masterpro12031995@yahoo.com.vn Trường THPT chuyên Lê Hồng Phong 1. Bấtđẳngthức AM-GM: Với m số không âm ta có: . Đẳngthức xảy ra khi AM-GM suy rộng:Với m số không âm và m số thực dương: ta có: Mình chỉ mới thấy lời giải cho : là số hữu thỉ dương thui. 2.Cauchy - Schwazs: . với 2 bộ n số và thì : Đẳngthức xảy ra khi : 3. Bấtđẳngthức Xvác (Schwars). Với bất k“ và ta có : Đẳngthức xảy ra khi 4.Bất đẳngthức Mincopxki ( Mincowski): Với 2 bộ n số và ;1<p hửu tỉ thì : Đẳngthức xảy ra khi : 5. Bấtđẳngthức Holder : Cho hai bộ thì BĐT sau đúng : Đẳngthức xảy ra khi : các bộ số tương ứng tỉ lệ với nhau Các hệ quả đơn giãn hay dùng: Đẳngthức xảy ra khi : các bộ số tương ứng tỉ lệ với nhau. Ngoài ra như chúng ta biết là còn 4 bấtđẳngthức mở rộng nữa tuy nhiên nó ít được ứng dụng,xin không nêu. 6. Bất đẳngthức Schur : 6.1) Dạng tổng quát: Cho và ta có : Đẳngthức xảy ra khi : hoặc hoặc các hoán vị. Các trường hợp thường dùng là TH: và . Trong trường hợp thì ở THCS ta thường có các cách diễn đạt tương đương sau : Hệ quả rất thông dụng: Với ta có dạng quen thuộc hơn: masterpro12031995@yahoo.com.vn Trường THPT chuyên Lê Hồng Phong . 6.2) Schur suy rộng: Bấtđẳngthức sẽ đúng nếu như với mọi a b c 0 và x;y;z 0 nếu có 1 điều kiện sau đúng: a) x y (hoặc z y) (Rất hay) b)ax by c)bz cy (Nếu a,b,c là 3 cạnh 1 tam giác) d) e) Ngoài ra cũng còn hai bất Suy rộng của bất đẳngthức SChur nhưng cũng ít được ứng dụng.Đối với Suy rộng thứ 2 thì chúng ta có thể biến về suy rộng kiểu1. 7. Bấtđẳngthức Trêbưsep Chebyshev):7.1) Với và là 2 bộ cùng tính thì: Đẳngthức xảy ra khi : và Nếu và thì . 7.2)Bất đẳng Chebyshev suy rộng:Cho thõa mãn Với 2 bộ cùng tính thì: Nếu là 2 bộ đơn điệu ngược tính thì BDT đổi chiều. Ngoài ra các bạn cũng thấy có vài kết quả làm mạnh của Trê nữa,xin phép được để mọi người nhớ lại. 8. Bấtđẳngthức Nét bít ( Nesbitt):2 trương hợp haydùng là: BĐT Nesbitt 3 biến : Với thì BĐT Nesbitt 4 biến : với thì : Bấtđẳngthức cũng đúng cho đến 14 biến. ĐẲngthức xẩy ra khi các biến bằng nhau. 9.Bất đẳngthức hoán vị: Với và và là hoán vị của : Nếu cùng tính thì: Nếu ngược tính thì: Chúng ta cũng biết có BDt hoán vị tổng quát nhưng xin phép được để mọi người tự nhớ masterpro12031995@yahoo.com.vn Trường THPT chuyên Lê Hồng Phong lại. [u] 10.Bất dẳngthức Jensen: Cho Nếu là hàm lồi trên I thì ta có: Nếu là hàm lõm trên I thì ta có: Cái Jensen trình độ mới chỉ vận dụng làm được vài bài đơn giãn nên dừng tại cái cơ bản này.(Nhìn đơn giãn quá nhỉ) 11.Bất đẳngthức karamataCho 2 bộ được sắp xếp theo thứ tự với (a) trội hơn (b) khi đó ta có: Nếu là hàm lồi trên I thì ta có: Nếu là hàm lõm trên I thì ta có: Ngoài ra ta còn có RCF;LCF;LCRCF,SIP nhưng chưa học kĩ hàm lồi bên trái bên phải nên không giám viết bậy. 12.Bất đẳngthức đổi biến P,Q,R[/u]Đặt Khi đó ta có: ; 13.Vài tiêu chuẩn S.O.S 1) 2) 3) 4) 5) HeHe.Mình thất Phân tích thành bình phương không khó mà cái khó là dùng tiêu chuẩn nào để cm được thui. 14.Các dạng dồn biến: 1) Dồn biến có điều kiện:Để chứng minh với a,b,c là các biến và tồn tại thì chỉ cần chứng minh với t là biến thõa mãn .Thường t= tb cộng,tb nhân,tb điều hòa;căn tb tổng các bình phương 2)Ngoài ra còn SMV;UMV;dồn biến bằng quy nạp thừa;EMV;GMV mình chỉ mới biết vận dụng cái đầu tiên là dồn biến về giá trị trung bình nên cũng không giám viết nhiều. masterpro12031995@yahoo.com.vn Trường THPT chuyên Lê Hồng Phong Ngoài ra hai bấtđẳngthức Bernuli vàMuidhead cũng rất dễ học(ko tin mời thử) và sữ dụng rộng rãi chẳng phải dính đến đạo hàm khi chưa học đến,đều là BDT đa năng. 15.Bất đẳngthức Bernuli: Chỉ xin đề cập đến dạng cơ bản còn dạng tổng quát để mọi người tự nhớ lại: Với số mũ tự nhiên; ta có ngay Với số mũ thực : . 16.MurihealMình cũng chỉ xin nêu cái tổng quát nhất: Với mũ số thực: Cho dãy biến trội hơn . p/s:Mình không tìm thấy kí hiệu trội hơn trên diễn đàn,mọi người thông cảm cho. 17.Bất đẳngthức Vâyetstrt:Cho " border="0" align="absmiddle"> Khi đó ta có bấtđẳng thức: ) \geq 1+S_{n} " border="0" align="absmiddle"> ) \geq 1-S_{n} \forall a_{i} \in [0;1] " border="0" align="absmiddle"> ) \leq \frac{1}{1-S_{n}} \forall S_{n}<1 " border="0" align="absmiddle"> ) \leq \frac{1}{1-S_{n}} \forall S_{n}<1;a_{i} \in [0;1] " border="0" align="absmiddle">. Ngoài ra cũng còn các pp ABC;GLA; . nhưng trình độ còn thấp chưa giám đề cập đến Một số bấtđẳngthức dùng tam thức bậc hai như Aczela ;G.Polya;Abrl;Diaz;Kantorovis .vv . với 2 bộ n số và thì : Đẳng thức xảy ra khi : 3. Bất đẳng thức Xvác (Schwars). Với bất k“ và ta có : Đẳng thức xảy ra khi 4 .Bất đẳng thức Mincopxki ( Mincowski):. tỉ thì : Đẳng thức xảy ra khi : 5. Bất đẳng thức Holder : Cho hai bộ thì BĐT sau đúng : Đẳng thức xảy ra khi : các bộ số tương ứng tỉ lệ với nhau Các hệ