1. Trang chủ
  2. » Giáo án - Bài giảng

CHUYEN DE BDHSG LOP 8 (CO CHON LOC)

68 1K 22
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 68
Dung lượng 3,67 MB

Nội dung

I. HẰNG ĐẲNG THỨC ĐÁNG NHỚ Bài 1: Tìm giá trị nhỏ nhất của các biểu thức: a) x 2 - 2x -1 b) 4x 2 + 4x + 5 Bài 2: Tìm giá trị lớn nhất của các biểu thức: a) 2x - x 2 - 4 b) -x 2 - 4x Bài 3: Cho x - y = 7. Tính: a) x(x + 2) + y(y - 2) - 2xy +37 b) x 2 (x + 1) - y 2 (y - 1) + xy -3xy(x - y + 1) - 95 Bài 4: Cho x + y = a; x 2 + y 2 = b; x 3 + y 3 = c Chứng minh: a 3 - 3ab + 2c = 0 Bài 5: Cho x 2 + y 2 = 1. Chứng minh rằng biểu thức sau không phụ thuộc vào x, y 2( x 6 + y 6 ) - 3( x 4 + y 4 ) Bài 6: Cho x + y = 2; x 2 + y 2 = 10. Tính giá trị của biểu thức x 3 + y 3 . II. PHÉP NHÂN VÀ PHÉP CHIA CÁC ĐA THỨC Bài 1 Tính giá trị của các biểu thức a) A = x 5 - 15x 4 + 16x 3 - 29x 2 + 13x tại x = 14 b) B = x 14 - 10x 13 + 10x 12 - 10x 11 + . + 10x 2 - 10x + 10 tại x = 9 c) C = 105 4 651.315 4 651 650 3. 105 1 651 1 . 315 1 2 +−− Bài 2: Cho biểu thức: M = (x-a)(x-b) + (x-b)(x-c) + (x-c)(x-a) + x 2 Tính M theo a,b,c biết rằng cbax 2 1 2 1 2 1 ++= Bài 3:Số a gồm 31 chữ số 1, số b gồm 38 chữ số 1. Chứng minh rằng ab -2 chia hết cho 3 Bài 4: Cho a + b + c = 0 Chứng minh rằng M = N = P với: M = a(a+b)(a+c); N = b(b+c)(b+a); P = c(c+a)(c+b) III. Giải phương trình: Bài 1: Giải các phương trình sau: a) (x 2 –5x) 2 + 10(x 2 –5x) + 24 = 0 (ĐS: tập nghiệm là 1;2;3;4) b) (x 2 + x + 1) (x 2 + x + 2) = 12 (ĐS: tập nghiệm là 1; -2) Bài 2: Giải các phương trình sau: a) ( x + 2)(x + 3)(x – 5)(x – 6) = 180 b) 2x(8x –1) 2 (4x – 1) = 9 (ĐS: tập nghiệm là 1 1 ; 2 4 x x − = = ) 1. Chuyªn ®Ị : §a thøc I.PHÉP NHÂN VÀ PHÉP CHIA CÁC ĐA THỨC Bài 1: Tính giá trò của biểu thức: a. A = 4 3 2 17 17 17 20x x x x− + − + tại x = 16. b. D = 15 14 13 12 2 8 8 8 . 8 8 5x x x x x x− + − + − + − tại x = 7. Bài 2: Tính giá trò của biểu thức: a. N = 1 3 546 1 4 2 . . 547 211 547 211 547.211 − − Bài 3: Tính giá trò của biểu thức: a. A = ( ) ( ) 3 2 2 2 3 3 x x y y x y− + − với x = 2; 1y = . b. M.N với 2x = .Biết rằng:M = 2 2 3 5x x− + + ; N = 2 3x x− + . Bài 4: Tính giá trò của đa thức, biết x = y + 5: a. ( ) ( ) 2 2 2 65x x y y xy+ + − − + b. ( ) 2 2 75x y y x+ − + Bài 5: Tính giá trò của đa thức: ( ) ( ) 2 1 1x y y xy x y+ − − − biết x+ y = -p, xy = q Bài 6: Chứng minh đẳng thức: a. ( ) ( ) ( ) ( ) ( ) ( ) 2 x a x b x b x c x c x a ab bc ca x− − + − − + − − = + + − ; biết rằng 2x = a + b + c b. ( ) 2 2 2 2 4bc b c a p p a+ + − = − ; biết rằng a + b + c = 2p Bài 7: a. Số a gồm 31 chữ số 1, số b gồm 38 chữ số 1. Chứng minh rằng ab – 2 chia hết cho 3. b. Cho 2 số tự nhiên a và b trong đó số a gồm 52 số 1, số b gồm 104 số 1. Hỏi tích ab có chia hết cho 3 không? Vì sao? Bài 8: Cho a + b + c = 0. Chứng minh rằng M = N = P với: ( ) ( ) M a a b a c= + + ; ( ) ( ) N b b c b a= + + ; ( ) ( ) P c c a c b= + + Bài 9: Cho biểu thức: M = ( ) ( ) ( ) ( ) ( ) ( ) 2 x a x b x b x c x c x a x− − + − − + − − + . Tính M theo a, b, c, biết rằng 1 1 1 2 2 2 x a b c= + + . Bài 10: Cho các biểu thức: A = 15x – 23y ; B = 2x + 3y . Chứng minh rằng nếu x, y là các số nguyên và A chia hết cho 13 thì B chia hết cho 13. Ngược lại nếu B chia hết cho 13 thì A cũng chia hết cho 13. Bài 11: Cho các biểu thức: A = 5x + 2y ; B = 9x + 7y a. Rút gọn biểu thức 7A – 2B. b. Chứng minh rằng: Nếu các số nguyên x, y thỏa mãn 5x + 2y chia hết cho 17 thì 9x + 7y cũng chia hết cho 17. Bài 12: Chứng minh rằng: a. 7 9 13 81 27 9− − chia hết cho 405. b. 2 1 2 12 11 n n+ + + chia hết cho 133. Bài 13: Cho dãy số 1, 3, 6 , 10, 15,…, ( ) 1 2 n n + , … Chứng minh rằng tổng hai số hạng liên tiếp của dãy bao giờ cũng là số chính phương. 2. Chuyên đề: Biển đổi biểu thức nguyên I. Một số hằng đẳng thức cơ bản 1. (a b) 2 = a 2 2ab + b 2 ; (a + b + c) 2 = a 2 + b 2 + c 2 + 2ab + 2bc + 2ca ; 2 1 2 n (a a . a )+ + + = = + + + + + + + + + + + + 2 2 2 1 2 n 1 2 1 3 1 n 2 3 2 n n 1 n a a . a 2(a a a a . a a a a . a a . a a ) ; 2. (a b) 3 = a 3 3a 2 b + 3ab 2 b 3 = a 3 b 3 3ab(a b); (a b) 4 = a 4 4a 3 b + 6a 2 b 2 4ab 3 + b 4 ; 3. a 2 b 2 = (a b)(a + b) ; a 3 b 3 = (a b)(a 2 + ab + b 2 ) ; a n b n = (a b)(a n 1 + a n 2 b + a n 3 b 2 + + ab n 2 + b n 1 ) ; 4. a 3 + b 3 = (a + b)(a 2 ab + b 2 ) a 5 + b 5 = (a + b)(a 4 a 3 b + a 2 b 2 ab 3 + b 5 ) ; a 2k + 1 + b 2k + 1 = (a + b)(a 2k a 2k 1 b + a 2k 2 b 2 + a 2 b 2k 2 ab 2k 1 + b 2k ) ; II. Bảng các hệ số trong khai triển (a + b) n Tam giác Pascal Đỉnh 1 Dòng 1 (n = 1) 1 1 Dòng 2 (n = 2) 1 2 1 Dòng 3 (n = 3) 1 3 3 1 Dòng 4 (n = 4) 1 4 6 4 1 Dòng 5 (n = 5) 1 5 10 10 5 1 Trong tam giác này, hai cạnh bên gồm các số 1 ; dòng k + 1 đợc thành lập từ dòng k (k 1), chẳng hạn ở dòng 2 ta có 2 = 1 + 1, ở dòng 3 ta có 3 = 2 + 1, 3 = 1 + 2, ở dòng 4 ta có 4 = 1 + 3, 6 = 3 + 3, 4 = 3 + 1, Khai triển (x + y) n thành tổng thì các hệ số của các hạng tử là các số trong dòng thứ n của bảng trên. Ngời ta gọi bảng trên là tam giác Pascal, nó thờng đợc sử dụng khi n không quá lớn. Chẳng hạn, với n = 4 thì : (a + b) 4 = a 4 + 4a 3 b + 6a 2 b 2 + 4ab 3 + b 4 và với n = 5 thì : (a + b) 5 = a 5 + 5a 4 b + 10a 3 b 2 + 10a 2 b 3 + 10ab 4 + b 5 II. Các ví dụ Ví dụ 1. Đơn giản biểu thức sau : A = (x + y + z) 3 (x + y z) 3 (y + z x) 3 (z + x y) 3 . Lời giải A = [(x + y) + z] 3 [(x + y) z] 3 [z (x y)] 3 [z + (x y)] 3 = [(x + y) 3 + 3(x + y) 2 z + 3(x + y)z 2 + z 3 ] [(x + y) 3 3(x + y) 2 z + 3(x + y)z 2 z 3 ] [z 3 3z 2 (x y) + 3z(x y) 2 (x y) 3 ] [z 3 + 3z 2 (x y) + 3z(x y) 2 + (x y) 3 ] = 6(x + y) 2 z 6z(x y) 2 = 24xyz Ví dụ 2. Cho x + y = a, xy = b (a 2 4b). Tính giá trị của các biểu thức sau : a) x 2 + y 2 ; b) x 3 + y 3 ; c) x 4 + y 4 ; d) x 5 + y 5 Lời giải a) x 2 + y 2 = (x + y) 2 2xy = a 2 2b b) x 3 + y 3 = (x + y) 3 3xy(x + y) = a 3 3ab c) x 4 + y 4 = (x 2 + y 2 ) 2 2x 2 y 2 = (a 2 2b) 2 2b 2 = a 4 4a 2 b + 2b 2 d) (x 2 + y 2 )(x 3 + y 3 ) = x 5 + x 2 y 3 + x 3 y 2 + y 5 = (x 5 + y 5 ) + x 2 y 2 (x + y) Hay : (a 2 2b)(a 3 3ab) = (x 5 + y 5 ) + ab 2 x 5 + y 5 = a 5 5a 3 b + 5ab 2 Chú ý : a 6 + b 6 = (a 2 ) 3 + (b 2 ) 3 = (a 3 ) 2 + (b 3 ) 2 a 7 + b 7 = (a 3 + b 3 )(a 4 + b 4 ) a 3 b 3 (a + b) = (a 2 + b 2 )(a 5 + b 5 ) a 2 b 2 (a 3 + b 3 ) Ví dụ 3. Chứng minh các hằng đẳng thức : a) a 3 + b 3 + c 3 3abc = (a + b + c)(a 2 + b 2 + c 2 ab bc ca) ; b) (a + b + c) 3 a 3 b 3 c 3 = 3(a + b)(b + c)(c + a) Lời giải a) a 3 + b 3 + c 3 3abc = (a + b) 3 + c 3 3abc 3a 2 b 3ab 2 = (a + b + c)[(a + b) 2 (a + b)c + c 2 ] 3ab(a + b + c) = (a + b + c) [(a + b) 2 (a + b)c + c 2 3ab] = (a + b + c)(a 2 + b 2 + c 2 ab bc ca) b) (a + b + c) 3 a 3 b 3 c 3 = [(a + b + c) 3 a 3 ] (b 3 + c 3 ) = (b + c)[(a + b + c) 2 + (a + b + c)a + a 2 ] (b + c)(b 2 bc + c 2 ) = (b + c)(3a 2 + 3ab + 3bc + 3ca) = 3(b + c)[a(a + b) + c(a + b)] = 3(a + b)(b + c)(c + a) Ví dụ 4. Cho x + y + z = 0. Chứng minh rằng : 2(x 5 + y 5 + z 5 ) = 5xyz(x 2 + y 2 + z 2 ) Lời giải Vì x + y + z = 0 nên x + y = z (x + y) 3 = z 3 Hay x 3 + y 3 + 3xy(x + y) = z 3 3xyz = x 3 + y 3 + z 3 Do đó : 3xyz(x 2 + y 2 + z 2 ) = (x 3 + y 3 + z 3 )(x 2 + y 2 + z 2 ) = x 5 + y 5 + z 5 + x 3 (y 2 + z 2 ) + y 3 (z 2 + x 2 ) + z 3 (x 2 + y 2 ) Mà x 2 + y 2 = (x + y) 2 2xy = z 2 2xy (vì x + y = z). Tơng tự : y 2 + z 2 = x 2 2yz ; z 2 + x 2 = y 2 2zx. Vì vậy : 3xyz(x 2 + y 2 + z 2 ) = x 5 + y 5 + z 5 + x 3 (x 2 2yz) + y 3 (y 2 2zx) + z 3 (z 3 2xy) = 2(x 5 + y 5 + z 5 ) 2xyz(x 2 + y 2 + z 2 ) Suy ra : 2(x 5 + y 5 + z 5 ) = 5xyz(x 2 + y 2 + z 2 ) (đpcm) Bài tập: 1. Cho a + b + c = 0 và a 2 + b 2 + c 2 = 14. Tính giá trị của biểu thức : A = a 4 + b 4 + c 4 . 2. Cho x + y + z = 0 và xy + yz + zx = 0. Tính giá trị của biểu thức : B = (x 1) 2007 + y 2008 + (z + 1) 2009 . 3. Cho a 2 b 2 = 4c 2 . Chứng minh rằng : (5a 3b + 8c)(5a 3b 8c) = (3a 5b) 2 . 4. Chứng minh rằng nếu: 5. (x y) 2 + (y z) 2 + (z x) 2 = (x + y 2z) 2 + (y + z 2x) 2 + (z + x 2y) 2 thì x = y = z. 6. a) Chứng minh rằng nếu (a 2 + b 2 )(x 2 + y 2 ) = (ax + by) 2 và x, y khác 0 thì a b x y = . b) Chứng minh rằng nếu (a 2 + b 2 + c 2 )(x 2 + y 2 + z 2 ) = (ax + by + cz) 2 và x, y, z khác 0 thì a b c x y z = = . 7. Cho x + y + z = 0. Chứng minh rằng : a) 5(x 3 + y 3 + z 3 )(x 2 + y 2 + z 2 ) = 6(x 5 + y 5 + z 5 ) ; b) x 7 + y 7 + z 7 = 7xyz(x 2 y 2 + y 2 z 2 + z 2 x 2 ) ; c) 10(x 7 + y 7 + z 7 ) = 7(x 2 + y 2 + z 2 )(x 5 + y 5 + z 5 ). 8. Chứng minh các hằng đằng thức sau : a) (a + b + c) 2 + a 2 + b 2 + c 2 = (a + b) 2 + (b + c) 2 + (c + a) 2 ; b) x 4 + y 4 + (x + y) 4 = 2(x 2 + xy + y 2 ) 2 . 9. Cho các số a, b, c, d thỏa mãn a 2 + b 2 + (a + b) 2 = c 2 + d 2 + (c + d) 2 . Chứng minh rằng : a 4 + b 4 + (a + b) 4 = c 4 + d 4 + (c + d) 4 10. Cho a 2 + b 2 + c 2 = a 3 + b 3 + c 3 = 1. Tính giá trị của biểu thức : C = a 2 + b 9 + c 1945 . 11. Hai số a, b lần lợt thỏa mãn các hệ thức sau : a 3 3a 2 + 5a 17 = 0 và b 3 3b 2 + 5b + 11 = 0. Hãy tính : D = a + b. 12. Cho a 3 3ab 2 = 19 và b 3 3a 2 b = 98. Hãy tính : E = a 2 + b 2 . 13. Cho x + y = a + b và x 2 + y 2 = a 2 + b 2 . Tính giá trị của các biểu thức sau : a) x 3 + y 3 ; b) x 4 + y 4 ; c) x 5 + y 5 ; d) x 6 + y 6 ; e) x 7 + y 7 ; f) x 8 + y 8 ; g) x 2008 + y 2008 . 3. Chuyên đề: Phân tích đa thức thành nhân tử I- Phơng pháp tách một hạng tử thành nhiều hạng tử khác: Bài 1: Phân tích các đa thức sau thành nhân tử 2 2 2 2 2 2 2 2 2 2 , 5 6 d, 13 36 , 3 8 4 e, 3 18 , 8 7 f, 5 24 ,3 16 5 h, 8 30 7 , 2 5 12 k, 6 7 20 a x x x x b x x x x c x x x x g x x x x i x x x x + + + + + + + + + Bài 2: Phân tích các đa thức sau thành nhân tử: (Đa thức đã cho có nhiệm nguyên hoặc nghiệm hữu tỉ) II- Phơng pháp thêm và bớt cùng một hạng tử 1) Dạng 1: Thêm bớt cùng một hạng tử làm xuất hiện hằng đẳng thức hiệu của hai bình phơng: A 2 B 2 = (A B)(A + B) 3 2 3 3 2 3 3 2 3 2 3 2 3 2 1, 5 8 4 2, 2 3 3, 5 8 4 4, 7 6 5, 9 6 16 6, 4 13 9 18 7, 4 8 8 8, 6 6 1 x x x x x x x x x x x x x x x x x x x x x x + + + + + + + + + + + + 3 2 3 3 3 2 3 2 3 2 3 3 9, 6 486 81 10, 7 6 11, 3 2 12, 5 3 9 13, 8 17 10 14, 3 6 4 15, 2 4 16, 2 x x x x x x x x x x x x x x x x x x x + + + + + + + + + + 2 3 2 3 2 3 2 3 2 3 2 4 3 2 12 17 2 17, 4 18, 3 3 2 19, 9 26 24 20, 2 3 3 1 21, 3 14 4 3 22, 2 1 x x x x x x x x x x x x x x x x x x x x + + + + + + + + + + + + + + + + Bài 1: Phân tích các đa thức sau thành nhân tử: 2) Dạng 2: Thêm bớt cùng một hạng tử làm xuất hiện thừa số chung Bài 1: Phân tích các đa thức sau thành nhân tử: III- Phơng pháp đổi biến Bài 1:Phân tích các đa thức sau thành nhân tử Bài 2: Phân tích các đa thức sau thành nhân tử IV- Phơng pháp xét giá trị riêng Phơng pháp: Trớc hết ta xác định dạng các thừa số chứa biến của đa thức, rồi gán cho các biến các giá trị cụ thể để xác định thừa số còn lại. Ví dụ: Phân tích các đa thức sau thành nhân tử: Giải a, Giả sử thay x bởi y thì P = 2 2 ( ) ( ) 0y y z y z y + = Nh vậy P chứa thừa số x y ( ) 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 2 1, (1 ) 4 (1 ) 2, 8 36 3, 4 4, 64 5, 64 1 6, 81 4 7, 4 81 8, 64 9, 4 10, x x x x x x x x x x y x y x x + + + + + + + + + + + 1 7 2 7 5 5 4 5 8 7 5 4 5 10 5 1, 1 2, 1 3, 1 4, 1 5, 1 6, 1 7, 1 8, 1 x x x x x x x x x x x x x x x x + + + + + + + + + + + + + 2 2 2 2 2 2 2 2 2 4 4 1, ( 4)( 6)( 10) 128 2, ( 1)( 2)( 3)( 4) 24 3, ( 4 8) 3 ( 4 8) 2 4, ( ) 4 4 12 5, 2 2 2 15 6, ( )( 2 )( 3 )( 4 ) 7, 6 11 x x x x x x x x x x x x x x x x x x x xy y x y x a x a x a x a a x x + + + + + + + + + + + + + + + + + + + + + + + + + + 2 2 2 2 2 2 2 2 2 2 2 3 8, ( ) 3( ) 2 9, 2 3 3 10 10, ( 2 ) 9 18 20 11, 4 4 2 4 35 12, ( 2)( 4)( 6)( 8) 16 x x x x x xy y x y x x x x x xy y x y x x x x + + + + + + + + + + + + + + + + + + 4 3 2 2 2 2 2 2 1, 6 7 6 1 2,( )( ) ( ) x x x x x y z x y z xy yz zx + + + + + + + + + + 2 2 2 2 2 2 , P = ( ) ( ) ( ) , Q = ( ) ( ) ( ) ( ) ( )( ) a x y z y z x z x y b a b c a b c a b c a b c a b c b c a c a b + + + + + + + + + + + Ta lại thấy nếu thay x bởi y, thay y bởi z, thay z bởi x thì P không đổi(ta nói đa thức P có thể hoán vị vòng quanh bởi các biến x, y, z). Do đó nếu P đã chúa thùa số x y thì cũng chúa thừa số y z, z x. Vậy P phải có dạng P = k(x y)(y z)(z x).Ta thấy k phải là hằng số(không chúa biến) vì P có bậc 3 đối với tập hợp các biến x, y, z còn tích (x y)(y z)(z x) cũng có bậc ba đối với tập hợp các biến x, y, z. Vì đẳng thức đúng với mọi x, y, z nên ta gán cho các biến x, y, z các giá trị riêng, chẳng hạn x = 2, y = 1, z = 0 ta đợc k = -1 Vậy P =- (x y)(y z)(z x) = (x y)(y z)(x - z) Các bài toán Bài 1: Phân tích các đa thức sau thành nhân tử: 2 2 2 ( ) ( ) ( ) ( )( )( )M a b c a b c a b c a b c a b c b c a c a b= + + + + + + + + + 2 2 2 ( ) ( ) ( )N a m a b m b c m c abc= + + , với 2m = a+ b + c. B i 2: Phân tích các đa thức sau thành nhân tử: 3 3 2 2 2 2 2 2 3 2 3 2 3 2 3 3 3 2 2 ) ( )( ) . ) ( 2 ) (2 ) . ) ( ) ( ) ( ). ) ( )( ) ( )( ) ( )( ) ) ( ) ( ) ( ) ( 1). ) ( ) ( ) ( ) . ) ( a A a b c ab bc ca abc b B a a b b a b c C ab a b bc b c ac a c d D a b a b b c b c c a c a e E a c b b a c c b a abc abc f f a b c b c a c a b g G a b a b = + + + + = + + = + + + = + + + + + = + + + = + + = 2 2 2 2 4 4 4 ) ( ) ( ). ) ( ) ( ) ( ). b c b c a c c a h H a b c b c a c a b + + = + + V-Phong pháp hệ số bất định B i 1: Phân tích các đa thức sau thành nhân tử: 4 3 2 4 3 2 2 2 4 3 2 4 ) 6 12 14 3 ) 4 4 5 2 1 ) 3 22 11 37 7 10 ) 7 14 7 1 ) 8 63 a A x x x x b B x x x x c C x xy x y y d D x x x x e E x x = + + = + + + + = + + + + + = + + = + Bài tập: Ví dụ . Phân tích biểu thức sau thành nhân tử : A = x 3 3(a 2 + b 2 )x + 2(a 3 + b 3 ) Lời giải Đặt S = a + b và P = ab, thì a 2 + b 2 = 2 S 2P- ; a 3 + b 3 = 3 S 3SP- . Vì vậy : A = x 3 3( 2 S 2P- )x + 2( 3 S 3SP- ) = 3 3 2 3 (x S ) (3S x 3S ) (6Px 6SP)- - - + - 2 2 2 ( ) ( ) ( ) ( )( )( )x y z y z x z x y k x y y z z x + + = = 2 2 2 (x S)(x Sx S ) 3S (x S) 6P(x S)- + + - - + - = 2 2 (x S)(x Sx 2S 6P)- + - + = (x a b)[x 2 + (a + b)x 2(a + b) 2 + 6ab] = (x a b)[x 2 + (a + b)x 2(a 2 Phân tích các đa thức sau thành nhân tử : a) x 3 + 4x 2 29x + 24 ; b) x 4 + 6x 3 + 7x 2 6x + 1 ; c) (x 2 x + 2) 2 + (x 2) 2 ; d) 6x 5 + 15x 4 + 20x 3 + 15x 2 + 6x + 1 ; e) x 6 + 3x 5 + 4x 4 + 4x 3 + 4x 2 + 3x + 1. f) x 8 + x 4 + 1; g) x 10 + x 5 + 1 ; h) x 12 + 1 ; i) (x + y + z) 3 x 3 y 3 z 3 ; k) (x + y + z) 5 x 5 y 5 z 5 . 4. Chuyên đề : Xác định đa thức * Định lí Beout (BêZu) và ứng dụng: 1) Định lí BêZu: D trong phép chia đa thức f(x) cho nhị thức x - a bằng f(a) (giá trị của f(x) tại x = a): )()()()( afxqaxxf += (Beout, 1730 - 1783, nhà toán học Pháp) Hệ quả: Nếu a là nghiệm của đa thừc f(x) thì f(x) chia hết cho x - a. áp dụng: Định lí BêZu có thể dùng để phân tích một đa thức thành nhân tử. Thực hiện nh sau: Bớc 1: Chọn một giá trị x = a nào đó và thử xem x = a có phải là nghiệm của f(x) không. Bớc 2: Nếu f(a) = 0, theo định lí BêZu ta có: )()()( xpaxxf = Để tìm p(x) thực hiện phép chia f(x) cho x - a. Bớc 3: Tiếp tục phân tích p(x) thành nhân tử nếu còn phân tích đợc. Sau đó viết kết quả cuối cùng cho hợp lí. Dạng 1: Tìm đa thức thơng bằng phơng pháp đồng nhất hệ số(phơng pháp hệ số bất định), phơng pháp giá trị riêng , thực hiện phép chia đa thức. *Phơng pháp1: Ta dựa vào mệnh đề sau đây : Nếu hai đa thức P(x) và Q(x) bằng nhau: P(x) = Q(x) thì các hạng tử cùng bậc ở hai đa thức phải có hệ số phải có hệ số bằng nhau. Ví dụ: 32)( 2 += bxaxxP ; pxxxQ = 4)( 2 Nếu P(x) = Q(x) thì ta có: a = 1(hệ số của lũy thừa 2) 2b = - 4 (hệ số của lũy thừa bậc 1) - 3 = - p (hệ số hạng tử bậc không hay hạng tử tự do) *Phơng pháp2: Cho hai đa thức P(x) và Q(x) thỏa mãn deg P(x) > deg Q(x) Gọi thơng và d trong phép chia P(x) cho Q(x) lần lợt là M(x) và N(x) Khi đó ta có: )()().()( xNxMxQxP += (Trong đó: deg N(x) < deg Q(x)) (I) Vì đẳng thức (I) đúng với mọi x nên ta cho x lấy một giá trị bất kì : = x ( là hằng số). Sau đó ta đi giải phơng trình hoặc hệ phơng trình để tìm các hệ số của các hạng tử trong các đa thức ( Đa thức thơng, đa thức chia, đa thức bị chia, số d). Ví dụ: Bài 1(Phần bài tập áp dụng) Gọi thơng của phép chia A(x) cho x + 1 là Q(x), ta có: )().1(263 232 xQxaxaxxa +=+ . Vỡ ng thc ỳng vi mi x nờn cho x = -1 ta dc: = = =++=++ 3 2 060263 22 a a aaaaa Vi a = -2 thỡ 4104)(,4664 223 +=+= xxxQxxxA Vi a = 3 thỡ 69)(,6699 223 =+= xxQxxxA *Phơng pháp 3:Thực hiện phép chia đa thức (nh SGK) Bài tập áp dụng B i 1: Cho a thc 2 3 2 ( ) 3 6 2 ( )A x a x ax x a a Q= + . Xác nh a sao cho A(x) chia ht cho x + 1. Bài 2: Phân tích đa thức 4 3 ( ) 2 4P x x x x= thành nhân tử, biết rằng một nhân tử có dạng: 2 2x dx+ + Bài 3: Với giá trị nào của a và b thì đa thức : bxaxx +++ 2 23 chia hết cho đa thức: 1 2 ++ xx . Hãy giải bài toán trên bằng nhiều cách khác nhau. Bài 4: Xác định giá trị k để đa thức: kxxxxxf +++= 234 219)( chia hết cho đa thức: 2)( 2 = xxxg . Bi 5: Tỡm tt c cỏc s t nhiờn k cho a thc: 152)( 23 ++= kkkf chia ht cho nh thc: 3)( += kkg . Bi 6: Vi giỏ tr no ca a v b thỡ a thc: baxxxxxf +++= 234 33)( chia ht cho a thc: 43)( 2 += xxxg . Bi 7: a) Xỏc nh cỏc giỏ tr ca a, b v c a thc: cbxaxxxP +++= 24 )( Chia ht cho 3 )3( x . b) Xỏc nh cỏc giỏ tr ca a, b a thc: 2376)( 234 +++= xaxxxxQ chia ht cho a thc bxxxM += 2 )( . c) Xỏc nh a, b axxxxP ++= 85)( 23 chia ht cho bxxxM ++= 2 )( . Bi 8: Hóy xỏc nh cỏc s a, b, c cú ng thc: ( hc tt i s 8) Bi 9: Xỏc nh hng s a sao cho: a) axx + 710 2 chia ht cho 32 x . b) 12 2 ++ axx chia cho 3 x d 4. c) 95 45 + xax chia ht cho 1 x . Bi 10: Xỏc nh cỏc hng s a v b sao cho: a) baxx ++ 24 chia ht cho 1 2 + xx . b) 505 23 ++ xbxax chia ht cho 103 2 ++ xx . c) 1 24 ++ bxax chia ht cho 2 )1( x . d) 4 4 + x chia ht cho baxx ++ 2 . Bi 11: Tỡm cỏc hng s a v b sao cho baxx ++ 3 chia cho 1 + x thỡ d 7, chia cho 3 x thỡ d -5. Bi 12: Tỡm cỏc hng s a, b, c sao cho cbxax ++ 23 chia ht cho 2 + x , chia cho 1 2 x thỡ d 5 + x . (Mt s vn phỏt trin i s 8) Bi 13: Cho a thc: baxxxxxP +++= 234 )( v 2)( 2 += xxxQ . Xỏc nh a, b P(x) chia ht cho Q(x). Bi 14: Xỏc nh a v b sao cho a thc 1)( 34 ++= bxaxxP chia ht cho a thc 2 )1()( = xxQ ))()(( 23 cxbxaxcbxaxx =+ Bài 15: Cho các đa thức 237)( 234 +++−= xaxxxxP và bxxxQ +−= 2 )( . Xác định a và b để P(x) chia hết cho Q(x). (23 chuyên đề toán sơ cấp) Dạng 2: Phương pháp nội suy NiuTơn Phương pháp: Để tìm đa thức P(x) bậc không quá n khi biết giá trị của đa thức tại n + 1 điểm 1321 ,,,, + n CCCC  ta có thể biểu diễn P(x) dưới dạng: )())(())(()()( 21212110 nn CxCxCxbCxCxbCxbbxP −−−++−−+−+=  Bằng cách thay thế x lần lượt bằng các giá trị 1321 ,,,, + n CCCC  vào biểu thức P(x) ta lần lượt tính được các hệ số n bbbb ,,,, 210  . Bµi tËp ¸p dông Bài 1: Tìm đa thức bậc hai P(x), biết: 9)2(,7)1(,25)0( −=== PPP . Giải Đặt )1()( 210 −++= xxbxbbxP (1) Thay x lần lượy bằng 0; 1; 2 vào (1) ta được: 11.2.2.18259 18257 25 22 11 0 =⇔+−=− −=⇔+= = bb bb b Vậy, đa thức cần tìm có dạng: 2519)()1(1825)( 2 +−=⇔−+−= xxxPxxxxP . Bài 2: Tìm đa thức bậc 3 P(x), biết: 1)3(,4)2(,12)1(,10)0( ==== PPPP Hướng dẫn: Đặt )2)(1()1()( 3210 −−+−++= xxxbxxbxbbxP (1) Bài 3: Tìm đa thức bậc ba P(x), biết khi chia P(x) cho )3(),2(),1( −−− xxx đều được dư bằng 6 và P(-1) = - 18. Hướng dẫn: Đặt )3)(2)(1()2)(1()1()( 3210 −−−+−−+−+= xxxbxxbxbbxP (1) Bài 4: Cho đa thức bậc bốn P(x), thỏa mãn: )1(),12)(1()1()( 0)1( ++=−− =− xxxxPxP P a) Xác định P(x). b) Suy ra giá trị của tổng )(),12)(1(5.3.23.2.1 * NnnnnS ∈+++++=  . Hướng dẫn: Thay x lần lượt bằng 0; 1; 2; 3 vào (1), ta được : 36)2(5.3.2)1()2( 6)1(3.2.1)0()1( 0)0(0)1()0( ,0)2(0)2()1( =⇔=− =⇔=− =⇔=−− =−⇔=−−− PPP PPP PPP PPP Đặt )2)(1()1()1()1()1()1()( 43210 −−++−++++++= xxxxbxxxbxxbxbbxP (2) Thay x lần lượt bằng -1; 0; 1; 2; -2 vào (2) ta được: 2 1 )4)(3)(2)(1()3)(2)(1.(3)2)(1.(30 31.2.3.2.3.336 ,31.2.6 ,00 0 44 33 22 11 0 =⇔−−−−+−−−+−−= =⇔+= =⇔= =⇔= = bb bb bb bb b Vậy, đa thức cần tìm có dạng: )2()1( 2 1 )2)(1()1( 2 1 )1()1(3)1(3)( 2 ++=−−++−+++= xxxxxxxxxxxxxP [...]... mt v) b2: -4x+12=0 (rỳt gn v dng ax+b=0) 12 =3 b3: x= 4 b)1,2-(x-0 ,8) = -2(0,9+x) 1,2-x+0 ,8+ 1 ,8+ 2x=0 x+3 ,8= 0 x= -3 ,8 *Cỏc bi tp tng t: a)7x+21=0 c)5x-2=0 e)0.25x+1,5=0 4 5 1 g) x = 3 6 2 i)11-2x=x-1 l)2(x+1)=3+2x n)2,3x-2(0,7+2x)=3,6-1,7x p)3(2,2-03x)=2,6+(0,1x-4) 3 13 v) 2 x + ữ = 5 + x ữ 5 5 7x 20 x + 1,5 s) 5( x 9) = 8 6 II/Phng trỡnh tớch: b)12-6x=0 d)-2x+14=0 f)6,36-5,3x=0 5 2 h) x... các lập phơng của 3 số còn lại Câu 5:Tìm nghiệm nguyên dơng của PT: x2 + (x+y)2 = (x+9)2 Câu 6:Cho lục giác lồi ABCDEF, các đờng thẳng AB, EF cắt nhau tại P, EF và CD cắt nhau tại Q, CD và AB cắt nhau tại R Các đờng thẳng BC và DE; DE và FA; FA và BC cắt nhau tại S,T,U CMR: Nếu AB CD EF BC DE FA = = = = thì PR QR QP US TT TU đề 32 (74) Câu 1: a, CMR: 62k-1+1 chia hết cho 7 với K N ; n > 0 b, CMR: Số... 4x = 19 3y2 b, CMR phơng trình sau không có nghiệm nguyên: x2 + y2 + z2 = 1999 Câu 7:Cho hình vuông ABCD Trên BD lấy M, từ M kẻ các đờng vuông góc AB, AD tại E, F a, CMR: CF = DE; CF DE b, CMR: CM = EF; CM EF c, CMR: CM, BF, DE đồng qui - hết -đề 13 (55) Câu 1: a, Rút gọn: A = (1- 4 4 4 )(1- 2 ) (1) 2 1 3 1992 b, Cho a, b > 0 và 9b(b - a) = 4a2 Tính M = a b a+b Câu 2: a, Cho a,... kẻ Cy BC Gọi P là giao của Ax và Cy Lấy O, D, E là trung điểm của BP, BC, CA a, CMR: VODE đồng dạng với VHAB b, Gọi G là trọng tâm của VABC CMR: O, G, H thẳng hàng Đề 28 (70) Câu 1: Rút gọn: A = x2 + y 2 + z 2 , với x+y+z = 0 ( x z ) 2 + ( z x) 2 + ( x y ) 2 Câu 2:a, CMR: M = n7 + n2 + 1 không tối giản n Z + n8 + n + 1 b, CMR: Nếu các chữ số a, b, c 0 thoả mãn: ab : bc = a:c Thì: abbb : bbbc =... r)4x2-12x+5=0 s)-x2+5x-6=0 2 t)2x2+5x+3=0 y) x 2 + 3( x 2) = 0 ( ) Câu 2: (2 đ) Giải các phơng trình sau: a) x 8 2 x 4 + x 2 2 x + 2 = 0 b) Câu 3: (1,5 đ) Tìm x, y biết a) 2 x 2 + y 2 + 6 = 4( x y ) 1 2 3 6 + 2 + 2 = 5 x 5 x + 6 x 8 x + 15 x 13 x + 40 2 b) (2 x 5) 3 + 27( x 1) 3 + (8 5 x) 3 = 0 đề 1 (43) Câu 1: Cho x = a 2 (b c)2 b2 + c 2 a 2 ;y= (b + c) 2 a 2 2bc Tính giá trị P = x + y... 7x3 + ax2 + 3x +2 Chia hết cho y(x) = x2 x + b Câu 3: Giải PT: a, (x-4) (x-5) (x-6) (x-7) = 1 680 b, 4x2 + 4y 4xy +5y2 + 1 = 0 Câu 4: Tìm giá trị lớn nhất của phân số mà tử số là một số có 3 chữ số mà mẫu là tổng các chữ số của nó Câu 5: Cho ABC cân tại A, trên AB lấy D, trên AC lấy E sao cho: AD = EC = DE = CB a, Nếu AB > 2BC Tính góc à của VABC A b, Nếu AB < BC Tính góc à của VHBC A đề 3 (45) Câu... y(y+1)(y+2)(y+3) Câu 6:Giải BPT: x2 + 2 x + 2 x2 + 4 x + 5 > -1 x +1 x+2 Câu 7:Cho 0 a, b, c 2 và a+b+c = 3 CMR: a2 + b2 + c2 5 Câu 8: Cho hình chữ nhật ABCD có chiều dài BC gấp 2 lần chiều rộng CD, từ C kẻ Cx tạo với CD một góc 15 0 cắt AD tại E CMR: VBCE cân - hết -đề 8 (50) Câu 1:Cho A = n3 + 2n 2 1 n 3 + 2n 2 + 2n + 1 a, Rút gọn A b, Nếu n Z thì A là phân số tối giản Câu 2:Cho x, y >... nhóm 94 Câu 8: Cho hình vuông ABCD M, N là trung điểm AB, BC, K là giao điểm của CM và DN CMR: AK = BC - hết -đề 9 (51) Câu 1:Cho M = a b c a2 b2 c2 + + ;N= + + b+c a+c a+b b+c a+c a+b a, CMR: Nếu M = 1 thì N = 0 b, Nếu N = 0 thì có nhất thiết M = 1 không? Câu 2: Cho a, b, c > 0 và a + b + c = 2 a2 b2 c2 + + 1 b+c a+c a+b Câu 3: Cho x, y, z 0 và x + 5y = 1999; 2x + 3z = 99 98 CMR: Tìm... số chính phơng Câu 4: a, Tìm số tự nhiên m, n sao cho: m2 + n2 = m + n + 8 b, Tìm số nguyên nghiệm đúng: 4x2y = (x2+1)(x 2+y2) Câu 5:Tìm giá trị lớn nhất, giá trị nhỏ nhất: A = Câu 6:Cho x = 4x + 3 x2 + 1 a 2 (b c)2 b2 + c 2 a 2 ;y= (b + c) 2 a 2 2ab Tính giá trị: M = x+ y 1 xy Câu 7: Giải BPT: 1 x < a x (x là ẩn số) Câu 8: Cho VABC , trên BC lấy M, N sao cho BM = MN = NC Gọi D, E là trung điểm... Cho bit 2a + 3b + 6c = 0 1 1) Tớnh a, b, c theo P (0), P , P (1) 2 1 2) Chng minh rng: P (0), P , P (1) khụng th cựng õm hoc cựng dng 2 P (0) =19 Bi 6: Tỡm mt a thc bc hai, cho bit: P (1) = 85 P ( 2) =1 985 Bài 4 Đa thức bậc 4 có hệ số bậc cao nhất là 1 và thoả mãn f(1) = 5; f(2) = 11; f(3) = 21 Tính f(-1) + f(5) Bài 2 Cho 3 số tự nhiên a, b, c Chứng minh rằng nếu a + b + c chia hết cho 3 thì a3 . (A B)(A + B) 3 2 3 3 2 3 3 2 3 2 3 2 3 2 1, 5 8 4 2, 2 3 3, 5 8 4 4, 7 6 5, 9 6 16 6, 4 13 9 18 7, 4 8 8 8, 6 6 1 x x x x x x x x x x x x x x x x x x x. A = 4 3 2 17 17 17 20x x x x− + − + tại x = 16. b. D = 15 14 13 12 2 8 8 8 . 8 8 5x x x x x x− + − + − + − tại x = 7. Bài 2: Tính giá trò của biểu thức:

Ngày đăng: 27/10/2013, 22:11

HÌNH ẢNH LIÊN QUAN

II. Bảng các hệ số trong khai triển (a+b )n Tam giác Pascal – - CHUYEN DE BDHSG LOP 8 (CO CHON LOC)
Bảng c ác hệ số trong khai triển (a+b )n Tam giác Pascal – (Trang 3)
a, CMR: Tứ giác BDCH là hình bình hành. - CHUYEN DE BDHSG LOP 8 (CO CHON LOC)
a CMR: Tứ giác BDCH là hình bình hành (Trang 18)
Câu 6:Cho hình vuông ABCD, trên CD lấy M, nối M với A. Kẻ phân giác góc MAB ã cắt BC tại P, kẻ phân giác - CHUYEN DE BDHSG LOP 8 (CO CHON LOC)
u 6:Cho hình vuông ABCD, trên CD lấy M, nối M với A. Kẻ phân giác góc MAB ã cắt BC tại P, kẻ phân giác (Trang 19)
z z x y + +  = - CHUYEN DE BDHSG LOP 8 (CO CHON LOC)
z z x y + + = (Trang 19)
Câu 8:Cho hình vuông ABCD. M,N là trung điểm AB, BC ,K là giao điểm của CM và DN - CHUYEN DE BDHSG LOP 8 (CO CHON LOC)
u 8:Cho hình vuông ABCD. M,N là trung điểm AB, BC ,K là giao điểm của CM và DN (Trang 20)
Câu 8:Cho hình chữ nhật ABCD có chiều dài BC gấ p2 lần chiều rộng CD, từ C kẻ Cx tạo với CD một góc 150 - CHUYEN DE BDHSG LOP 8 (CO CHON LOC)
u 8:Cho hình chữ nhật ABCD có chiều dài BC gấ p2 lần chiều rộng CD, từ C kẻ Cx tạo với CD một góc 150 (Trang 20)
cho: B M= CN, vẽ hình bình hành BMNP - CHUYEN DE BDHSG LOP 8 (CO CHON LOC)
cho B M= CN, vẽ hình bình hành BMNP (Trang 21)
Câu 7:Cho hình thang ABCD (BC// AD). Gọi O là giao điểm của hai đờng chéo AC, BD; Gọi E,F là trung điểm - CHUYEN DE BDHSG LOP 8 (CO CHON LOC)
u 7:Cho hình thang ABCD (BC// AD). Gọi O là giao điểm của hai đờng chéo AC, BD; Gọi E,F là trung điểm (Trang 22)
Câu 7:Cho hình vuông ABCD, Về phía ngoài hình vuông trên cạnh BC vẽ VBCF đều, về phía trong hình vuông - CHUYEN DE BDHSG LOP 8 (CO CHON LOC)
u 7:Cho hình vuông ABCD, Về phía ngoài hình vuông trên cạnh BC vẽ VBCF đều, về phía trong hình vuông (Trang 23)
a b c +  +  - CHUYEN DE BDHSG LOP 8 (CO CHON LOC)
a b c + + (Trang 23)
Câu 7:Cho hình thang ABCD (AD//BC). M,N là trung điểm của AD, BC. Từ O trên MN kẻ đởng thẳng song - CHUYEN DE BDHSG LOP 8 (CO CHON LOC)
u 7:Cho hình thang ABCD (AD//BC). M,N là trung điểm của AD, BC. Từ O trên MN kẻ đởng thẳng song (Trang 24)
Câu 7:Cho hình thang ABCD (AD//BC), AD &gt; BC. Các đờng chéo AC và BD vuông góc với nhau tại I - CHUYEN DE BDHSG LOP 8 (CO CHON LOC)
u 7:Cho hình thang ABCD (AD//BC), AD &gt; BC. Các đờng chéo AC và BD vuông góc với nhau tại I (Trang 27)
Câu 7:Cho hình vuông ABCD, lấy điểm M nằm trong hình vuông sao cho: - CHUYEN DE BDHSG LOP 8 (CO CHON LOC)
u 7:Cho hình vuông ABCD, lấy điểm M nằm trong hình vuông sao cho: (Trang 28)
Câu 6:Cho hình thang có độ dài hai đờng chéo là 3,5. Độ dài đoạn thẳng nối trung điể m2 đáy là 2. - CHUYEN DE BDHSG LOP 8 (CO CHON LOC)
u 6:Cho hình thang có độ dài hai đờng chéo là 3,5. Độ dài đoạn thẳng nối trung điể m2 đáy là 2 (Trang 32)
Câu 6:Cho hình vuông ABCD. Tứ giác MNPQ có 4 đỉnh thuộ c4 cạnh của hình vuông (M ∈ AB; N∈ BC; ∈ - CHUYEN DE BDHSG LOP 8 (CO CHON LOC)
u 6:Cho hình vuông ABCD. Tứ giác MNPQ có 4 đỉnh thuộ c4 cạnh của hình vuông (M ∈ AB; N∈ BC; ∈ (Trang 34)
Câu 4:Cho góc vuông xEy quay quanh đỉn hE cảu hình vuông EFGH. Ex cắt FG, GH tại M, N; Ey cắt FG, GH - CHUYEN DE BDHSG LOP 8 (CO CHON LOC)
u 4:Cho góc vuông xEy quay quanh đỉn hE cảu hình vuông EFGH. Ex cắt FG, GH tại M, N; Ey cắt FG, GH (Trang 36)
Câu 6:Cho VABC có đờng cao là AA1, BB1, CC1, hình chiếu của A1 lên AB, AC BB1, CC1 là H, I, K, P. - CHUYEN DE BDHSG LOP 8 (CO CHON LOC)
u 6:Cho VABC có đờng cao là AA1, BB1, CC1, hình chiếu của A1 lên AB, AC BB1, CC1 là H, I, K, P (Trang 39)
Câu 6:Cho hình thang ABCD (AB//CD). Giao điểm của AC, BD là O, đờng thẳng qu aO và song song AB cắt - CHUYEN DE BDHSG LOP 8 (CO CHON LOC)
u 6:Cho hình thang ABCD (AB//CD). Giao điểm của AC, BD là O, đờng thẳng qu aO và song song AB cắt (Trang 41)
1) Cho đoạn thẳng AB, M là điểm nằm giữa A và B. Trên cùng nửa mặt phẳng bờ AB kẻ các hình vuông ACDM và MNPB - CHUYEN DE BDHSG LOP 8 (CO CHON LOC)
1 Cho đoạn thẳng AB, M là điểm nằm giữa A và B. Trên cùng nửa mặt phẳng bờ AB kẻ các hình vuông ACDM và MNPB (Trang 43)
Cho hình vuông ABCD .M là một điểm trên đờng chéo BD. Kẻ ME và MF vuông góc với AB và AD. - CHUYEN DE BDHSG LOP 8 (CO CHON LOC)
ho hình vuông ABCD .M là một điểm trên đờng chéo BD. Kẻ ME và MF vuông góc với AB và AD (Trang 44)
Cho hình thang ABCD đáy nhỏ AB, Gọi I là giao điểm của AC và BD. Qu aI vẽ đờng thẳng song song với AB cắt AD và BC lần lợt tại M và N. - CHUYEN DE BDHSG LOP 8 (CO CHON LOC)
ho hình thang ABCD đáy nhỏ AB, Gọi I là giao điểm của AC và BD. Qu aI vẽ đờng thẳng song song với AB cắt AD và BC lần lợt tại M và N (Trang 47)
Cho hình vuông ABCD. Gọ iE là một điểm trên cạnh BC (E khá cB và C). Qua A kẻ Ax vuông góc với AE, Ax cắt CD tại F - CHUYEN DE BDHSG LOP 8 (CO CHON LOC)
ho hình vuông ABCD. Gọ iE là một điểm trên cạnh BC (E khá cB và C). Qua A kẻ Ax vuông góc với AE, Ax cắt CD tại F (Trang 48)
Câu 4: (3 điểm)Một đờng thẳng d đi qua đỉn hA của hình bình hành ABCD cắt BD, BC, DC lần lợt tại E, K, G. - CHUYEN DE BDHSG LOP 8 (CO CHON LOC)
u 4: (3 điểm)Một đờng thẳng d đi qua đỉn hA của hình bình hành ABCD cắt BD, BC, DC lần lợt tại E, K, G (Trang 49)
tam giác hai hình vuông ABDE, ACGH. Biết O E= OH. Tính số đo góc BAC ? - CHUYEN DE BDHSG LOP 8 (CO CHON LOC)
tam giác hai hình vuông ABDE, ACGH. Biết O E= OH. Tính số đo góc BAC ? (Trang 52)
c) Tìm vị trí của H trên BC để BEFC là hình thang vuông, hình bình hành. - CHUYEN DE BDHSG LOP 8 (CO CHON LOC)
c Tìm vị trí của H trên BC để BEFC là hình thang vuông, hình bình hành (Trang 52)
áp dụng hệ quả định lý Ta-Lét vào + ∆AOD có  - CHUYEN DE BDHSG LOP 8 (CO CHON LOC)
p dụng hệ quả định lý Ta-Lét vào + ∆AOD có (Trang 66)
a) Lấy điểm H thuộc cạnh CD của hình vuông AMCD, tia phân giác của góc AMH cắt AD ở K - CHUYEN DE BDHSG LOP 8 (CO CHON LOC)
a Lấy điểm H thuộc cạnh CD của hình vuông AMCD, tia phân giác của góc AMH cắt AD ở K (Trang 66)
Hình vuông AMCD và MBEF. - CHUYEN DE BDHSG LOP 8 (CO CHON LOC)
Hình vu ông AMCD và MBEF (Trang 66)
b) Đặt AM= x. Tính tổng diện tích hai hình vuông AMCD và MBEF theo x. Tìm vị trí điểm M để tổng diện tích đó nhỏ nhất. - CHUYEN DE BDHSG LOP 8 (CO CHON LOC)
b Đặt AM= x. Tính tổng diện tích hai hình vuông AMCD và MBEF theo x. Tìm vị trí điểm M để tổng diện tích đó nhỏ nhất (Trang 67)
c) Gọi P,Q là tâm của hai hình vuông AMCD và MBEF, gọi I là trung điểm của PQ. Khi điểm M di chuyển trên đoạn thẳng AB thì điểm I di chuyển nh thế nào? - CHUYEN DE BDHSG LOP 8 (CO CHON LOC)
c Gọi P,Q là tâm của hai hình vuông AMCD và MBEF, gọi I là trung điểm của PQ. Khi điểm M di chuyển trên đoạn thẳng AB thì điểm I di chuyển nh thế nào? (Trang 67)
Câu 4:Cho hình vuông ABCD cố định. Một điểm M di động trên cạnh BC (M khá cB và C). Tia AM cắt tia DC tại N - CHUYEN DE BDHSG LOP 8 (CO CHON LOC)
u 4:Cho hình vuông ABCD cố định. Một điểm M di động trên cạnh BC (M khá cB và C). Tia AM cắt tia DC tại N (Trang 68)

TỪ KHÓA LIÊN QUAN

w