1. Trang chủ
  2. » Nghệ sĩ và thiết kế

Đề thi chọn học sinh giỏi toán lớp 12 thành phố HN năm học 2014-2015 vòng 2.

1 21 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 1
Dung lượng 294,17 KB

Nội dung

Gọi E là trung điểm của AD và I là tâm đường tròn nội tiếp tam giác ABD.. Chứng minh rằng các đường thẳng AI và EF vuông góc với nhau.[r]

(1)

SỞ GIÁO DỤC VÀ ĐÀO TẠO HÀ NỘI

KỲ THI CHỌN ĐỘI TUYỂN HỌC SINH GIỎI THÀNH PHỐ Năm học: 2014 - 2015

ĐỀ CHÍNH THỨC Mơn thi: Tốn

Ngày thi: 28 – 10 - 2014

Thời gian làm bài: 180 phút ( Đề thi gồm 01 trang)

Bài ( điểm)

Xác định tất số tự nhiên n cho tồn số tự nhiên m để

m  chia hết cho 2n 1

Bài ( điểm)

Tìm tất hàm số: f R:  R thỏa mãn:

     

( ), 0,

f xf y f yf x    y x y ( R tập số thực dương)

Bài ( điểm)

Với a, b, c số thực dương thỏa mãn 2

2 2

abcabbcca , tìm giá trị nhỏ

biểu thức P a b c abc a b c

    

 

Bài ( điểm)

Cho tứ giác ABCD nội tiếp đường tròn (O) thỏa mãn AB < BD CA = CD Gọi E trung điểm AD I tâm đường tròn nội tiếp tam giác ABD Đường tròn ngoại tiếp tam giác BIC cắt cạnh AB F ( F khác A, F khác B) Chứng minh đường thẳng AI EF vuông góc với

Bài ( điểm) Cho dãy số  un xác định bởi: 2

2015

2014 2014

n n n

u

uu u n N

  

    

Chứng minh với n nguyên dương sốu u u1, 2, 3 ,un đôi nguyên tố

Bài ( điểm) Cho tập hợp M   1;0;1 Tìm số số a a1, 2 a2014 thỏa mãn điều kiện

, 2014

i

a   M i i aiai1  M i i, 2013

Ngày đăng: 31/12/2020, 11:17

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w