü ❤➺ q✉↔ tr➯♥ t❛ ❝â ❤➺ q✉↔ s❛✉✿ ❍➺ q✉↔ ✸✳✹✳ ❈❤♦ D, K, P1, P2 ✈➔ Q ♥❤÷ tr♦♥❣ ✣à♥❤ ❧➼ ✸✳✶✳ ●✐↔ sû G, H : K × D × D → 2Y ❧➔ ❝→❝ →♥❤ ①↕ ✤❛ trà ✈ỵ✐ ❣✐→ trà ❝♦♠♣➢❝ ✈➔ H(y, x, x) ⊆ G(y, x, x) − C(y, x) ợ (y, x) K ì D sû C : K × D → 2Y ❧➔ →♥❤ õ tr ợ tr rộ ỗ ✤â♥❣✳ ❍ì♥ ♥ú❛✱ ♥➳✉ ✭✐✮ ❱ỵ✐ t ∈ D ❝è ✤à♥❤✱ →♥❤ ①↕ ✤❛ trà G(., , t) : K × D → 2Y ❧➔ (−C) − ❧✐➯♥ tö❝ tr➯♥ ✈➔ →♥❤ ①↕ ✤❛ trà N : K × D → 2Y ①→❝ ✤à♥❤ ❜ð✐ N (y, x) = H(y, x, x) C tử ữợ G (Q, C) tỹ ỗ tr t ữớ ố ợ tự t tỗ t x D s❛♦ ❝❤♦ x¯ ∈ P1 (¯ x) ✈➔ H(y, x¯, x¯) ⊆ G(y, x¯, t) − C(y, x¯), ∀t ∈ P2 (¯ x) Số hóa Trung tâm Học liệu – Đại học Thái Nguyên ✈➔ y ∈ Q(¯x, t) http://www.lrc-tnu.edu.vn ✹✷ ❈❤ù♥❣ ♠✐♥❤✳ ❈❤ù♥❣ ♠✐♥❤ t÷ì♥❣ tü ❍➺ q✉↔ ✸✳✸✳ ❍➺ q✉↔ ✸✳✺✳ ❈❤♦ D, K, P1, P2 ✈➔ Q ♥❤÷ tr♦♥❣ ✣à♥❤ ❧➼ ✸✳✶✳ ●✐↔ sû G, H : K × D × D → 2Y ❧➔ ❝→❝ →♥❤ ①↕ ✤❛ trà ✈ỵ✐ ❣✐→ trà ❝♦♠♣➢❝ ✈➔✳ ●✐↔ sû C : K × D → 2Y ❧➔ →♥❤ ①↕ ✤❛ trà ♥â♥ ✈ỵ✐ ❣✐→ trà ❦❤→❝ ré♥❣✱ ỗ õ ỡ ỳ ợ t D ❝è ✤à♥❤✱ →♥❤ ①↕ ✤❛ trà G(., , t) : K × D → 2Y ❧➔ (−C) − ❧✐➯♥ tư❝ tr➯♥ ✈➔ →♥❤ ①↕ ✤❛ trà N : K × D → 2Y ①→❝ ✤à♥❤ ❜ð✐ N (y, x) = H(y, x, x) ❧➔ C − ❧✐➯♥ tö❝ tr➯♥❀ ✭✐✐✮ ❱ỵ✐ ❜➜t ❦➻ t➟♣ ❤ú✉ ❤↕♥ {t1, t2, , tn} ⊂ D ✈➔ x ∈ co{t1, t2, , tn} ❝â ♠ët j ∈ {1, 2, , n} s❛♦ ❝❤♦ G(y, x, tj ) ⊆ H(y, x, x) + intC(y, x), ∀t ∈ P2 (¯ x) ✈➔ y ∈ Q(¯x, t), t tỗ t x D s x P1 (¯ x) ✈➔ G(y, x¯, t) ⊆ H(y, x¯, x¯) + intC(y, x¯), ∀t ∈ P2 (¯ x) ✈➔ y ∈ Q(¯x, t) ❈❤ù♥❣ ♠✐♥❤✳ ❈→❝ →♥❤ ①↕ ✤❛ trà M : K × D → 2X , F : K ì D ì D 2D ữủ ✤à♥❤ ❜ð✐✿ M (y, x) = {t ∈ D | G(y, x, t) ⊆ H(y, x, x) + intC(y, x)}, (y, x) ∈ K × D; F (y, x, t) = t − M (y, x), (y, x, t) ∈ K ì D ì D ợ t D ố ✤à♥❤✱ t➟♣ A = {x ∈ D | ∈ F (y, x, t), ∀y ∈ Q(x, t)} = {x ∈ D | t ∈ M (y, x), ∀y ∈ Q(x, t)} = {x ∈ D | G(y, x, t) ⊆ H(y, x, x) + intC(y, x), ∀y ∈ Q(x, t)} Số hóa Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn ✹✸ ❧➔ ✤â♥❣ tr♦♥❣ D✳ ❚❤➟t ✈➟②✱ ❣✐↔ sû ❞➣② {xα } ⊂ D ✈➔ xα x tũ ỵ y Q(x, t) ứ Q(., t) ỷ tử ữợ x x s r tỗ t {y } yα ∈ Q(xα , t) s❛♦ ❝❤♦ yα → y ✳ ❱ỵ✐ ❜➜t ❦➻ ❧➙♥ ❝➟♥ V ❝õ❛ ❣è❝ tr♦♥❣ Y ❝â ♠ët ❝❤➾ sè α0 s❛♦ ❝❤♦ ∀α ≤ α0 t❛ ❝â ❝→❝ ❜❛♦ ❤➔♠ t❤ù❝ s❛✉ G(yα , xα , t) ⊆ G(y, x, t) + V − C(y, x), H(y, x, x) ⊆ H(yα , xα , xα ) + V + C(yα , xα ) ❱ỵ✐ xα ∈ A✱ t❛ ❝â G(yα , xα , t) ⊆ H(yα , xα , xα ) + intC(yα , xα ) ✈➔ G(y, x, t) + V − C(y, x) ⊆ H(yα , xα , xα ) + intC(yα , xα ) + C(yα , xα ) ❉♦ ✤â G(y, x, t) + V − C(y, x) ⊆ H(y, x, x) + V + intC(y, x) ✈➔ t❛ ❝â G(y, x, t) + V ⊆ H(y, x, x) + intC(y, x) ✈ỵ✐ ❜➜t ❦➻ ❧➙♥ ❝➟♥ V ❝õ❛ ❣è❝ tr♦♥❣ Y ✳ ❇➙② ❣✐í ❣✐↔ sû r➡♥❣ G(y, x, t) ⊆ H(y, x, x) + intC(y, x) ❱ỵ✐ ❜➜t V ố tr Y tỗ t↕✐ aα ∈ G(y, x, t)✱ vα ∈ Vα ✈➔ aα + vα ∈ H(y, x, t) + intC(y, x)✳ ❑❤æ♥❣ ♠➜t t➼♥❤ tê♥❣ q✉→t✱ t❛ ❝â t❤➸ ❣✐↔ sû aα → a ✈➔ vα → t❤➻ aα + vα → a ∈ G(y, x, t) ⊆ H(x, x, x) + intC(y, x)✳ ❱➻ H(x, x, x) + intC(y, x) t tỗ t s ❝❤♦ ∀α ≤ α0 t❛ ❝â aα + vα ∈ H(y, x, t) + intC(y, x) ✈➔ t❛ ❝â sü ♠➙✉ t❤✉➝♥✳ ❱➟② G(y, x, t) ⊆ H(y, x, x) + intC(y, x) Số hóa Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn ✹✹ ✣✐➲✉ ♥➔② ❝❤♦ t❤➜② x ∈ A ♥➯♥ A ❧➔ t➟♣ ❝♦♥ ✤â♥❣ tr♦♥❣ ❉✳ ❉♦ ✤â ✈ỵ✐ t ∈ D ❝è ✤à♥❤✱ t➟♣ B = D\A = {x ∈ D | ∈ F (y, x, t), ✈ỵ✐ ♠ët ✈➔✐ y ∈ Q(x, t)} ❧➔ ♠ð✳ ❍ì♥ ♥ú❛ ✤✐➲✉ ❦✐➺♥ (ii) ❝❤♦ t❤➜② F ❧➔ →♥❤ ①↕ ✤❛ trà Q − KKM t õ tỗ t↕✐ x ¯ ∈ D s❛♦ ❝❤♦ x¯ ∈ P1 (¯ x) ✈➔ ∈ F (y, x¯, t), ∀t ∈ P2 (¯ x) ✈➔ y ∈ Q(¯ x, t) tữỡ ữỡ ợ G(y, x, t) H(y, x¯, x¯) + intC(y, x¯), ∀t ∈ P2 (¯ x) ✈➔ y ∈ Q(¯ x, t) ❚÷ì♥❣ tü ❤➺ q✉↔ tr➯♥ t❛ ❝â ❤➺ q✉↔ s❛✉✳ ❍➺ q✉↔ ✸✳✻✳ ❈❤♦ D, K, P1, P2 ✈➔ Q ♥❤÷ tr♦♥❣ ✣à♥❤ ❧➼ ✸✳✶✳ ●✐↔ sû G, H : ❧➔ ❝→❝ →♥❤ ①↕ ✤❛ trà✳ ❈❤♦ C : K × D → 2Y ❧➔ →♥❤ ①↕ ✤❛ trà ♥â♥ ❧✐➯♥ tư❝ tr➯♥ ✈ỵ✐ tr rộ ỗ õ ỡ ỳ ❱ỵ✐ t ∈ D ❝è ✤à♥❤✱ →♥❤ ①↕ ✤❛ trà G(., , t) : K × D → 2Y ❧➔ C tử ữợ tr N : K × D → 2Y ①→❝ ✤à♥❤ ❜ð✐ N (y, x) = H(y, x, x) ❧➔ (−C) − ❧✐➯♥ tư❝ tr➯♥ ✈ỵ✐ ❣✐→ trà ❝♦♠ ♣➢❝❀ ✭✐✐✮ ❱ỵ✐ ❜➜t ❦➻ t➟♣ ❤ú✉ ❤↕♥ {t1, t2, , tn} ⊂ D ✈➔ x ∈ co{t1, t2, , tn} ❝â ♠ët j ∈ {1, 2, , n} s❛♦ ❝❤♦ H(y, x, x) ⊆ G(y, x, tj ) − intC(y, x), ∀t ∈ P2 (¯ x) ✈➔ y ∈ Q(¯ x, t), t tỗ t x D s K ì D × D → 2Y x¯ ∈ P1 (¯ x) ✈➔ H(y, x¯, x¯) ⊆ G(y, x¯, t) − intC(y, x¯), ∀t ∈ P2 (¯ x) Số hóa Trung tâm Học liệu – Đại học Thái Nguyên ✈➔ y ∈ Q(¯x, t) http://www.lrc-tnu.edu.vn ✹✺ ❈❤ù♥❣ ♠✐♥❤✳ ❈❤ù♥❣ ♠✐♥❤ t÷ì♥❣ tü ❍➺ q✉↔ ✸✳✺✳ ❍➺ q✉↔ ✸✳✼✳ ❈❤♦ D, K, P1, P2 ✈➔ Q ♥❤÷ tr♦♥❣ ✣à♥❤ ❧➼ ✸✳✶✳ ●✐↔ sû R ❧➔ q✉❛♥ ❤➺ ❣✐ú❛ y ∈ K ✱ x ∈ D✱ t ∈ D✳ ◆➳✉ ✭✐✮ ❱ỵ✐ t ∈ D ❝è ✤à♥❤✱ q✉❛♥ ❤➺ R(., , t) ❣✐ú❛ y ∈ K ✱ x ∈ D ❧➔ ✤â♥❣❀ ✭✐✐✮ R Q KKM t tỗ t x D s❛♦ ❝❤♦ x¯ ∈ P1 (¯ x) ✈➔ R(y, x¯, t) ①↔② r❛, ∀t ∈ P2 (¯ x) ✈➔ y ∈ Q(¯x, t) ❈❤ù♥❣ ♠✐♥❤✳ ❈→❝ →♥❤ ①↕ ✤❛ trà M : K × D → 2X F : K ì D ì D 2D ữủ ❜ð✐ M (y, x) = {t ∈ D | R(y, x, t) ①↔② r❛} F (y, x, t) = t − M (y, x), (y, x, t) ∈ K × D ì D ợ t D ố t t➟♣ A = {x ∈ D | R(y, x, t) ①↔② r❛, ∀y ∈ Q(x, t)} = {x ∈ D | ∈ F (y, x, t), ∀y ∈ Q(x, t)} ▲➟♣ ❧✉➟♥ t÷ì♥❣ tü ♥❤÷ tr♦♥❣ ❝❤ù♥❣ ♠✐♥❤ ❍➺ q✉↔ ✸✳✸✱ t❛ ❝â A ❧➔ t➟♣ ✤â♥❣ tr♦♥❣ D✳ ❉♦ ✤â t➟♣ B = D\A = {x ∈ D | ∈ F (y, x, t), ✈ỵ✐ ♠ët ✈➔✐ y ∈ Q(x, t)} ❧➔ ♠ð tr♦♥❣ D✳ ❍ì♥ ♥ú❛✱ tø R ❧➔ Q − KKM s✉② r❛ F ❧➔ →♥❤ ①↕ ✤❛ trà Q − KKM ✳ ❉♦ ✤â✱ t s r tỗ t x ¯ ∈ D s❛♦ ❝❤♦ x¯ ∈ P1 (¯ x) Số hóa Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn ✹✻ ✈➔ R(y, x¯, t) ①↔② r❛, ∀t ∈ P2 (¯ x) ✈➔ y ∈ Q(¯ x, t) ❍➺ q✉↔ ✸✳✽✳ ❈❤♦ D, K, P1, P2 ✈➔ Q ♥❤÷ tr♦♥❣ ✣à♥❤ ❧➼ ✸✳✶✳ ●✐↔ sû G : ❧➔ →♥❤ ①↕ ✤❛ trà✳ ◆➳✉ ❝→❝ ✤✐➲✉ ❦✐➺♥ s❛✉ t❤ä❛ ♠➣♥✿ ✭✐✮ ❱ỵ✐ t ∈ D ❝è ✤à♥❤✱ →♥❤ ①↕ ✤❛ trà G(., t) : K → 2Y ❧➔ ✤â♥❣❀ ✭✐✐✮ ❱ỵ✐ ❜➜t ❦➻ t➟♣ ❤ú✉ ❤↕♥ {t1, t2, , tn} ⊂ D ✈➔ x ∈ co{t1, t2, , tn} ❝â ♠ët j ∈ {1, 2, , n} s❛♦ ❝❤♦ x ∈ G(y, tj ) ①↔② r❛, ∀t ∈ P2 (¯ x) ✈➔ y ∈ Q(¯ x, t) tỗ t x D s K × D → 2Y x¯ ∈ P1 (¯ x) ∩ { G(y, t)} t∈P2 (¯ x) y∈Q(¯ x,t) ❈❤ù♥❣ ♠✐♥❤✳ ⑩♥❤ ①↕ ✤❛ trà F : K × D × D → 2X ✤÷đ❝ ①→❝ ✤à♥❤ ❜ð✐ F (y, x, t) = x − G(y, t), (y, x, t) ∈ K ì D ì D ợ t D ố ✤à♥❤✱ t➟♣ A = {x ∈ D | ∈ F (y, x, t), ∀y ∈ Q(x, t)} = {x ∈ D | x ∈ G(y, t), ∀y ∈ Q(x, t)} ❧➔ t➟♣ ✤â♥❣ tr♦♥❣ ❉✳ ❚❤➟t ✈➟②✱ ❣✐↔ sû ❞➣② {xα } ⊂ A ✈➔ xα → x✱ ❧➜② tũ ỵ y Q(x, t) ứ Q(., t) ỷ tử ữợ x x s r tỗ t {y } y Q(x , t) s❛♦ ❝❤♦ yα → y ✳ ❉♦ ✤â xα ∈ G(yα , t)✱ xα → x❀ yα → y ✳ ❚➼♥❤ ✤â♥❣ ❝õ❛ G(., t) ❞➝♥ ✤➳♥ x ∈ G(y, t)✳ ✣✐➲✉ ♥➔② ♥❣❤➽❛ ❧➔ x ∈ A ♥➯♥ A ❧➔ t➟♣ ✤â♥❣✳ ❉♦ ✤â t➟♣ B = D\A = {x ∈ D | ∈ x−G(y, t) = F (y, x, t), ✈ỵ✐ ♠ët ✈➔✐ y ∈ Q(x, t)} Số hóa Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn ✹✼ ❧➔ ♠ð tr♦♥❣ D✳ ❍ì♥ ♥ú❛✱ tø ✤✐➲✉ ❦✐➺♥ (ii) ❞➝♥ ✤➳♥ ✈ỵ✐ ❜➜t ❦➻ t➟♣ ❤ú✉ ❤↕♥ {t1 , t2 , , tn } ⊂ D ✈➔ x ∈ co{t1 , t2 , , tn } ❝â ♠ët j ∈ {1, 2, , n} s❛♦ ❝❤♦ ∈ F (y, x, tj ) ①↔② r❛, ∀t ∈ P2 (¯ x) ✈➔ y ∈ Q(¯ x, t) ✣✐➲✉ ♥➔② ❝❤♦ t❤➜② F ❧➔ →♥❤ ①↕ ✤❛ trà Q − KKM ✳ ❱➟② →♣ ❞ö♥❣ t õ tỗ t x D s❛♦ ❝❤♦ ∈ F (y, x¯, t) ①↔② r❛, ∀t ∈ P2 (¯ x) ✈➔ y ∈ Q(¯ x, t) ✣✐➲✉ ♥➔② ❞➝♥ ✤➳♥ x¯ ∈ P1 (¯ x) ∩ { G(y, t)} t∈P2 (¯ x) y∈Q(¯ x,t) õ q ữợ trữớ ủ ❜✐➺t ❝õ❛ ❤➺ q✉↔ tr➯♥ ♠➔ ♥â ❝❤➼♥❤ ❧➔ ✤à♥❤ ❧➼ ❑❑▼✳ ❍➺ q✉↔ ✸✳✾✳ ❈❤♦ D ❧➔ t➟♣ ❝♦♥ ỗ X ợ t →♥❤ ①↕ ❑❑▼ G : D → 2D ✈ỵ✐ ❣✐→ trà ✤â♥❣ ❦❤→❝ ré♥❣✱ t❛ ❝â t∈D G(t) = ∅✳ ❍➺ q✉↔ ✸✳✶✵✳ ❈❤♦ D, K, P1, P2 ✈➔ Q ♥❤÷ tr♦♥❣ ✣à♥❤ ❧➼ ✸✳✶✳ ●✐↔ sû F ⊆ K ì D ì D t tũ ỵ tọ ♠➣♥ ❝→❝ ✤✐➲✉ ❦✐➺♥ s❛✉✿ ✭✐✮ ❱ỵ✐ t ∈ D ❝è ✤à♥❤✱ t➟♣ B = {x ∈ D | (y, x, t) ∈ F, ✈ỵ✐ ♠ët ✈➔✐ y ∈ Q(x, t)} ❧➔ ♠ð tr♦♥❣ D❀ ✭✐✐✮ ❱ỵ✐ ❜➜t ❦➻ t➟♣ ❤ú✉ ❤↕♥ {t1, t2, , tn} ⊂ D ✈➔ x ∈ co{t1, t2, , tn} ❝â ♠ët j ∈ {1, 2, , n} s❛♦ ❝❤♦ (y, x, tj ) ∈ F, ∀t ∈ P2 (x) ✈➔ y ∈ Q(x, t) õ tỗ t x D s x ∈ P1(¯x) ✈➔ (y, x¯, t) ∈ F, ∀t ∈ P2 (¯ x) ✈➔ y ∈ Q(¯ x, t) ✭✣✐➲✉ ♥➔② ♥❣❤➽❛ ❧➔ t∈P (x) Q(¯x, t) × {¯x} × {t} ⊆ F ✮ Số hóa Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn ✹✽ ❈❤ù♥❣ ♠✐♥❤✳ ❈→❝ →♥❤ ①↕ ✤❛ trà M : K × D → 2X ; F : K × D × D → 2D ✤÷đ❝ ①→❝ ✤à♥❤ ❜ð✐ M (y, x) = {t ∈ D | (y, x, t) ∈ F(y, x) ∈ K × D, F (y, x, t) = t − M (y, x), (y, x, t) ∈ K × D × D ❚ø ✤✐➲✉ ❦✐➺♥ (i) ✈ỵ✐ t ∈ D ❝è ✤à♥❤✱ t➟♣ B = {x ∈ D | ∈ F (y, x, t), ✈ỵ✐ ♠ët ✈➔✐ y ∈ Q(x, t)} = {x ∈ D | (y, x, t) ∈ F, ✈ỵ✐ ♠ët ✈➔✐ y ∈ Q(x, t)} ❧➔ ♠ð tr♦♥❣ D✳ ❍ì♥ ♥ú❛✱ ✤✐➲✉ ❦✐➺♥ (ii) ❞➝♥ ✤➳♥ F ❧➔ →♥❤ ①↕ ✤❛ trà Q − KKM ✳ ❱➟② ✤➸ ❤♦➔♥ t❤➔♥❤ ❝❤ù♥❣ ♠✐♥❤ ❤➺ q✉↔ ♥➔② t❛ ❝❤➾ ❝➛♥ →♣ ❞ö♥❣ ✣à♥❤ ❧➼ ✸✳✶✳ Số hóa Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn ✹✾ ❑➌❚ ▲❯❾◆ ▲✉➟♥ ✈➠♥ tr➻♥❤ ❜➔② ❦➳t q sỹ tỗ t t tỹ ❝➙♥ ❜➡♥❣ tê♥❣ q✉→t ❧♦↕✐ ■ ✈➔ ❧♦↕✐ ■■✳ ❱➔ →♣ ❞ö♥❣ ❝→❝ ❦➳t q✉↔ ♥➔② ✤➸ ❝❤ù♥❣ ♠✐♥❤ sü tỗ t ởt số t q ♥❤÷ ❜➔✐ t♦→♥ q✉❛♥ ❤➺ tü❛ ❜✐➳♥ ♣❤➙♥✱ ❜➔✐ t♦→♥ ❜❛♦ ❤➔♠ t❤ù❝ tü❛ ❜✐➳♥ ♣❤➙♥✱✳✳✳ ❈→❝ ❦➳t q✉↔ ❝❤➼♥❤ ❝õ❛ ❧✉➟♥ ✈➠♥ ❧➔ ✲ ❚r➻♥❤ ❜➔② ✤✐➲✉ ❦✐➺♥ ✤õ ✤➸ ❜➔✐ t♦→♥ tü❛ ❝➙♥ ❜➡♥❣ tê♥❣ q✉→t ❧♦↕✐ ■ õ sỹ tỗ t↕✐ ♥❣❤✐➺♠ ❝õ❛ ❜➔✐ t♦→♥ tü❛ ❝➙♥ ❜➡♥❣ tê♥❣ q✉→t ự sỹ tỗ t ❝→❝ ❜➔✐ t♦→♥ ❧✐➯♥ q✉❛♥ ♥❤÷ ❜➔✐ t♦→♥ q✉❛♥ ❤➺ tü❛ ❜✐➳♥ ♣❤➙♥ ❧♦↕✐ ■✱ ❜➔✐ t♦→♥ ❜❛♦ ❤➔♠ t❤ù❝ tü❛ ❜✐➳♥ ♣❤➙♥ ❧♦↕✐ ■✱ ❜➔✐ t♦→♥ tü❛ ❝➙♥ ❜➡♥❣✱✳✳✳✳ ✲ ❚r➻♥❤ ❜➔② ✤✐➲✉ ❦✐➺♥ ✤õ ✤➸ ❜➔✐ t♦→♥ tü❛ ❝➙♥ ❜➡♥❣ tê♥❣ q✉→t ❧♦↕✐ ■■ ❝â ♥❣❤✐➺♠✳ ✲ Ù♥❣ sỹ tỗ t t♦→♥ tü❛ ❝➙♥ ❜➡♥❣ tê♥❣ q✉→t ❧♦↕✐ ■■ ✤➸ ❝❤ù♥❣ sỹ tỗ t ởt số t ❧✐➯♥ q✉❛♥ ♥❤÷ ❜➔✐ t♦→♥ q✉❛♥ ❤➺ tü❛ ❜✐➳♥ ♣❤➙♥ ❧♦↕✐ ■■✱ ❜➔✐ t♦→♥ ❜❛♦ ❤➔♠ t❤ù❝ tü❛ ❜✐➳♥ ♣❤➙♥ ❧♦↕✐ ■■✱✳✳✳ Số hóa Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn ✺✵ ❚➔✐ ❧✐➺✉ t❤❛♠ ❦❤↔♦ ❬✶❪ ●✉❡rr❛❣❣✐♦✱ ❆✳ ❛♥❞ ❚❛♥✱ ◆✳❳✳ ✭✷✵✵✷✮✱ ✧❖♥ ●❡♥❡r❛❧ ❱❡❝t♦r ◗✉❛s✐✲ ❖♣t✐♠✐③❛t✐♦♥ Pr♦❜❧❡♠s✧✱ s❡❛r❝❤✱ ❱♦❧✳ ✺✺✱ ✸✹✼✲✸✺✽✳ ▼❛t❤❡♠❛t✐❝❛❧ ▼❡t❤♦❞s ♦❢ ❖♣❡r❛t✐♦♥ ❘❡✲ ❬✷❪ ▲✐♥✱ ▲✳❏✳ ❛♥❞ ❚❛♥✱ ◆✳❳✳ ✭✷✵✵✼✮✱ ✧❖♥ ■♥❝❧✉t✐♦♥ Pr♦❜❧❡♠s ♦❢ ❚②♣❡ ■ ❛♥❞ ❘❡❧❛t❡❞ Pr♦❜❧❡♠s✧✱ ❏✳ ●❧♦❜❛❧ ❖♣t✐♠✱ ❱♦❧✳ ✸✾ ✱ ♥♦✳✸✱ ✸✾✸✲✹✵✼✳ ❬✸❪ ❚✉❛♥✱ ▲✳ ❆ ❛♥❞ ❙❛❝❤✱ P✳❍✳ ✭✷✵✵✹✮✱ ✧❊①✐st❡♥❝❡ ♦❢ s♦❧✉t✐♦♥s ♦❢ ❣❡♥✲ ♥❡r❛❧✐③❡❞ q✉❛s✐ ✈❛r✐❛t✐♦♥❛❧ ✐♥❡q✉❛❧✐t✐❡s ✇✐t❤ s❡t✲ ✈❛❧✉❡❞ ♠❛♣s✧✱ ▼❛t❤✳ ❱✐❡t♥❛♠ ✷✾✱ ✸✵✾✲✸✶✻ ✳ ❆❝t❛ ❬✹❪ P❛r❦✱ ❙✳ ✭✷✵✵✵✮✱ ✧❋✐①❡❞ ♣♦✐♥ts ❛♥❞ ◗✉❛s✐✲ ❊q✉✐❧✐❜r✐✉♠ Pr♦❜❧❡♠s ◆♦♥✲ ❧✐♥❡❛r ❖♣❡r❛t♦r ❚❤❡♦r②✧✱ ▼❛t❤❡♠❛t✐❝❛❧ ❛♥❞ ❝♦♠♣✉t❡r ▼♦❞❡❧❧✐♥❣✱ ❱♦❧✳ ✸✷ ✱ ✶✷✾✼✲✶✸✵✹✳ ❬✺❪ ▲✉❝✱ ❉✳ ❚✳ ✭✷✵✵✽✮✱ ✧❆♥ ❆❜str❛❝t ♣r♦❜❧❡♠ ✐♥ ❱❛r✐❛t✐♦♥❛❧ ❆♥❛❧②s✐s✧✱ ❏✳ ❖♣t✐♠✳ t❤❡♦r② ❆♣♣❧✱ ❱♦❧✳ ✶✸✽✱ ♥♦✳✶✱ ✻✺✲✼✻✳ ❬✻❪ ◆❣✉②➵♥ ❳✉➙♥ ❚➜♥✱ ◆❣✉②➵♥ ❇→ ▼✐♥❤ ✭✷✵✵✻✮✱ t❤✉②➳t tè✐ ÷✉ ✤❛ trà✱ ◆①❜ ❣✐→♦ ❞ư❝✳ ▼ët sè ✈➜♥ ✤➲ tr♦♥❣ ❧➼ ❬✼❪ ❚r✉♦♥❣ t❤✐ t❤✉② ❉✉♦♥❣ ❛♥❞ ◆❣✉②❡♥ ❳✉❛♥ ❚❛♥ ✭✷✵✶✵✮✱ ✧❖♥ t❤❡ ●❡♥❡r❛❧✐③❡❞ ◗✉❛s✐✲❡q✉✐❧✐❜r✐✉♠ Pr♦❜❧❡♠ ♦❢ ❚②♣❡ ■ ❛♥❞ ❘❡❧❛t❡❞ Pr♦❜✲ ❧❡♠s✧✱ ❆❞✈ ◆♦♥❧✐♥❡❛r✳ ❱❛r✳ ■♥❡q✉❛❧✱ ✶✸✱ ◆♦✳✶✱ ✷✾✲✹✼✳ ❬✽❪ ❚r✉♦♥❣ t❤✐ t❤✉② ❉✉♦♥❣ ❛♥❞ ◆❣✉②❡♥ ❳✉❛♥ ❚❛♥ ✭✷✵✶✶✮✱ ✧❖♥ t❤❡ ●❡♥✲ ❡r❛❧✐③❡❞ ◗✉❛s✐✲❡q✉✐❧✐❜r✐✉♠ Pr♦❜❧❡♠ ♦❢ ❚②♣❡ ■■ ❛♥❞ ❘❡❧❛t❡❞ Pr♦❜✲ ❧❡♠s✧✱ ❆❝t❛ ▼❛t❤❡♠❛t✐❝❛ ❱✐❡t♠❛♠✐❝❛✱ ✭t♦ ❛♣♣❡❛r✮✳ Số hóa Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn ✺✶ ❬✾❪ ▲✉❝✱ ❉✳ ❚✳ ❛♥❞ ❚❛♥✱ ◆✳ ❳✳ ✭✷✵✵✹✮✱ ✧❊①✐st❡♥❝❡ ❝♦♥❞✐t✐♦♥ ✐♥ ✈❛r✐❛t✐♦♥❛❧ ✐♥❝❧✉t✐♦♥s ✇✐t❤ ❝♦♥✲ str❛✐♥ts✧✱ ❖♣t✐♠✐③❛t✐♦♥ ✺✸✳ ✺✵✺✲✺✶✺✳ ❬✶✵❪ ❍❛✐✱ ◆✳ ❳✳ ❛♥❞ ❑❤❛♥❤✱ P✳ ◗ ✭✷✵✵✼✮✱ ✧❚❤❡ s♦❧✉t✐♦♥ ❡①✐st❡♥❝❡ ♦❢ ❣❡♥✲ ❡r❛❧ ✈❛r✐❛t✐♦♥❛❧ ✐♥❝❧✉t✐♦♥ ♣r♦❜❧❡♠s✧✱❏✳ ▼❛t❤✳ ❆♥❛❧✳ ❆♣♣❧✱ ✸✷✽✱ ✶✷✻✽✲ ✶✷✼✼✳ ❬✶✶❪ ❨❛♥♥❡❧✐s✱ ◆✳❈✳ ❛♥❞ Pr❛❜❤❛❦❡r✱ ◆✳ ❉✳ ✭✶✾✽✸✮✱ ✧❊①✐st❡♥❝❡ ♦❢ ♠❛①✐♠❛❧ ❡❧❡♠❡♥ts ❛♥❞ ❡q✉❛❧✐❜r✐❛ ✐♥ ❧✐♥❡❛r t♦♣♦❧♦❣✐❝❛❧ s♣❛❝❡✧✱❏✳ ▼❛t❤✳ ❊❝♦✱ ❱♦❧✳ ✶✷✱ PP✳ ✷✸✸✲ ✷✹✺✳ Số hóa Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn