[r]
(1)Bài : Gi¶i c¸c phương trình bËc nhÊt sau a) 2x +1 = 15-5x b/ 3x – = 2x + d/ 2x + = 20 – 3x e/- 4x + = g/ x(2x – 1) = h/ 3x – = x + j/ 2(x +1) = 5x - k) 2x + = m) 2x - = n) 4x + 20 = c) 7(x - 2) = 5(3x + 1) f/ x – = 18 - 5x x −4 16 x+ = i/ x +1 x − −2 x − = −x l) x−5 3− x o/ + = x 1 x r) 2x x4 p) 15 - 7x = - 3x q) + x = 2 (x - 2) (x +1) (x - 4)(x - 6) = 21 28 r) 12 3(2x +1) 5x + x +1 + = x+ 12 u) 392 - x 390 - x 388 - x 386 - x 384 - x + + + + = -5 34 36 38 40 x) 32 3(2x +1) 3x + 2(3x -1) -5= 10 t) x+1 x+ x+5 x +7 + = + 2009 2007 2005 2003 v) x -15 x - 23 + -2 = 15 y) 23 Bài : Gi¶i c¸c phương trình sau (®a c¸c PT vÒ d¹ng pt bËc nhÊt hoÆc PT tÝch) a) y(y2-1) - y2 - 5y + = b) y( y )( 2y + ) = c) 4y2 +1= 4y d) y2 – 2y = 80 g) (2y – 1)2 – (y + 3)2 = h) 2y2 11y = i) (2y - 3)(y +1)+ y(y - 2) = 3(y +2) j) (y ❑2 - 2y + 1) – = k) y + 5y + = l) y2 + 7y + = m) y – y – 12 = n) x2 + 2x + = o) y – y – 21y + 45 = p) 2y3 – 5y2 + 8y – = q) (y+3)2 + (y + )2 = Bài 3: Gi¶i c¸c phương trình cã chøa Èn ë mÉu sau: x −3 x +2 + =2 a) b/ ( x – ) ( x–6)=0 c/ x −2 x x −3 x +2 + =2 x −2 x x x − x +3 x −1 x −2 − = + =2 d) f/ g) x +1 x − x −1 x x+1 x x 2 x x x +3 x −2 + − =5 h) =2 i) j) x +1 x x +1 x −1 2x +1 2x -1 x −1 x+5 = 2x -1 2x +1 4x -1 k) x −1 − x −3 =1 l) x −11 − = x +1 x −2 ( x +1)(x −2) 3x -1 2x + + =1 m) x -1 x + x + 2x - o) p) x −2 +¿ x+ n) x+ 2 − = x −2 x x( x −2) x 4 x 2x p) x 1 x x x2 −11 = x −2 x − 2x x −5 + = x −1 x +2 x −3 x +3 +2 = +x x -1 r) x - q) = s) x + 4x - 21 x - 2 x −x x x −3 x − = x+3 x − 9− x 1 +4= x +1 t) x + 2x + (2) (3)