Đề cương công thức lũy thừa bài toán và có lời giải Đề cương công thức lũy thừa bài toán và có lời giải Đề cương công thức lũy thừa bài toán và có lời giải Đề cương công thức lũy thừa bài toán và có lời giải Đề cương công thức lũy thừa bài toán và có lời giải Đề cương công thức lũy thừa bài toán và có lời giải Đề cương công thức lũy thừa bài toán và có lời giải Đề cương công thức lũy thừa bài toán và có lời giải Đề cương công thức lũy thừa bài toán và có lời giải Đề cương công thức lũy thừa bài toán và có lời giải
CHỦ ĐỀ 1: CÔNG THỨC LŨY THỪA I KHÁI NIỆM LŨY THỪA Lũy thừa với số mũ nguyên Lũy thừa với số mũ nguyên dương Cho a n * Khi a n a.a.a a (n thừa số a) Lũy thừa với số mũ nguyên âm, lũy thừa với số mũ Cho a \ 0 n * Ta có: a n ; a an Lũy thừa với số mũ ngun có tính chất tương tự tính chất lũy thừa với số mũ nguyên dương Chú ý: 00 0 n n * khơng có nghĩa Căn bậc n Cho số thực b số nguyên dương n Số a gọi bậc n số b a n b Khi n lẻ, b : Tồn bậc n số b n b Khi n chẵn b khơng tồn bậc n số b Khi n chẵn b có bậc n số b Khi n chẵn b có bậc n số thực b n n b n b Lũy thừa với số mũ hữu tỷ Cho số thực a số hữu tỷ r m m , m ; n , n Khi a r a n n a m n Lũy thừa với số mũ vô tỷ Giả sử a số dương số vô tỷ rn dãy số hữu tỷ cho lim rn Khi n lim a rn a n II TÍNH CHẤT CỦA LŨY THỪA VỚI SỐ MŨ THỰC Cho hai số dương a; b m; n Khi ta có cơng thức sau Nhóm cơng thức 1 a m a n a mn am n a mn m n a n a a a m a m.n n Tính chất 1: a0 1 a a1 a Nhóm cơng thức m n a n a m a n m a n bn ab , n a n b n ab n n an a n a a n , n n b b b b a 1; a m a n m n Tính chất (tính đồng biến, nghịch biến): m n 0 a 1: a a m n a m bm m Tính chất (so sánh lũy thừa khác số): Với a b m a b m Ví dụ 1: Cho biểu thức P x x x3 , với x Mệnh đề sau đúng? 13 12 13 13 24 C P x B P x A P x 13 D P x Lời giải 3 7 13 13 Ta có: P x x x3 x x x x x x.x x x12 Chọn A x x x x n với x Tìm n Ví dụ 2: Biết B n A n C n D n Lời giải Ta có: 5 1 x x x x x x x x x x x x Chọn C 23 Ví dụ 3: Cho biểu thức P x x k x3 , với x Biết P x 24 , giá trị k bằng: B k A k D k C k Lời giải 23 23 11 Ta có: P x x k x3 x 24 x x k x3 x 12 x k x3 x12 11 11 x k x3 x k x3 x 2 Ví dụ 4: Cho biểu thức P A P a 3 x k x k Chọn D a 2 a1 a1 B P 1 , với a Mệnh đề sau đúng? a D P C P a Lời giải Ta có: P a 2 a1 1 a 1 a 2 a 1 1 1 a m a 2 a 2 1 a a 1 a Chọn B a a b a a với a; b Tìm m Ví dụ 5: Cho biểu thức P b a b b a A m 24 B m 12 C m 12 D m 24 Lời giải Đặt x 1 1 3 3 4 a b x 1 Khi P x x 1 x x x 1.x x x x.x x x 24 b a a b a a 24 Do P Chọn A m b a b b 24 Ví dụ 6: Cho biểu thức với Q a; b Mệnh đề sau đúng? ab a b B Q A Q a a b C Q ab D Q a b Lời giải Ta có: Q a b ab a b ab a b a b a Chọn A Ví dụ 7: Cho x số thực dương, viết biểu thức Q x x x dạng lũy thừa với số hữu tỉ 36 A Q x B Q x C Q x D Q x Lời giải 6 Ta có: Q x x x x.x x x x x Chọn C Ví dụ 8: Cho biểu thức P x x x3 với x Mệnh đề đúng? A P x C P x B P x D P x Lời giải 1 72 158 3 Ta có: P x x x x x x x x x x Chọn C a a 2 b3 b 1 Ví dụ 9: Rút gọn biểu thức T A T a b6 a 1.b a 5 b2 B T a6 b6 với a, b hai số thực dương C T a b4 Lời giải D T a6 b4 a a 2 b3 b 1 Ta có: T a b a 1 Ví dụ 10: Biết 5 xa x b 2 a a 4 b6 b 1 a 2 b5 a b Chọn D a 3 b3 a 5 b2 a 8 b b2 x9 với x a b Tính giá trị biểu thức P a b A P C P B P D P Lời giải Ta có: xa xb x9 x a b x 1 x9 a b a b a b a b Ví dụ 11: Cho x, y Biết A x x x x m y y B 9 Chọn B ab y n Tính m n y D 2 C Lời giải Ta có: x 8 2 1 x3 x x x x.x x x m x x x3 2 1 13 13 2 2 3 6 y y y y y y y y y y y n y Lại có: y y Do đó: m n 2 Chọn D Ví dụ 12: Giá trị biểu thức P 5 2018 B P A P 2019 bằng: C P 10 D P 10 Lời giải Ta có: 25 24 Do đó: P 5 2018 2019 Ví dụ 13: Giá trị biểu thức M 2 3 2019 4 2018 Chọn B 2018 bằng: C 2 21009 B 2 21009 A 21009 52 52 Lời giải Ta có: 2 M 2 Lại có: 2 2 32 2 Do đó: M 2 21009 Chọn C 3 2 2019 2018 nên 2 2018 3 2 2018 D 2 2018 Ví dụ 14: Cho x Giá trị biểu thức T 4x1 22 x bằng: A 504 B 104 C 104 25 D 504 25 Lời giải Ta có: T x 1 22 x x.4 22 4 504 Chọn A x x 4.52 x 2 5 x 2 x Ví dụ 15: Cho 34 Tính giá trị biểu thức T x 1 21 x x A T x B T 11 C T 3 11 D T 13 Lời giải Ta có: 4x 4 x 34 22 x 22 x 36 x 2 x 36 x 2 x (Do 2x 2 x ) Khi đó: T 63 3 Chọn C x x 2.6 11 Ví dụ 16: Cho hàm số f x A T 9x , với a, b 9x a b Tính T f a f b B T C T 1 D T Lời giải a 9 1 a a Ta có: T f a f b f a f 1 a a 3 3 3 3 9a 1 a a a 9a 9a a Chọn B a a a 3.9 3 3 Tổng quát: Cho hàm số f x ax ta có f x f 1 x ax a 4x Ví dụ 17: Cho hàm số f x x 2 Tính tổng S f 2005 A S 1002 f 2005 B S 2004 f 2005 3008 2005 f 2005 C S 1003 D S Lời giải Sử dụng tính chất tổng quát: Với hàm số f x ax ta có f x f 1 x ax a 2005 Khi S f 2005 2004 f f 2005 2005 f 1 1002 1002 2003 f f 2005 2005 1003 f f 1 2005 3008 Chọn B x x 1 x 1 x 1 Ví dụ 18: Rút gọn biểu thức Q với x ta x x x 1 x x B Q x A Q D Q 2 C Q Lời giải Ta có: Và x x 1 x 1x x x x x 1 x 1x x 1 x 1 2x x2 1 x x2 1 x x x 1 Suy Q x x 1 x 1 Ví dụ 19: Đơn giản biểu thức T A T a x 1 x 1 4x Chọn C x a b a ab ta a4b 4a4b C T a b B T b D T b Lời giải a b Ta có: T 4 a b 4 a 4 a4b a b a b a b Chọn B Ví dụ 20: Cho a, b hai số thực khác Biết 125 A 76 21 B a ab C a 10 ab 625 21 Tính tỉ số D a b 76 Lời giải Ta có: 125 a ab 3 a 4ab a 10 ab 625 5 Ví dụ 21: Cho A P 10 43 5 a 10 ab 3 a ab 3a 10 ab 5 5 3a2 10ab 3a2 10ab a2 4ab a ,b 21a 4ab 21a 4b x 3 a ab x 14, a Chọn C b 21 3x 3 x 23 x 1 1 x 3 B P 10 a a ( phân số tối giản) Tính P ab b b C P 45 D P 45 Lời giải Ta có: 9x 9 x 3x 3 x 14 3x 3 x Suy 3x 3 x 23 x 1 1 x 3 3x 3 x 3 x x 3.4 P ab 45 Chọn C 3.4 BÀI TẬP TỰ LUYỆN Câu 1: Cho a biểu thức A n 11 a a viết dạng a n Tìm n B n C n D n Câu 2: Cho biết Q a a với a 0, a Khẳng định đúng? A Q a 11 B Q a D Q a C Q a a Câu 3: Cho a Rút gọn P a a 17 23 B P a A P a9 C P a D P a Câu 4: Rút gọn biểu thức với P x x x5 x3 với x 112 211 13 B P x 60 A P x D P x 60 C P x18 16 Câu 5: Với x , rút gọn biểu thức P x x x x x : x 13 Câu 6: Biết A M 18 xa x C P x 48 b2 x16 với x a b Tính giá trị biểu thức M a b B M 14 B T b b b dạng b y Tính T x 12 y 12 Câu 8: Giá trị biểu thức P D M C M Câu 7: Cho a, b , viết a a dạng a x A 121008 D P x 32 2 A T 17 B P x 32 A P x 32 D T C T 14 3 2016 2016 bằng: C B 41008 1008 D 1008 Câu 9: Cho a số dương, biểu thức a a viết dạng lũy thừa với số mũ hữu tỉ A a B a D a C a Câu 10: Viết biểu thức Q x x x5 với x dạng lũy thừa với số mũ hữu tỉ? A Q x B Q x C Q x Câu 11: Cho số thực a dương Rút gọn biểu thức P a a a a D Q x 13 11 1 B P a120 A P a14 D P a 60 C P a 40 11 Câu 12: Viết biểu thức A a a a : a với a dạng lũy thừa với số mũ hữu tỉ? 21 B A a A A a 44 12 23 D A a C A a 24 23 24 m Câu 13: Biết A m 15 b a a với a, b số thực dương Tìm m a b b B m 15 C m D m 15 Câu 14: Viết biểu thức P A P a a2a a4 a5 , a dạng lũy thừa với số mũ hữu tỉ C P a B P a5 D P a Câu 15: Cho a, b hai số thực dương Thu gọn biểu thức T A T a b2 C T B T ab Câu 16: Với a biểu thức P a 1 a 2 a 2 A P a5 2 ab b a D T a b rút gọn là: C P a3 B P a Câu 17: Cho x 0, y Viết biểu thức x x D P a x x y : y y y n Tính m n m B 11 6 A a b C 11 D Câu 18: Cho 5x Tính A 25x 52 x A A 13 B A Câu 19: Cho Cho x 9 x 14, A P 10 75 C A 3x 3 x 23 x 1 1 x 3 33 D A 29 a a ( phân số tối giản) Tính P ab b b B P 10 C P 45 D P 45 Câu 20: Cho a, b số thực thỏa 3.2a 2b 5.2a 2b Tính S a b A S B S Câu 21: Cho hàm số f x A 59 2x Tổng f 2x B 10 C S 1 f 10 C 19 D S 18 f 10 19 f 10 D 28 Câu 22: Giá trị biểu thức P A 1009 13 2018 2018 C 13 3 B 192018 1009 D 16 Câu 23: Viết biểu thức P x5 x x3 x dạng lũy thừa với số mũ hữu tỉ 61 30 A P x B P x 117 30 C P x 113 30 83 30 D P x 2018 LỜI GIẢI BÀI TẬP TỰ LUYỆN Câu 1: 13 43 a a a.a a a Chọn C 1 43 103 Câu 2: Q a a a a Chọn A Câu 3: P a12 a Câu 4: P 12 a x x x x 17 a Chọn B x 11 x x Chọn A Câu 5: x x x x x x x.x x x x 15 15 31 31 31 x x.x x x x.x16 x16 x 32 P x 32 Chọn B Câu 6: x16 xa b2 x 2 a b a b Chọn C 1 3 3 3 y x Câu 7: a a a a x ; b b b b.b b b12 b Chọn C 12 Câu 8: P 3 Câu 9: a 3 6 2016 2016 121008 Chọn A a a a a Chọn B Câu 10: Q x x x x Chọn B Câu 11: P a a a a a2 1 1 11 11 a.a a a 40 Chọn C 1 11 11 2 23 11 11 Câu 12: A a a : a a.a : a a : a a : a a 24 Chọn D 1 b3 a b 15 b 15 a Câu 13: Ta có 3 m Chọn D a b a 15 b a m Câu 14: Ta có P a a a a a Chọn B 76 16 23 62 a Câu 15: T a : a b : b Chọn D b a3 Câu 16: P 2 a5 Chọn A a Câu 17: x m 24 x x x x Câu 18: A 5x 103 10 24 12 103 n 10 m ; y y : y y y n Chọn A 60 60 25 33 Chọn C 5x Câu 19: 3x 3 x 14 16 3x 3 x a 3.4 Chọn C b 3.4 2a 2 a Câu 20: Ta có: Chọn B b 2 b Câu 21: Với a b f a f b Lưu ý: 2a 2b 2.2a b 2.2a 2.2b 2a 2b 2a b 2.2a 2.2b 19 59 P f f 1 9.1 Chọn A 10 10 Câu 22: P 2 2018 13 6 113 30 Câu 23: P x x x x 2018 192018 Chọn B Chọn C ... sánh lũy thừa khác số): Với a b m a b m Ví dụ 1: Cho biểu thức P x x x3 , với x Mệnh đề sau đúng? 13 12 13 13 24 C P x B P x A P x 13 D P x Lời giải 3 7 13 13 Ta có: ... x x x dạng lũy thừa với số hữu tỉ 36 A Q x B Q x C Q x D Q x Lời giải 6 Ta có: Q x x x x.x x x x x Chọn C Ví dụ 8: Cho biểu thức P x x x3 với x Mệnh đề đúng? A P... biểu thức với Q a; b Mệnh đề sau đúng? ab a b B Q A Q a a b C Q ab D Q a b Lời giải Ta có: Q a b ab a b ab a b a b a Chọn A Ví dụ 7: Cho x số thực dương, viết biểu thức