1. Trang chủ
  2. » Nghệ sĩ và thiết kế

Đề thi thử vào lớp 10 lần 2 năm 2018 môn Toán tại Trung tâm BDVH Edufly

5 67 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 582,85 KB

Nội dung

đạt giá trị nguyên. Sau khi hai vòi cùng chảy 8 giờ, người ta khoá vòi 1 còn vòi 2 tiếp tục chảy. Do tăng công suất lên gấp đôi nên vòi hai đã chảy đầy phần còn lại của bể trong thời g[r]

(1)

Bài 1: (2 điểm) Cho biểu thức

2

1

x x x x x

A

x x x x

     

  

   

 

1 0, 1,

4 x x x     

 

 

a) Rút gọn biểu thức A

b) Tính giá trị biểu thức A biết x 4

c) Tìm giá trị x > để biểu thức x A đạt giá trị nguyên

Bài 2: (2 điểm) Nếu hai vòi nước chảy vào bể cạn sau 12 đầy bể Sau hai vòi chảy giờ, người ta khố vịi cịn vịi tiếp tục chảy Do tăng cơng suất lên gấp đơi nên vịi hai chảy đầy phần lại bể thời gian 3,5 Hỏi vịi chảy với cơng suất ban đầu phải đầy bể?

Bài 3: (2 điểm)

1 Tìm m để nghiệm hệ

1 2( )

3

3

2

4

x y x y

x y

y x

  

  



  

   



nghiệm phương trình

3mx5y2m1

2 Cho phương trình

2

x mx m

     ( m tham số thực)

a) Chứng minh phương trình ln có nghiệm phân biệt với m

b) Tìm m để phương trình có nghiệm hai đường chéo hình thoi có cạnh bằng2 Bài 4: (3,5 điểm) Cho đường tròn tâm (O), đường kính AB cố định, điểm I nằm Avà O sao cho OI < AI Kẻ dây MNAB I, gọi C điểm tuỳ ý thuộc cung lớn MN cho C không trùng với M, N, B Gọi E giao điểm AC MN

a) Chứng minh tứ giác IEBC nội tiếp b) Chứng minh

AMAE AC

c) Chứng minh AE AC. –AI BIAI2. Chứng minh M, B tâm đường tròn ngoại tiếp

tam giác MCE thẳng hàng

d) Với I cố định, xác định vị trí điểm C cho khoảng cách từ N đến tâm đường tròn ngoại tiếp tam giác MCE nhỏ

Bài 5: (0,5 điểm) Cho số thực dương a, b thay đổi thỏa mãn a b Tìm giá trị lớn biểu thức Pab

- HẾT - SỞ GIÁO DỤC VÀ ĐÀO TẠO HÀ NỘI

TRUNG TÂM BDVH EDUFLY

ĐỀ THI THỬ LẦN VÀO LỚP 10 Mơn Tốn: Lớp

Năm học 2017 – 2018 Ngày kiểm tra: 18/03/2018 Thời gian làm bài: 120 phút

(2)

ĐỀ THI THỬ LẦN VÀO LỚP 10 Mơn Tốn; Lớp 9; Năm học 2017 – 2018

ĐÁP ÁN - HƯỚNG DẪN CHẤM

Câu Hướng dẫn giải Điểm

1 a)

  

    

 

    

2

1

1 2 1

1

1

1

2

1

1

2

2

1

1

x x x x x

A

x x x x

x x x x x

x x x

x x

x x

x

x x x x

x x

x x x x

x x

     

  

   

 

     

 

 

      

 

  

    

   

 

 

  

 

0.25

0.25

0.25

0.25

b) Ta có

 2

4 3

1

3 3 1 3(2 3) x

A

   

   

    

0,25

0,25

c) Áp dụng BĐT Cơ si ta có: 2 2

1

1 1

2

x x A

x x x

x

x x

   

    

Với x0,x1, ta có 02 x A 2 +) x A x x ( ).L

x

    

+)

2 x A  x x x  x x   x

Vậy giá trị x>0 cần tìm để x A nguyên x 

0,25

0,25

2

Gọi thời gian vòi chảy đầy bể x (giờ) x12 Một vòi chảy

x bể

Hai vịi chảy sau 12 đầy bể hai vòi chảy

12 bể

Lúc đầu vòi chảy 1 12x bể

0,5

(3)

8 đầu vòi chảy 12 bể

Lúc sau vòi tăng suất lên gấp đơi nên vịi chảy 1

2

12 x   

 

  bể

Trong 3,5 lúc sau vòi chảy 3,5.2 1 1

12 x 12 x

     

   

   bể

Ta có phương trình

2 1 7

7 1 28

3 12 x x x x

 

          

 

Cơng suất ban đầu vịi 1

122821 (bể/giờ)

Chảy với cơng suất ban đầu vịi chảy đầy bể sau: 1: 21 21 (giờ)

Vậy vịi chảy đầy bể sau 28 giờ, vịi chảy đầy bể sau 21 0,5 0,5 3                        

20 15 24

1 2( )

3 60 60 60

3 3 12

2

4 12 12 12

20 15 24 10

15 28

3 12

11

x y x y

x y x y

x y x y y x

y x

x y x y x y

x y

x y y x

x y                                                               

Vậy hệ cho có nghiệm   x y,  11;6

Để   x y,  11;6 nghiệm phương trình 3mx -5y = 2m + 33m302m 1 31m31 m

0,25

0,5

0,25

2

a) Hoành độ giao điểm (d) (P) nghiệm phương trình  

2

2 *

xmx m  xmx m   d cắt (P) điểm có hồnh độ

2 2 .2m     m m

0,5

b) d cắt (P) điểm phân biệt  * có nghiệm phân biệt

 

' m m

        

Theo định lí Viet ta có

1

2

x x m

x x m

                    

2 2

1 2 2

2

1 2

2

2 4

4 4 4

4

1

x x x x x x x x

x x x x m m

m m m m

(4)

a) (góc nội tiếp chắn nửa đường trịn) Xét tứ giác IEBC có

Mà góc vị trí đối đỉnh nên IEBC nội tiếp

0,5

0,5

b) Ta có ABMN II trung điểm MN  AB đường trung trực cuả MN

AM AN

   ⇒

Xét AME AMC có Chung

(gt)  

2

MAE CAM g g

MA AE

AM AE AC CA AM

 

   

0,5

0,5

c) - Áp dụng hệ thức lượng tam giác vuông AMB

AI IBIM

2 2

AE AC AI IB AM IM AI

    

- Ta có (cmt) ⇒

Xét đường trịn ngoại tiếp tam giác EMC có

⇒AM tiếp tuyến đường ngoại tiếp MEC

AMMB

⇒ Tâm đường tròn ngoại tiếp MEC nằm MB ⇒đpcm

0,25

0,25

0,25

(5)

d) Gọi P tâm đường tròn ngoại tiếp MEC I cố định nên M, N cố định

NP nhỏ  NPMB

Khi C giao điểm (khác M) đường trịn tâm P bán kính PM với đường tròn (O)

0,25

0,25

5

Ta có a b 4ab a b 32(a b) 64 Từ suy a b 2

 2

2 32( ) 64

P   a b ab   a b a b  a b 

Đặt

2

4

( ) 32 64 ( 64) (2 32)

64

2 32

a b t P t t t P P t

P t

P

          

  

Từ giả thiết suy P < suy

16 P  Vậy

4

2

64

2

2 32

P

t P P

P

     

Vậy GTLN P a = b =

0,25

0,25

Lưu ý:

- Điểm toàn để lẻ đến 0,25

- Các cách làm khác cho điểm tối đa

Ngày đăng: 31/12/2020, 10:38

HÌNH ẢNH LIÊN QUAN

- Bài IV: Thí sinh vẽ sai hình trong phạm vi câu nào thì không tính điểm câu đó. - Đề thi thử vào lớp 10 lần 2 năm 2018 môn Toán tại Trung tâm BDVH Edufly
i IV: Thí sinh vẽ sai hình trong phạm vi câu nào thì không tính điểm câu đó (Trang 5)

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w