1. Trang chủ
  2. » Giáo án - Bài giảng

Các dạng Đề CA SIO 9 phần 9

26 365 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 26
Dung lượng 1,32 MB

Nội dung

ĐẶT VẤN ĐỀ PHẦN I Bồi dưỡng, phát triển trí tuệ và năng lực hoạt động sáng tạo của học sinh là nhiệm vụ trọng tâm của mỗi nhà trường. Sử dụng MTĐT BT để giải toán cũng là một hoạt động phát triển trí tuệ và năng lực sáng tạo của học sinh rất hiệu quả. Xuất phát từ những kỹ năng đơn giản về sử dụng MTĐT BT để tính toán thông thường như tính giá trị của biểu thức số, tìm nghiệm của phương trình bậc 2 – 3, khai phương, hay tìm tỉ số lượng giác của một góc . học sinh còn được rèn luyện lên một mức độ cao hơn đó là rèn tư duy thuật toán- một thao tác tư duy cực kỳ cần thiết cho lập trình viên máy tính PC sau này - thông qua các bài toán về tìm số, bài toán về phân tích một số ra thừa số nguyên tố, tìm ƯCLN hay bài toán phân tích đa thức thành nhân tử . Hiện nay, với sự phát triển như vũ bão của khoa học-kỹ thuật (KHKT) nhất là các ngành thuộc lĩnh vực công nghệ thông tin (CNTT), trong đó MTĐT BT là một thành quả của những tiến bộ đó. MTĐT BT đã được sử dụng rộng rãi trong các nhà trường với tư cách là một công cụ hỗ trợ việc giảng dạy, học tập hay cả việc đổi mới phương pháp dạy học theo hướng hiện đại như hiện nay một cách có hiệu quả. Đặc biệt, với nhiều tính năng mạnh như của các máy CASIO Fx-500MS, CASIO Fx-570MS . trở lên thì học sinh còn được rèn luyện và phát triển dần tư duy thuật toán một cách hiệu quả. Trong những năm gần đây, các cơ quan quản lý giáo dục cũng như các tổ chức kinh tế tài trợ thiết bị giáo dục (nhất là các công ty cung cấp thiết bị điện tử và máy văn phòng) rất chú trọng việc tổ chức các cuộc thi giải toán trên MTĐT BT. Từ năm 2001, BGD& ĐT bắt đầu tổ chức cuộc thi “Giải toán trên MTĐT BT”- cho HS THCS - đến cấp khu vực; báo Toán tuổi thơ2 tổ chức thi giải toán bằng MTĐT BT qua thư - cho HS THCS- do tập đoàn CASIO tài trợ, báo Toán học & Tuổi trẻ tổ chức cuộc thi tương tự - cho cả HS THCS và THPT- do tập đoàn SHARP tài trợ, nhằm góp phần phát huy trí lực của học sinh và tận dụng những tính năng ưu việt của MTĐT BT để hỗ trợ học tốt các môn học khác nữa như Lý, Hoá, Sinh, Địa . Thực tế, qua 3 năm phụ trách bồi dưỡng HSG giải toán trên MTĐT BT, tôi nhận thấy các em học sinh thực sự say mê tìm tòi, khám phá những công dụng của chiếc MTĐT BT đơn giản nhưng vô cùng hữu ích này và vận dụng tốt trong quá trình học tập của mình. Từ những lý do trên, tôi mạnh dạn triển khai chuyên đề “CASIO FX500MS VỚI VIỆC GIẢI TOÁN” rộng ra toàn trường với mục đích là: • Để tất cả các em học sinh có điều kiện nắm được những chức năng cơ bản nhất của MTĐT BT CASIO Fx-500MS, từ đó biết cách vận dụng các tính năng đó vào giải các bài toán tính toán thông thường rồi dần đến các bài toán đòi hỏi tư duy thuật toán cao hơn. • Tạo không khí thi đua học tập sôi nổi hơn, nhất là giáo dục cho các em ý thức tự vận dụng kiến thức đã được học vào thực tế công việc của mình và ứng dụng những thành quả của khoa học hiện đại vào đời sống. • Tạo nguồn HSG cho các năm tiếp sau. NỘI DUNG VÀ PHƯƠNG PHÁP I. GIỚI THIỆU CƠ BẢN VỀ MÁY FX-500MS. 1. Các phím thông thường : - Có 3 loại phím: + Phím màu trắng: bấm trực tiếp. + Phím màu vàng: bấm sau phím IFTSH + Phím màu đỏ: bấm sau phím ALPHA - Các phím chức năng: (xem trong CATANO giới thiệu máy). - Cài đặt cho máy: + Ấn MODE nhiều lần để chọn các chức năng của máy. + Ấn MODE 1 : Tính toán thông thường. + Ấn MODE 2 : Tính toán với bài toán thống kê. + Ấn MODE MODE 1 2 : Giải hệ phương trình bậc1, 2 ẩn. + Ấn MODE MODE 1 3 : Giải hệ phương trình bậc1, 3 ẩn. + Ấn MODE MODE 1 > 2 : Giải phương trình bậc 2. + Ấn MODE MODE 1 > 3 : Giải phương trình bậc 3. + Ấn IFTSH CLR 1 = : Xoá giá trị ở các ô nhớ A,B . + Ấn IFTSH CLR 2 = : Xoá cài đặt trước đó (ô nhớ vẫn còn) + Ấn IFTSH CLR 3 = : Xoá tất cả cài đặt và các ô nhớ. - Phép gán vào các ô nhớ: + 10 IFTSH STO A : Gán 10 vào ô nhớ A. + 12 IFTSH STO B : Gán 10 vào ô nhớ B. + 0 IFTSH STO A : Xoá ô nhớ A. + STO A ( ALPHA A = ): Kiểm tra giá trị của ô nhớ A. Chú ý: Các ô nhớ A, B, C, D, E, F, X, Y, M là các biến nhớ mà khi gán giá trị mới vào thì giá trị mới sẽ thay thế giá trị trước đó. Còn riêng ô nhớ M-ngoài chức năng trên-Nó còn là 1 số nhớ độc lập, nghĩa là có thể thêm vào hoặc bớt ra ở ô nhớ này. 2. Cách SD phím EXP : Tính toán với các số dạng a.10 n . VD: 3.10 3 + 4.10 5 = ? Ấn phím: 3 x EXP 3 + 4 x EXP 5 = (Kết quả là 403 000) PH Ç N II 3. Cách SD phím Ans : Kết quả tự động gán vào phím Ans sau mỗi lần ấn phím = hoặc IFTSH % hoặc M + hoặc IFTSH M − hay IFTSH STO ( là 1 chữ cái) VD: Tính giá trị của biểu thức: 3 1 1 1 1 1 1 1 1 1 1 + + + + + Cách ấn phím và ý nghĩa của từng lần ấn như sau: 3 = Nhớ 3 vào phím Ans 1 + 1 b c a Ans = Máy thực hiện phép tính s 1 1 An + được kq là 3 1 1 nhớ vào Ans = Máy thực hiện phép tính s 1 1 An + được kq là 4 3 1 nhớ vào Ans = Máy thực hiện phép tính s 1 1 An + được kq là 7 4 1 nhớ vào Ans = Máy thực hiện phép tính s 1 1 An + được kq là 11 7 1 nhớ vào Ans = Máy thực hiện phép tính s 1 1 An + được kq là 18 11 1 nhớ vào Ans Kết quả cuối cùng là 18 11 1 Nhận xét: Dòng lệnh 1 1 Ans + được máy thực hiện liên tục.Sau mỗi lần ấn dấu = thì kết quả lại được nhớ vào phím Ans ( 1 1 Ans + → Ans ), cứ ấn dấu = một số lần nhất định ta sẽ nhận được kết quả của biểu thức. Phím Ans có tác dụng rất hữu hiệu với bài toán tính giá trị của biểu thức dạng phân số chồng như VD trên. II. SỬ DỤNG CASIO FX-500MS ĐỂ GIẢI TOÁN NHƯ THẾ NÀO? 1. Quy trình lặp cơ bản của máy FX-500MS. Dòng lệnh 1. Dòng lệnh 2. . Dòng lệnh 9. 8 IFTSHK 1 442 4 43 # # # # (Gọi các dòng lệnh để đưa vào quy trình) = (Máy thực hiện dòng lệnh 1 lần thứ nhất) = (Máy thực hiện dòng lệnh 2 lần thứ nhất) . = (Máy thực hiện dòng lệnh 9 lần thứ nhất) = (Máy thực hiện dòng lệnh 1 lần thứ hai) = (Máy thực hiện dòng lệnh 2 lần thứ hai) = (Máy thực hiện dòng lệnh 9 lần thứ hai) = (Máy thực hiện dòng lệnh 1 lần thứ ba) = (Máy thực hiện dòng lệnh 2 lần thứ ba) . = (Máy thực hiện dòng lệnh 9 lần thứ ba) = (Máy thực hiện dòng lệnh 1 lần thứ tư) VD1: Dòng lệnh 1. Dòng lệnh 2. Dòng lệnh 3. Dòng lệnh 4. 8 IFTSHK 1 442 4 43 # # # # 10 + 1 = 10 + 2 = 10 + 3 = 10 + 4 = 3 IFTSH 1 4 2 4 3 # # # # = (máy thực hiện dòng lệnh 10 + 1). = (máy thực hiện dòng lệnh 10 + 2). = (máy thực hiện dòng lệnh 10 + 3). = (máy thực hiện dòng lệnh 10 + 4). Lần thứ nhất = (máy thực hiện dòng lệnh 10 + 1). = (máy thực hiện dòng lệnh 10 + 2). = (máy thực hiện dòng lệnh 10 + 3). = (máy thực hiện dòng lệnh 10 + 4). Lần thứ hai VD2: 10 IFTSH STO A . 100 IFTSH STO B . DL1: ALPHA A + 1 IFTSH STO A .(A tăng thêm 1, được 11 và 11 nhớ vào A) DL2: ALPHA B + 1 IFTSH STO B .(B tăng thêm 1, được 101 và 101 nhớ vào B) Lặp: # IFTSH # = (A tăng thêm 1, được 12 và 12 nhớ vào A) = (B tăng thêm 1, được 102 và 102 nhớ vào B) = (A tăng thêm 1, được 13 và 13 nhớ vào A) = (B tăng thêm 1, được 103 và 103 nhớ vào B) . * Chú ý: ALPHA A + 1 IFTSH STO A . sau này kí hiệu là A+1→ A ALPHA B + 1 IFTSH STO B . sau này kí hiệu là B+1→ B VD3: 10 IFTSH STO A . 100 IFTSH STO B . 1000 IFTSH STO C . DL1: ALPHA A + 1 IFTSH STO A .(A tăng thêm 1, được 11 và 11 nhớ vào A) DL2: ALPHA B + 1 IFTSH STO B .(B tăng thêm 1, được 101 và 101 nhớ vào B) DL3: ALPHA C + 1 IFTSH STO C .(C tăng thêm 1, được 1001 và 1001 nhớ vào C) Lặp: # # IFTSH # = (A tăng thêm 1, được 12 và 12 nhớ vào A) = (B tăng thêm 1, được 102 và 102 nhớ vào B) = (C tăng thêm 1, được 1002 và 1002 nhớ vào C) = (A tăng thêm 1, được 13 và 13 nhớ vào A) = (B tăng thêm 1, được 103 và 103 nhớ vào B) = (C tăng thêm 1, được 1003 và 1003 nhớ vào C) . 2. DẠNG I:Tính toán cơ bản trên dãy các phép tính cồng kềnh. Kiến thức bổ sung cần nhớ: Cách chuyển đổi số thập phân vô hạn tuần hoàn sang phân số. Nhận xét: 1 0,(1) 9 1 0,(01) 99 1 0,(001) 999 = = = Ta có: 1 3 1 0,(3) 3.0,(1) 3. 9 9 3 = = = = 1 1 7 2,(3) 2 0,(3) 2 3.0,(1) 2 3. 2 9 3 3 = + = + = + = + = [ ] [ ] 1 1 1 1 8 2,5(3) 25,(3) 25 0,(3) 25 2 10 10 10 3 15   = = + = + =     [ ] [ ] 53 53 2,(53) 2 0,(53) 2 0,(01).53 2 2 99 99   = + = + = + =     VD1: Tính giá trị của biểu thức. (Tính chính xác đến 0,000001) a. A = 5 4 :)5,0.2,1( 17 2 2). 4 1 3 9 5 6( 7 4 :) 25 2 08,1( 25 1 64,0 )25,1. 5 4 (:8,0 + − − + − (ĐS: 1 2 3 ) b. B = 1 1 7 90 2 3 0,3(4) 1,(62) :14 : 11 0,8(5) 11 + + − (ĐS: 106 315 ) VD2: Tìm x. (Tính chính xác đến 0,0001) a. 4 6 (2,3 5 : 6,25).7 1 5 : :1,3 8, 4. . 6 1 7 7 8.0,0125 6,9 14 x   +   + − =     +     (x = -20,384) b. 1 3 1 4 : 0,003 0,3 .1 1 2 20 2 : 62 17,81:0,0137 1301 1 1 3 1 20 3 2,65 .4 : 1,88 2 . 20 5 25 8 x       − −  ÷  ÷         − + =       − +  ÷  ÷         (x= 6) 3. DẠNG II: Tính giá trị của biểu thức đại số. VD1: Tính giá trị của biểu thức: 20x 2 -11x – 2006 tại a) x = 1; b) x = -2; c) x = 2 1 − ; d) x = 23456,1 12345,0 ; Cách làm: *Gán 1 vào ô nhớ X: 1 IFTSH STO X . Nhập biểu thức đã cho vào máy: 20 ALPHA X 2 x − 11 ALPHA X − 2006 = (Ghi kết quả là -1 997) *Sau đó gán giá trị thứ hai vào ô nhớ X: 2− IFTSH STO X . Rồi dùng phím # để tìm lại biểu thức, ấn = để nhận kết quả. (Ghi kết quả là -1 904) Làm tương tự với các trường hợp khác ta sẽ thu được kết quả một cách nhanh chóng, chính xác. (ĐS c) 1 1995 2 − ; d) -2006,899966). VD2: Tính giá trị của biểu thức: x 3 - 3xy 2 – 2x 2 y - 3 2 y 3 tại: a) x = 2; y = -3. b) x = 4 3 − ; y = -2 7 3 c) x = 5 72 + y = 69,2 35,2 Cách làm: Gán 2 vào ô nhớ X: 2 IFTSH STO X . Gán -3 vào ô nhớ Y: 3− IFTSH STO Y . Nhập biểu thức đã cho vào máy như sau: ALPHA X ^ 3 + 3 ALPHA X ALPHA Y 2 x − 2 ALPHA X 2 x ALPHA Y − 2 b c a 3 ALPHA Y ^ 3 = (Ghi kết quả là - 4 ) Sau đó gán giá trị thứ hai vào ô nhớ X: 3 4 − IFTSH STO X . 3 2 7 − IFTSH STO Y . Rồi dùng phím # # để tìm lại biểu thức, ấn = để nhận kết quả. (Ghi kết quả là 25,12975279) Làm tương tự với trường hợp c) (Ghi kết quả là -2,736023521) Nhận xét: Sau mỗi lần ấn dấu = ta phải nhớ ấn tổ hợp phím IFTSH b c a để đổi kết quả ra phân số (nếu được). 4. DẠNG III: Tính giá trị của biểu thức số có quy luật. VD1:Tính giá trị của các biểu thức sau: a) A = 1+2+3+ .+49+50. Nhận xét: Ta thấy tổng trên là tổng các số tự nhiên liên tiếp từ 1 đến 50, có quy luật là số sau lớn hơn số liền trước 1 đơn vị. Ta phải lập một quy trình cho máy để sau một số lần ấn dấu = ta thu được kết quả của biểu thức. 1 → A 2 → B A + B → A B + 1 → B Gán 1 vào ô nhớ A. (A là biến chứa). Gán 2 vào ô nhớ B. (B là biến chạy). Dòng lệnh 1 Dòng lệnh 2 # IFTSH # = . Đưa 2 DL vào quy trình lặp rồi ấn dấu = đến khi B + 1 → B có giá trị là 50 thì ấn = và đọc kq :(1 275) b) B = 1 1 1 1 1 . 1 2 3 49 50 + + + + + ? Nhận xét: Ta thấy tổng trên là tổng các phân số với tử số không đổi, mẫu là các số tự nhiên tăng dần từ 1 đến 50. Ta cũng phải lập một quy trình cho máy để sau một số lần ấn dấu = ta thu được kết quả của biểu thức. 1 → A 2 → B A + B 1 → A B + 1 → B Gán 1 vào ô nhớ A Gán 2 vào ô nhớ B Dòng lệnh 1 Dòng lệnh 2 # IFTSH # = . Đưa 2 DL vào quy trình lặp rồi ấn dấu = đến khi B + 1 → B có giá trị là 50 thì ấn = và đọc kết quả. (KQ: 4,499205338) c) C = 1 1 1 1 1 1 1 . 1 2 3 4 48 49 50 − + − + − + − ? Nhận xét: Ta thấy biểu thức trên là một dãy các phép toán + và - xen kẽ các phân số với tử số không đổi, mẫu là các căn bậc hai của các số tự nhiên tăng dần từ 1 đến 50. Nếu mẫu là CBH của STN lẻ thì dấu là +, còn mẫu là CBH của STN chẵn thì dấu là -. Ta cũng phải lập một quy trình cho máy để sau một số lần ấn dấu = ta thu được kết quả của biểu thức. Cách lập tương tự như VD2, song ta phải chú ý đến dấu của từng số hạng. 1 → A 2 → B A + (-1) B+1 B 1 → A B + 1 → B Gán 1 vào ô nhớ A Gán 2 vào ô nhớ B Dòng lệnh 1 Dòng lệnh 2 # IFTSH # = . Đưa 2 DL vào quy trình lặp rồi ấn dấu = đến khi B + 1 → B có giá trị là 50 thì ấn = và đọc kết quả. (KQ:0,534541474) 5. DẠNG IV: Bài toán về số. 5.1- Tìm số hạng thứ n của dãy số? VD1: Cho U 1 = 8; U 2 = 13; U n+2 = U n+1 +U n (n ≥ 2) a) Lập quy trình bấm phím liên tục để tính U n ? b) Áp dụng quy trình trên để tính U 13 , U 17 ? Cách làm: 8 → A 13 → B B+A → A A +B→ B Gán 8 vào ô nhớ A (U 1 ) Gán 13 vào ô nhớ B (U 2 ) Dòng lệnh 1 (U 3 ) Dòng lệnh 2 (U 4 ) # IFTSH # = . Đưa 2 DL vào quy trình lặp rồi ấn dấu = n – 4 lần và đọc kết quả. (U 13 = 2 584; U 17 = 17 711) VD2: Cho U 1 = 1; U 2 = 2; U n+2 = 2U n+1 - 4U n (n ≥ 2) a) Lập quy trình bấm phím liên tục để tính U n ? b) Áp dụng quy trình trên để tính U 15 ,U 16 , U 17 ? Cách làm: 1 → A 2 → B 2B - 4A → A 2A - 4B → B Gán 1 vào ô nhớ A (U 1 ) Gán 2 vào ô nhớ B (U 2 ) Dòng lệnh 1 (U 3 ) Dòng lệnh 2 (U 4 ) # IFTSH # = . Đưa 2 DL vào quy trình lặp rồi ấn dấu = n – 4 lần và đọc kết quả. (U 15 = 0; U 16 = -32 768; U 17 = - 65 536) VD3: Cho U 1 = 1; U 2 = 2; U 3 = 3; U n+3 = 2U n+2 - 3U n+1 +2U n (n ≥ 2) a) Lập quy trình bấm phím liên tục để tính U n ? b) Áp dụng quy trình trên để tính U 19 ,U 20 , U 66, U 67 , U 68 ? c) Tính tổng 20 số hạng đầu tiên của dãy (S 20 )? Cách làm:Câua+b) 1 → A 2 → B 3 → C 2C – 3B + 2A → A 2A – 3C + 2B → B 2B – 3A + 2C → C Gán 1 vào ô nhớ A (U 1 ) Gán 2 vào ô nhớ B (U 2 ) Gán 3 vào ô nhớ C (U 3 ) DL1:U 4 = 2U 3 - 3U 2 +2U 1 DL2:U 5 = 2U 4 - 3U 3 +2U 2 DL3:U 6 = 2U 5 - 3U 4 +2U 3 # # IFTSH # = . Đưa 3 DL vào quy trình lặp rồi ấn dấu = n – 6 lần và đọc kết quả. (U 19 = 315; U 20 = -142; U 66 = 2 777 450 630; U 67 = -3 447965 925; U 68 = -9 002 867 128 ) c) Đặt S n = U 1 +U 2 +U 3 +U 4 + . + U n Và từ công thức U n+3 = 2U n+2 - 3U n+1 +2U n → U n = 2U n-1 - 3U n-2 +2U n-3 Theo CT truy hồi đó thì ta có: + U 4 = 2U 3 - 3U 2 +2U 1 U 5 = 2U 4 - 3U 3 +2U 2 U 6 = 2U 5 - 3U 4 +2U 3 U n = 2U n-1 - 3U n-2 +2U n-3 U 4 +U 5 +U 6 + . + U n = 2(U 3 +U 4 +U 5 + . + U n-1 )-3(U 2 +U 3 +U 4 + . + U n-2 ) +2(U 1 +U 2 +U 3 + . + U n-3 ) ↔ S n -(U 1 +U 2 +U 3 )= 2[S n -(U 1 +U 2 +U n )] - 3[S n -(U 1 +U n-1 +U n )] +2[S n -(U n-2 +U n-1 +U n )] Rút gọn đi ta được công thức truy hồi mới: Làm tương tự trên với CT truy hồi mới này ta được: + U 4 =U 3 - 2U 2 + 3 U 5 =U 4 - 2U 3 + 3 U 6 =U 5 - 2U 4 + 3 U n =U n-1 - 2U n-2 + 3 U 4 +U 5 +U 6 + . + U n = (U 3 +U 4 +U 5 + . + U n-1 )-2(U 2 +U 3 +U 4 + . + U n-2 ) + (n-4).3 ↔ S n -(U 1 +U 2 +U 3 )= [S n -(U 1 +U 2 +U n )] - 2[S n -(U 1 +U n-1 +U n )] +3(n-4) Rút gọn và thay các giá trị đã biết của U 1 ; U 2 ; U 3 vào ta được: 1 2 3 4 2 n n n U U n S − + + − = U n =U n-1 - 2U n-2 + 3 [...]... nguyên tố VD1: Xét xem 8 191 là số nguyên tố hay hợp số? 1 Tính 8 191 được 90 ,50414355 2 Lấy phần nguyên được 90 3 Lấy số lẻ lớn nhất không vượt quá nó là 89 4 Lập quy trình: 89 → A 8 191 ÷ A → B A–2→A # SHIFT = # 5 Quan sát các kết quả ta thấy đều không nguyên, cho nên khẳng định 8 191 là số nguyên tố VD2: Xét xem 99 873 là số nguyên tố hay hợp số? 1 Tính 99 873 được 316,026 897 6 2 Lấy phần nguyên được 316... (x+3)(x+5)(x-1)(x2-2x+4) 7 DẠNG VI: Bài toán về thống kê 1 Tính toán thống kê trên máy tính điện tử bỏ túi Casio fx- 500MS và Casio fx- 570MS Vào chương trình thống kê: Trên Casio fx-500MS: ON MODE 2 Trên Casio fx-570MS: ON MODE MODE 1 Các thao tác còn lại trên 2 máy là như nhau Để tính điểm trung bình của học sinh trong thí dụ 2.1, ta bấm phím ON MODE 2 trên Casio fx-500MS và ON MODE MODE 1 trên Casio fx-570MS... ‘ a = 1 637 6 39, 6 29 đồng Nhận xét: Hai bài toán về dân số và gửi tiền tiết kiệm là cùng 1 dạng – toán tăng trưởng Ở đó, học sinh phải vận dụng các kiến thức toán học để thiết lập công thức tính toán MTĐT BT chỉ giúp chúng ta tính toán chính xác nhất các kết quả mà số liệu thường rất to và lẻ 9 DẠNG VIII: Bài toán hình học VD1: Cho tam giác ABC đồng dạng với tam giác CDE theo tỷ số đồng dạng k=1,3 Tính... x14-x9-x5+x4+x2+x-723 cho (x-1,624) Cách làm: 1,624 → X Nhập biểu thức x14-x9-x5+x4+x2+x-723 (chữ là X) rồi ấn = Kết quả: 85 ,92 1 VD2: Tìm thương và dư của phép chia đa thức f(x) = x3 -5x2+11x- 19 cho (x-2)? Mô hình sơ đồ Hoocner: Quy trình: 1→A 1 x A + (-5) = SHIFT a b c (Ghi kết quả -3) x A + 11 = SHIFT a b c (Ghi kết quả 5) x A +(- 19) = SHIFT a b c (Ghi kết quả -9) Vậy thương là 1x2 – 3x + 5, dư là -9. .. Lấy phần nguyên được 316 3 Lấy số lẻ lớn nhất không vượt quá nó là 315 4 Lập quy trình: 315 → A 99 873 ÷ A → B A–2→A # SHIFT # = 5 Quan sát màn hình thấy có kết quả nguyên là 441, cho nên khẳng định 99 873 là hợp số 5.6-Phân tích một số ra thừa số nguyên tố? Nhận xét: Các số nguyên tố đều là số lẻ (trừ số 2) Cách làm: TH1: Nếu số a có ước nguyên tố là 2, 3 (Dựa vào dấu hiệu chia hết để nhận biết) Ta... SHIFT S-VAR 2 = ( kết quả: xσ n = 1.2041 594 598 ) Tính phương sai: Bấm tiếp phím: x2 = ( kết quả: 1.45 ) Vậy độ lệch chuẩn là 1,2041 594 598 và phương sai bằng 1,45 Tính độ lệch chuẩn hiệu chỉnh: Bấm phím: SHIFT S-VAR 3 = ( kết quả: xσ n − 1 = 1.2 692 95518 ) Tính phương sai hiệu chỉnh : Bấm tiếp phím: x2 = ( kết quả: 1.611111111 ) Vậy độ lệch chuẩn hiệu chỉnh là 1,2 692 65518 và phương sai hiệu chỉnh gần bằng... ƯCLN(44 505; 25 413) = 1 29 VD2: Tìm ƯCLN(4 107 5306 69; 4 104 184 1 69) Cách làm: 41075306 69 b c STO A: 41041841 69 ALPHA A a SHIFT SHIFT STO B : ALPHA B = SHIFT a b c Kết quả máy báo là một số thập phân 1,000815387 Ta đi tìm số dư: A – 1.B → A Lặp lại dòng lệnh: ALPHA B a b c ALPHA A = Kết quả máy báo là một số thập phân 1226,41 092 8 SHIFT a b c (lấy phần nguyên là 1226) Ta lại đi tìm số dư: B – 1226.A... U37, U38, U 39? b) Cho U1 = 1; U2 = 2; U3 = 3; Un+3 = Un+2 +2Un+1 -2Un (n ≥ 2) a) Lập quy trình bấm phím liên tục để tính Un? b) Tính số hạng lớn nhất và nhỏ nhất có 10 chữ số? c) Áp dụng quy trình trên để tính U 19, U20, U66, U67, U68? d) Tính tổng 59 số hạng đầu tiên của dãy (S 59) ? Bài 5: Phân tích các số sau ra thừa số nguyên tố: a) 94 325 b) 323 040 401 Bài 6: Tìm ƯCLN của : a) 2 261 và 5 1 49 b) 320... 7: (527311) ( 792 191 3271) ( 19) (11) Dân số Hà Nội sau 2 năm tăng từ 2 000 000 người lên 2 048 288 người, Tính xem hàng năm, trung bình dân số Hà Nội tăng bao nhiêu phần trăm? (1,2%) Bài 8: Dân số nước A hiện nay là 80 triệu người, tỷ lệ tăng dân số bình quân hàng năm là 1,25% Tính dân số của nước đó sau 20 năm? Hướng dẫn: An = a(1+m)n Công thức tính dân số sau n năm là (102 562 97 9) Bài 9: Cho hình chữ... 4 29, 2460871) 10 BÀI TẬP TỰ LUYỆN Bài 1: 1 1 + 4 2 3 60 Tính A = 0, 2(3) + 1, (45) :12 − : 11 0, 6(3) 19 Bài 2: Tính giá trị của biểu thức P = x 2 − xy 3 − z − 2 xyz xy − y 2 z + z 2 a) x=1; y=2; z=3 1 3 2 3 b) ‘x= ; y= 2 ; z= -5 −1, 234 c) ‘x=1,2(3); y= 2,131 ; z= −2 + 3 5 Bài 3: Tính giá rị của các biểu thức: a) A = 1+3+5+ + 49 b) B = 1-24+34-44+ + 494 -504 c) C = 1 + 1 1 1 1 1 + + + + 2! 3! 4! 49! . Nhận xét: 1 0,(1) 9 1 0,(01) 99 1 0,(001) 99 9 = = = Ta có: 1 3 1 0,(3) 3.0,(1) 3. 9 9 3 = = = = 1 1 7 2,(3) 2 0,(3) 2 3.0,(1) 2 3. 2 9 3 3 = + = + = +. quả là -1 90 4) Làm tương tự với các trường hợp khác ta sẽ thu được kết quả một cách nhanh chóng, chính xác. (ĐS c) 1 199 5 2 − ; d) -2006, 899 966). VD2:

Ngày đăng: 29/10/2013, 18:11

HÌNH ẢNH LIÊN QUAN

Mô hình sơ đồ Hoocner: - Các dạng Đề CA SIO 9 phần 9
h ình sơ đồ Hoocner: (Trang 18)
9. DẠNG VIII: Bài toán hình học. - Các dạng Đề CA SIO 9 phần 9
9. DẠNG VIII: Bài toán hình học (Trang 24)
Cho hình chữ nhật ABCD. Qua B kẻ đường vuông góc với AC tại H. Biết BH= 1,2547 cm, BAC· =37 28'50''0 - Các dạng Đề CA SIO 9 phần 9
ho hình chữ nhật ABCD. Qua B kẻ đường vuông góc với AC tại H. Biết BH= 1,2547 cm, BAC· =37 28'50''0 (Trang 26)

TỪ KHÓA LIÊN QUAN

w