chó ý ph¬ng ph¸p chøng minh ph¶n chøng trong viÖc gi¶i to¸n h×nh häc kh«ng gian... Suy ra[r]
(1)Gi¸o ¸n líp 11 ban khoa học tự nhiên Môn Toán hình
_ TuÇn :
Ch
ơng1 : Phép dời hình phép đồng dạng mặt phẳng Mục tiêu:
- Nắm định nghĩa phép biến hình hiểu đợc phép biến hình quy tắc cho t-ơng ứng điểm M mặt phẳng với điểm M’ mặt phẳng đó.Hình thành cách nhìn nhận hình theo quan điểm biện chứng- Nắm đợc tính chất phép biến hình hệ
- Nhận biết đợc tính chất đặc trng hình để hiểu đợc hình có tính chất đối xứng, hai hình đối xứng với nhau, hai hình hai hình đồng dạng với
- Vận dụng đợc phép biến hình để giải đợc tốn đơn giản, nhận dạng đợc hình thực tế có tính chất liên quan đến phép biến hình để tìm đợc thuật tốn hợp lí
Nội dung mức độ: - Về lý thuyết:
Khái niệm phép biến hình Định nghĩa tính chất biểu thức toạ độ phép Tịnh tiến, Đối xứng trục, Đối xứng tâm, phép Quay, phép Đồng dạng khái niệm phép dời hình, hai hình nhau, hai hình đồng dạng Nắm đợc thuật ngữ nh biến hình, dời hình, ảnh, tạo ảnh
- Về kĩ năng:
Gii c cỏc bi phép biến hình đơn giản phép biến hình, nhận dạng đợc hình thực tiễn có tính chất liên quan đến phép biến hình ( tính đối xứng, tính đồng dạng ) để tìm đợc thuật toán hợp lý giải toán thực tiễn đặt : Bài toán gấp giấy, v v Biểu đạt đ ợc xác ngơn ngữ nói viết kiến thức phép biến hình
TiÕt : §1 Phép tịnh tiến ( Tiết ) Ngày dạy:
A - Mơc tiªu:
- Nắm đợc k/n phép biến hình, định nghĩa phép tịnh tiến - Hiểu đợc ý nghĩa biểu thức toạ độ
- áp dụng đợc vào tập B - Nội dung mức độ:
- K/n phép dời hình, định nghĩa phép tịnh tiến biểu thức tọa độ phép tịnh tiến - Bài tập 1,2,3 (Trang - SGK)
C - Chuẩn bị thầy trò : Sách giáo khoa D - Tiến trình tổ chức học:
ổn định lớp: - Sỹ số lp :
- Nắm tình hình sách gt¸o khoa cđa häc sinh I - Kh¸i niƯm vỊ phép biến hình
1- Khái niệm:
Hot ng ( Nhận biết, xây dựng kiến thức )
Häc sinh nghiªn cøu SGK
Hoạt động học sinh Hot ng ca giỏo viờn
- Đọc, nghiên cứu phần Khái niệm phép biến hình
- Trả lời câu hỏi phát vấn giáo viên, biểu đạt hiểu
- ThỊ nµo lµ phÐp biÕn h×nh?
(2)cđa m×nh vỊ K/ n phép biến hình P ), qua quy tắc f, có có điểm M thuộc mặt phẳng ( P )
f: M M’
Điểm M đợc gọi tạo ảnh, điểm M’ đợc gọi ảnh điểm M qua phép biến hình f kí hiệu f( M ) = M’
- Cho ví dụ phép biến hình ?Phép đồng ?
2- Lun tËp:
Hoạt động ( Củng cố khái niệm )
a - Quy tắc f đợc xây dựng nh sau: Trong mặt phẳng lấy điểm O đờng thẳng d cố định cho O d Với điểm M mặt phẳng, ta xác định điểm M’ thuộc mặt phẳng cách nối M với O, giao điểm OM với d điểm M’ Quy tắc f nh có phải phép biến hình ? Vì ?
vMM ' vb - Quy tắc g đợc xây dựng nh sau: Trong mặt phẳng cho véctơ Với điểm M mặt phẳng, ta xác định điểm M’ thuộc mặt phẳng cách dựng điểm M’ cho Quy tắc g nh có phải phép biến hình ? Vì ? Khi g trở thành phép đồng ?
Hoạt động học sinh Hoạt động giáo viên
a - Thực quy tắc f nh đề mô tả thấy đợc: Với điểm M mặt phẳng, có điểm M’ d cảm nhận đợc với điểm M’ d, có vơ số điểm M mặt phẳng tơng ứng với Quy tắc f nh nhìn chung khơng phải phép biến hình
MM 'v
b -Thực quy tắc g nh đề mô tả thấy đợc: Với điểm M mặt phẳng, có điểm M’cũng thuộc mặt phẳng ngợc lại với điểm M’ có điểm M để nên g phép biến hình
v0
v0
Cảm nhận đợc g( M ) = M tức phép biến hình g trở thành phép đồng e
- Hớng dẫn học sinh nhận biết đợc quy tắc f đợc gọi phép biến hình: Đảm bảo quy tắc phải tơng ứng -1
- Củng cố đợc kĩ dựng ảnh điểm biết tạo ảnh điểm ngợc lại dựng đợc tạo ảnh biết ảnh điểm - Củng cố K/n phép biến hình
- ĐVĐ: nghiên cứu phép biến hình g
II- Phép tịnh tiến 1- Định nghĩa:
Hot ng ( Nhận biết, xây dựng kiến thức )
Phép biến hình g nói đợc gọi phép tịnh tiến Hãy nêu định nghĩa phép tịnh tiến mặt phẳng ?
Hoạt động học sinh Hoạt động giáo viên
- Biểu đạt hiểu biết định nghĩa phép tịnh tiến
- Trả lời câu hỏi giáo viên nêu
- Uốn nắn ngôn từ qua cách biểu đạt học sinh
- Hợp thức định nghĩa phép tịnh tiến theo tinh thần SGK
0
- Hỏi: Phép tịnh tiến theo biến điểm M thành điểm có tính chất ? Khi phép tịnh tiến trở thành phép đồng
Hoạt động ( Củng cố khái niệm )
(3)v
cắt điểm O Hãy véctơ để: A B v
T (A) C v
T (O) C v
T (O) B v
T (B) D
a), , , b) Tìm ảnh điểm A, B, C, D, O qua phép tÞnh tiÕn O
v AB theo D C
Hoạt động học sinh Hoạt động giáo viên
vAC2AO2OC v
T (A) C
a) cho vAOOC
v
T (O) C
vBD2BO2OD
v
T (B) D
cho , cho vAB
b) Gọi A’, B’, C’, D’, O’ lần lợt ảnh A, B, C, D, O qua phép tịnh tiến theo véctơ A’, B’, C’, D’, O’ đợc xác định nhờ phép dựng véc tơ:
AA 'BB 'CC 'DD 'OO 'AB
- Cñng cè vỊ phÐp tÞnh tiÕn
- Sự xác định phép tịnh tiến: Phép tịnh tiến đ-ợc hoàn toàn xác định biết véctơ tịnh tiến
- Dùng ¶nh cđa điểm qua phép tịnh tiến
2- Biu thc tọa độ phép tịnh tiến: Hoạt động ( Nhận biết, xây dựng kiến thức )
v(a;b) vT : Mv M '( x '; y')
Trong mặt phẳng tọa độ 0xy cho véctơ điểm M( x; y ) tuỳ ý Xét phép tnh tin theo vộct :
Tìm biểu thức liên hƯ gi÷a ( x ; y ), ( x’ ; y’ ) vµ ( a ; b ) ?
Hoạt động học sinh Hoạt động giáo viên
v(a ; b)
v
T (M) M ' MM 'v Theo định nghĩa phép tịnh tiến theo véctơ ta có
MM '
Mặt khác ( x’ - x ; y’ - y ) Từ ta có: x ' x a
y' y b
(*)
là biểu thức liên hệ gi÷a ( x ; y ), ( x’ ; y’ ) vµ ( a ; b )
- Híng dẫn học sinh thiết lập mối liên hệ ( x ; y ), ( x’ ; y’ ) vµ ( a ; b )
v(a ; b)- Hệ thức (*) đợc gọi biểu thức tọa độ phép tịnh tiến theo véctơ
- Phép tịnh tiến đợc hoàn toàn xác định biết biểu thức tọa độ
Hoạt động ( Củng cố khái niệm ) v
T ( I )
vGọi I( x; y ) tâm đờng trịn có phơng trình: ( x - )2 + ( y + )2 = 16 Xác định điểm
I’( x’; y’ ) = = ( ; )
Hoạt động học sinh Hoạt động giáo viên
Tâm I đờng trịn cho có toạ độ x = ;
y = - nên theo công thức (*), tọa độ điểm I’ x’ = x + a = + = 4, y’ = y + b = - + =
§iĨm I’( 4; )
vHớng dẫn học sinh sử dụng cơng thức (*) để tìm tọa độ ảnh, tạo ảnh phép tịnh tiến theo véctơ cho trớc
Bµi tËp vỊ nhµ:
(4)v
Hớng dẫn tập 3: ngời ta chứng minh đợc qua phép tịnh tiến theo véctơ , đơngt trịn biến thành đờng trịn có bán kính Tâm đờng trịn biến thành tâm đờng trịn
Tn :
TiÕt : PhÐp tÞnh tiÕn ( TiÕt ) Ngày dạy:
A - Mục tiêu:
- Nắm đợc ttính chất phép tịnh tiến: Định lí hệ - áp dụng đợc vào B.tập
B - Nội dung mức độ:
- Tính chất phép tịnh tiến, ví dụ áp dụng phép tịnh tiến để giải toán - Các tập 4,5 trang 23 SGK
C - Chn bÞ cđa thầy trò :
Sách giáo khoa , mô hình phép tịnh tiến D - Tiến trình tỉ chøc bµi häc:
ổn định lớp: - Sỹ số lớp :
- Nắm tình hình làm bài, học học sinh ë nhµ KiĨm tra bµi cị:
Hoạt động ( Kiểm tra cũ)
Gọi học sinh lên bảng thực tập chuẩn bị nhà
Hoạt động học sinh Hoạt động giáo viên
- Viết phơng trình tham số đờng thẳng d: x 4 4t
y 5t
v
T
- Dùng biểu thứ tọa độ phép tịnh tiến để viết ph-ơng trình ảnh đờng thẳng d qua :
v(5;1)
x 4t
y 5t
víi
- Ơn tập phơng trình tham số đờng thẳng
- Ôn tập biểu thức tọa độ phép tịnh tiến
- Uèn nắn cách trình bày, ngôn từ học sinh trình bày
I- Tính chất phép tịnh tiến 1- Bài toán:
Hot ng 2: ( Dn dt khái niệm - Củng cố định nghĩa phép tịnh tin ) v
T
Giải to¸n: Cho : AA’, B B’.Chøng minh r»ng AB = A’B’
Hoạt động học sinh Hoạt động giáo viên
- Tìm tọa độ ảnh A’, B’ - Tính khoảng cách AB, A’B’ - Đa kết lun
- Hớng dẫn: Đặt A( x1; y1), B( x2; y2)
tìm ảnh A, B
- Tính AB A’B’ để thực phép so sánh
2- Định lí: ( SGK ) 3- Hệ quả:
(5)v T
Cho điểm A, B, C thẳng hàng theo thứ tự Một phép tịnh tiến biến A thành A’, B thành B’ C thành C’ Chứng minh điểm A’, B’, C’ thẳng hàng theo thứ tự
Hoạt động học sinh Hoạt động giáo viên
- Đọc SGK phần chứng minh hệ - Trả lời câu hỏi giáo viên đặt
- Hớng dẫn học sinh đọc SGK phần chứng minh hệ
- Ph¸t vÊn vỊ: C¸ch chøng minh điểm thẳng hàng, tính chất phép tịnh tiến - Thuyết trình hệ
II- ¸p dông:
Hoạt động ( luyện tập củng cố )
Giải toán: Cho hai đờng thẳng d d’ cắt hai điểm A, B khơng thuộc hai đờng thẳng cho đờng thẳng nối hai điểm A, B không song song với d d’ Hãy tìm điểm M d điểm M’ d’ cho tứ giác ABMM’ hình bình hành
d d’
M d”
M’ B
A
Hoạt động học sinh Hoạt động giáo viên
- Xác định phép tịnh tiến biến d thành d” - M d, qua phép tịnh tiến tìm M’ d” - Diễn đạt thành lời giải toán
- Hớng dẫn: Tìm đợc M tìm đợc M’ ngợc lại ?
- Giả sử hình bình hành ABMM’ dựng đợc M d M’ thuộc ảnh d qua phép tịnh tiến ?
Bài tập nhà: Các tập 4, trang 23 SGK Dặn dò: Ôn tập phép tịnh tiÕn
TuÇn :
Tiết : Đ2 - Phép đối xứng trục ( Tiết ) Ngày dạy:
A - Mơc tiªu:
- Nắm đợc định nghĩa phép đối xứng trục biểu thức toạ độ phép đối xứng qua trục 0x, 0y mặt phẳng 0xy
- áp dụng đợc vào tập B - Nội dung mức độ:
(6)- Biểu thức toạ độ phép đối xứng trục trờng hợp trục đối xứng hai trục toạ độ Biết tìm ảnh biết tạo ảnh ngợc lại
- Bµi tËp 2, 4, ( trang 16 -SGK ) C - Chuẩn bị thầy trò :
Sách giáo khoa , mơ hình phép đối xứng trục D - Tiến trình tổ chức học:
ổn định lớp: - Sỹ số lp :
- Nắm tình hình làm bµi, häc bµi cđa häc sinh ë nhµ KiĨm tra bµi cị:
Hoạt động ( Kiểm tra bi c)
Chữa tập trang SGK
Hoạt động học sinh Hoạt động giáo viên
Thực tập chuẩn bị nhà theo tinh thần tìm ảnh C, D qua phép tịnh tiến theo véctơ lựa chọn thích hợp
- Uốn nắn cách trình bày, biểu đạt học sinh giải toán
BI(1; 3)
AI(2;1)
- Phát vấn: Tìm ảnh C qua phép tịnh tiến theo véctơ D qua phép tịnh tiến theo véctơ
I -Định
nghĩa:
Hoạt động 2:( Dẫn dắt khái niệm )
Cho đờng thẳng d điểm M Gọi M0 hình chiếu M d M’ điểm đối xứng M qua
d T×m mét hệ thức véctơ biểu thị mối liên hệ M, M0 vµ M’ ?
d
M0
(7)Hoạt động học sinh Hoạt động giáo viên
0
M MM M '
Nêu đợc:
0
MM M M'
0 1
MM MM '
2
hc ;
- Uốn nắn cách diễn đạt, xác hố khái niệm
- Trình bày ssịnh nghĩa phép đối xứng trục Sự xác định phép đối xứng trục, kí hiệu
Hoạt động 3: ( Củng cố khái niệm )
Cho ví dụ hình có trục đối xứng ?
Hoạt động học sinh Hoạt động giáo viên
- Cho ví dụ hình có trục đối xứng, đợc trục đối xứng hình
- Uốn nắn cách diễn đạt, xác hố khái niệm
- Cho học sinh quan sát thêm hình vẽ SGK
II - Biểu thức toạ độ phép đối xứng qua trục tọa độ: 1 - Đối xứng qua trục 0y:
Hoạt động 4: ( Xây dựng khái niệm )
Trong mặt phẳng tọa độ 0xy, cho điểm M( x ; y ) Gọi M’( x’ ; y’ ) ảnh điểm M qua phép đối xứng trục 0y Tìm hệ thức liên hệ x, y, x’, y’ ?
Hoạt động học sinh Hoạt động giáo viên
x' x y' y
Viết đợc:
Thuyết trình: Gọi biểu thức tìm đợc biểu thức tọa độ Đ0y
Hoạt động 5: ( Xây dựng khái niệm )
Trong mặt phẳng tọa độ 0xy, cho điểm M( x ; y ) Gọi M’( x’ ; y’ ) ảnh điểm M qua phép đối xứng trục 0x Tìm hệ thức liên hệ x, y, x’, y’ ?
Hoạt động học sinh Hoạt động giáo viên
x' x y' y
Viết đợc:
Thuyết trình: Gọi biểu thức tìm đợc biểu thức tọa độ Đ0x
Hoạt động 5: ( Củng cố khái niệm )
Trong mặt phẳng tọa độ 0xy cho điểm M( 1; ) Tìm tọa độ điểm M’ ảnh điểm M qua phép đối xứng trục 0x ? 0y ? qua đờng thẳng y = x ?
Hoạt động học sinh Hoạt động giáo viên
Gäi M1( x1; y1), M2( x2; y2), M3( x3; y3) lần lợt ¶nh
của điểm M qua phép đối xứng trục 0x, 0y đờng thẳng d: y = x thì:
1 x 1 y 3 2 x 1 y 3 3 x 3 y 1
- Hớng dẫn tìm toạ độ ảnh điểm M qua Đd ( d: y = x )
- Uốn nắn cách biểu đạt học sinh qua lời giải toán
- Củng cố khái niệm phép đối xứng trục
Bµi tËp vỊ nhµ:
(8)TuÇn :
Tiết : Phép đối xứng trục ( Tiết ) Ngày dạy:
A - Mơc tiªu:
- Nắm đợc tính chất phép đối xứng trục - Nắm đợc khái niệm trục đối xứng hình - áp dụng đợc vào tập
B - Nội dung mức độ:
- Biết sử dụng tính chất phép đối xứng trục để giải đợc tốn dựng hình đơn giản có liên quan đến trục đối xứng
- Biết cách tìm trục đối xứng hình nhận biết đợc hình có trục đối xứng - Bài tập 1, 3, ( Trang 16 - SGK )
C - Chuẩn bị thầy trò :
Sách giáo khoa , mơ hình phép đối xứng trục D - Tiến trình tổ chức học:
ổn định lớp: - Sỹ số lp
- Nắm tình hình làm bài, häc bµi cđa häc sinh ë nhµ KiĨm tra bµi cị:
Hoạt động ( Kiểm tra bi c)
Chữa tập trang 16 SGK y
(9)x -2 I’
III - Tính chất 1- Định lí:
Hot ng 2( Dn dắt khái niệm ) Xét phép đối xứng trục :
Đ : M M N N’
Chøng minh r»ng MN = M’N’ y
x1
M’ M
-x1 x2 x2 x1 x
N’ y2 N
Hoạt động học sinh Hoạt động giáo viên
- Chøng minh b»ng h×nh häc:
+ Trờng hợp M, N nằm đờng thẳng vng góc với + Trờng hợp M, N không nằm đờng thẳng vng góc với ( Tứ giác MM’N’N hình thang cân )
- Hớng dẫn chứnh minh phơng pháp tọa độ: Chọn hệ trục tọa độ, đặt M( x1; y1), N( x2; y2) M’, N’ có tọa độ ?
Chøng minh MN =M’N’
- Phát biểu định lí SGK 2- Các hệ quả:
HƯ qu¶ 1:
Hoạt động 3( Dẫn dắt khái niệm - Củng cố định lí )
Chøng minh hƯ qu¶ C B
A
Hoạt động học sinh Hoạt động giáo viên
- Trình bày giải chuẩn bị nhà
- áp dụng đợc biểu thức tọa độ phép đối xứng qua trục 0x để viết đợc phơng trình đờng trịn
(10)A’
B’
C’
Hoạt động học sinh Hoạt động giáo viên
- Từ định lí ta có:
A’B’ = AB vµ B’C’ = BC nªn A’B’ + B’C’ = AB + AC ( )
- Theo giả thiết A, B, C thẳng hàng theo thứ tự nên: AB + BC = AC
và theo định lí A’C’ = AC ( ) - Từ ( ) ( ) suy ra:
A’B’ + B’C’ = AB + AC = AC = AC
- Đẳng thức AB + BC = AC chứng tỏ A, B, C thẳng hàng B nằm Avà C
- Hớng dẫn học sinh chứng minh hệ - Phát vấn về: Cách chứng minh điểm thẳng hàng, tính chất phép tịnh tiến - Thuyết trình hệ
IV - Trục đối xứng hình d Định nghĩa:
Hoạt động 4( Dẫn dắt khái niệm ) D C Cho hình thang cân ABCD coa đáy AB CD
Vẽ đờng trung trực d đáy AB
Tìm ảnh đỉnh cạnh hình thang qua phép đối xứng trục d ? ảnh hình thang
cho phép đối xứng trục d hình ? A B
Hoạt động học sinh Hoạt động giáo viên
- XÐt §d : A B , B A , C D , D C
Nªn: AB BA, CD DC, BC AD, AD BC vµ ABCD BADC
- Thuyết trình định nghĩa trục đối xứng
- Phát vấn: Nêu ví dụ hình có trục đối xứng hình khơng có trục đối xứng ? V - áp dụng A
Hoạt động 5: ( Luyện tập - Củng cố ) B Bài toán: M1
Cho hai điểm A, B nằm nửa mặt d M phẳng có bờ đờng thẳng d Hãy tìm điểm
M cho tæng AM + MB nhá nhÊt ? A’
Hoạt động học sinh Hoạt động giáo viên
- Lờy ảnh điểm A qua phép đối xứng trục d đợc A’ - Chứng minh với điểm M1 d ta có:
M1A + M1B = M1A’ + M1B A’B không đổi Dờu xảy
ra M1 M = A’ B d
- Hớng dẫn học sinh giải toán cách áp dụng phép đối xứng trục
- Củng cố tính chất phép đối xứng trục uốn nắn cách biểu đạt học sinh trình giải tốn
Bµi tËp vỊ nhµ: 1, 3, ( Trang 16 - SGK ) TuÇn :
(11)A - Mơc tiªu:
- Nắm vững phép đối xứng tâm quy tắc xác định ảnh theo tạo ảnh qua phép đối xứng tâm Có kĩ xác định đợc phép đối xứng tâm biết ảnh tạo ảnh
- Hiểu rõ biểu thức toạ độ phép đối xứng tâm biết ứng dụng để tìm tọa độ ảnh biết tạo ảnh phép đối xứng tâm xác định
B - Nội dung mức độ:
- Định nghĩa biểu thức toạ độ - Sự xác định phép đối xứng tâm
- Xác định ảnh biết tạo ảnh ngợc lại - áp dụng thành thạo vào tập
- Bµi tËp 1, 2, 3( Trang 22 - SGK ) C - Chuẩn bị thầy trò :
Sách giáo khoa, mơ hình phép đối tâm D - Tiến trình tổ chức học:
ổn định lớp: - Sỹ số lp
- Nắm tình hình làm bài, häc bµi cđa häc sinh ë nhµ KiĨm tra bµi cị:
Hoạt động ( Kiểm tra cũ)
Ph©n nhãm cho häc sinh tháa luËn giải tập sau:
Đờng trònn nội tiếp tam giác ABC tiếp xúc với cạnh AB AC tơng ứng với điểm C B Chứng minh r»ng nÕu AC > AB th× CC’ > BB’
A
B’ C’
B” B C
Hoạt động học sinh Hoạt động giáo viên
- Gọi B’ ảnh điểm B qua phép đối xứng trục đờng phân giác góc A Do tính chất đờng phân giác, B” AC ABB” cân A nên AB = AB”
AB"B BB"C BB"C- Cịng ABB” c©n A nên nhọn suy tù Mặt khác tia BC nằm góc nên góc tù
- CC’B” có cạnh CC’ đối diện với góc tù ta có CC” > B”C’= BB’ ( đpcm )
A- Hớng dẫn học sinh tìm ảnh điểm b qua phép đối xứng trục đờng phân giác góc
- Ph¸t vÊn:
ABB” tứ giác BC’B’B” có tính chất ? Cách so sánh độ dài hai đoạn thẳng ( đa hai đoạn thẳng hai cạnh tam giác, áp dụng: Đối diện với góc lớn cạnh lớn ngợc lại ) - Củng cố phép đối xứng trục
I - Định nghĩa:
Hot ng ( Dn dắt khái niệm )
Cho hai điểm phân biệt I M Hãy tìm điểm M’ để I trung điểm MM’ ? Hãy nhắc lại hệ thức véctơ biểu thị I trung điểm MM’ ?
Hoạt động học sinh Hoạt động giáo viên
(12)IMIM '0
IMIM '
- §a hệ thức véctơ biểu thị I trung ®iĨm cđa MM’: (hc )
0M 0M ' 20I
Víi mäi ®iĨm 0:
- Ôn tập hệ thức véctơ biểu thị trung điểm đoạn thẳng
- Thuyt trình định nghĩa phép đối xứng tâm, xác định phép đối xứng tâm
Hoạt động ( Củng cố )
Cho ĐI : M M’ Hãy xác định ĐI( M’) ? ĐI( I ) ? Nếu ĐI( M ) = M’ kết luận đợc I trung
điểm MM’ đợc khơng ? Vì ?
Hoạt động học sinh Hoạt động giáo viên
- Xác định ĐI( M’) = M, ĐI( I ) = I
- Nếu ĐI( M ) = M’ cha thể kết luận đợc I trung
®iĨm cđa MM’ v× nÕu M I th× M’ I
- Củng cố định nghĩa xác định phép đối xứng trục
- Uốn nắn biểu đạt học sinh Hoạt động ( Củng cố )
Cho phép đối xứng tâm ĐI : A A’, B B’, C C’ ( A, B, C phân biệt không thẳng hàng ) Xác định tâm phép đối xứng
Hoạt động học sinh Hoạt động giáo viên
- Nối AA’ BB’ cắt điểm I điểm cần tìm - Thấy đợc ảnh ABC A’B’C’
- Cñng cè:
+Biết ảnh tạo ảnh, xác định đợc tâm phép đối xứng
+ Dựng ảnh biết tạo ảnh ngợc lại II - Biểu thức tọa độ:
Hoạt động ( Dẫn dắt khái niệm ) Giải bi toỏn:
Trong mặt phẳng 0xy cho ®iĨm I( x0; y0) Gäi M1( x1; y1 ) lµ điểm tùy ý M2( x2; y2) ảnh
của điểm M1 qua phép đối xứng tâm I
HÃy tìm hệ thức liên hệ x1, y1, x2, y2, vµ x0, y0 ?
y
y2 M2
y0 I
y1 M1
x1 x0 x2 x
Hoạt động học sinh Hoạt động giáo viên
Do I trung điểm AB nên:
1
0
2
1 2
0
x x
x x 2x x
2
y y y 2y y
y 2
- Ph¸t vÊn:
+ TÝnh chÊt cđa ®iĨm I ?
+Viết biểu thức toạ độ biểu thị I trung điểm M1M2
- Củng cố biểu thức tọa độ phép đối xứng tâm
Hoạt động ( Củng cố )
Tìm tọa độ ảnh điểm A( - 2; ) phép đối xứng tâm I( 2; ) ?
Hoạt động học sinh Hoạt động giáo viên
x' 2 2 2 6 y' 2 3 1
Gọi A( x; y) ảnh ®iĨm A
- Gäi mét häc sinh lªn bảng thực tập
(13)qua ĐI, áp dụng biểu thức toạ độ phép đối xứng tâm,
ta cã: nªn A’( 6; - )
sinh ( hình thức, ngơn từ, cách biểu đạt ) Hoạt động ( Củng cố )
Trong mặt phẳng tọa độ 0xy, cho điểm M( x; y ) Tìm tọa độ điểm M’ ảnh điểm M qua phép đối xứng tâm theo x, y ?
Hoạt động học sinh Hoạt động giáo viên
Viết giải thích đợc M’( - x; - y ) - Gọi học sinh lên bảng thực tập
- Uốn nắn cách trình bày giải học sinh ( hình thức, ngôn từ, cách biểu đạt ) - Củng cố định nghĩa biểu thức tọa độ phép đối xứng tâm
Bµi tËp vỊ nhµ:
Bµi tËp 1, 2, ( Trang 22 - SGK )
TuÇn :
Tiết : Phép đối xứng tâm ( Tiết ) Ngày dạy:
A - Mơc tiªu:
- Nắm đợc tính chất phép đối xứng tâm khái niệm tâm đối xứng hình - áp dụng đợc vào tập
B - Nội dung mức độ:
- Các định lí hệ ( Có chứng minh định lí )
- Định nghĩa tâm đối xứng hình Bài tốn ( Trang 21 ) - Bài tập 4, 5, ( Trang 22 - SGK )
C - Chuẩn bị thầy trò :
Sỏch giỏo khoa, mụ hỡnh phép đối tâm D - Tiến trình tổ chức học:
ổn định lớp: - S s lp
- Nắm tình hình lµm bµi, häc bµi cđa häc sinh ë nhµ KiĨm tra bµi cị:
Hoạt động 1: ( Kim tra bi c)
Gọi học sinh lên bảng chữa tập trang 22 ( SGK )
Hoạt động học sinh Hoạt động giáo viên
- Xét phép đối xứng tâm O: O O, d d ( d chứa O ), ( A, R ) ( A, R ) O A
- Ph¸t vÊn:
- Uốn nắn cách biểu đạt học sinh trình bày lời giải, ngôn ngữ
- §V§: §I: A A’, B B’ h·y so s¸nh AB vµ A’B’
(14)Hoạt động 2:( Xây dựng kiến thức ) Chứng minh AB = A’B’
Hoạt động học sinh Hoạt động giáo viên
ABAIIB mµ AIIA' vµ IBB'I
nªn, ta cã: B 'A 'B'IIA'IBAIAIIB
AB
AB A 'B '
VËy ta cã: hay AB = A’B’
AB A 'B '
- Hớng dẫn học sinh thực phơng pháp véctơ: Chứng minh - Vẽ hình: Nêu cách dựng ảnh A’, B’ - ĐVĐ: Có thể dùng phơng pháp toạ độ để chứng minh AB = A’B’ đợc không ? A( x1; y1), B( x2; y2), I( x0; y0) A’?, B?
Vµ AB ? A’B’ ?
- Phát biểu thành định lí ? AB
A'B'
- Cã nhận xét hai véctơ ?
2- HƯ qu¶:
Hoạt động 3: ( Xây dựng kiến thức mới- Củng cố dịnh lý ) Cho điểm A, B, C thẳng hàng theo thứ tự
Phép đối xứng tâm I biến A A’,B B’, C C’ Chứng minh A’, B’, C’ thẳng hàng theo thứ tự
Hoạt động học sinh Hoạt động giáo viên
Ta cã AB = A’B’, BC = B’C’, AC = A’C’ nªn A’B’ + B’C’ = AB + BC
= AC
( ®iĨm A, B, C, thẳng hàng B nằm A, C ) Vµ suy ra:
A’B’ + B’C’ = AB + BC = AC = AC Điều xảy điểm A, B, C
thẳng hàng B nằm A C ( đpcm )
- Phát vấn: Muốn chứng minh điểm A’, B’, C’ thẳng hàng theo thứ tự ta phải chứng minh điều ?
- Híng dÉn häc sinh thùc hiƯn phÐp chøng minh
- Ph¸t biểu hợp thức nội dung hệ
IV - Tâm đối xứng hình: 1- Định nghĩa:
Hoạt động 3: ( Xây dựng kiến thức )
Hãy nêu ví dụ hình có tâm đối xứng ?
Hoạt động học sinh Hoạt động giáo viên
- Nêu hình có tâm đối xứng xác định đợc tâm đối xứng hình
- Thấy đợc I tâm đối xứng hình (H) có phép đối xứng tâm ĐI biến (H) thành
- Nêu đợc cách chứng minh hình (H) nhận điểm I tam đối xứng
- Phát vấn: Hãy xác định rõ tâm đối xứng hình nêu ?Nêu cách chứng minh hình (H) nhận điểm I tam đối xứng ?
- Hợp thức định nghĩa tâm đối xứng hình
Hoạt động 4:( Củng cố )
2
2
x y
1 (E) a b
2
2
x y
1 (H)
(15)Hoạt động học sinh Hoạt động giáo viên
2
2
x y
1 (E)
a b - XÐt ElÝp:
và phép đối xứng tâm 0: Đ0 Với điểm M(x,y) thuộc E, ta có: Đ0 biến M M’( - x, - y) Thay vào phơng trình
(E) thấy thỏa mãn Chứng tỏ M’ thuộc (E) Do đó: Đ0 biến
(E) thành Vậy tâm tâm đối xứng (E)
2
2
x y
1 (H)
a b - Xét Hyperbol ( H ): Chứng minh t-ơng tự, cho Đ0 biến (H) thành (H) nên tâm đối
xøng cña (H)
- Phát vấn: Nêu định nghĩa tâm đối xứng hình (H) ? Cách chứng minh điểm I tâm đối xứng hình ?
- Uốn nắn cách biểu đạt học sinh trình bày lời giải, ngơn ngữ
Hoạt động 5:( Củng cố )
Hãy chứng minh tâm đối xứng phép đối xứng tâm Đ0 điểm bất động ?
Hoạt động học sinh Hoạt động giáo viên
OO'OO'
Giả sử có điểm bất động thứ hai 0’ Đ0 nghĩa Đ0: O O’ suy
2OO'0
hay O O’
Híng dÉn häc sinh:
Dïng ph¶n chøng: Gi¶ sư cã ®iĨm O’ thø hai h·y chøng minh O’ O
Bµi tËp vỊ nhµ:
Bµi tËp 4, 5, ( Trang 22 - SGK )
TuÇn
Tiết 7: Đ4 - Khái niệm phép quay Ngày dạy:
(16)- Hiểu rõ đợc định nghĩa phép quay, biết phép quay hoàn toàn đợc xác định biết tâm góc quay
- Biết cách xác định ảnh qua phép quay biết tạo ảnh
- Nắm vững tính chất phép quay hệ để giải tập đơn giản
B - Nội dung v mc :
- Định nghĩa, tính chất hệ (Không chứng minh hệ )
- Xỏc nh đợc phép quay biết tâm góc quay, ảnh qua phép quay biết tạo ảnh
- Bµi tËp 1, 2, ( Trang 26 - SGK ) C - Chuẩn bị thầy trò :
Sách giáo khoa, mô hình phép Quay D - Tiến trình tổ chức học:
ổn định lớp: - Sỹ số lp
- Nắm tình hình làm bài, häc bµi cđa häc sinh ë nhµ KiĨm tra bµi cị:
Hoạt động 1: ( Kiểm tra cũ)
Cho đờng tròn ( O ) điểm phân biệt A, B, C Với điểm P thuộc đờng tròn, ta xác định P1 =
ĐA( P ), P2 = ĐB( P1 ), P’ = ĐC( P2 ) Tìm tập hợp điểm P’ P chuyển động đờng tròn ( O )
Hoạt động học sinh Hoạt động giáo viên
Theo giả thiết P1 = ĐA( P ), P2 = §B( P1 ),
P’ = ĐC( P2 ) nên phép đối xứng tâm D
BD BA BC
biến P P’ với D đợc xác định hệ thức D điểm cố định
Tập hợp điểm P’ đờng tròn ( O’) ảnh đờng tròn ( O ) qua ĐD
- Nêu định nghĩa phép đối xứng tâm ? - Phép đối xứng tâm:
§D= §C§B §A
thì điểm O đợc xác định nh ? - Uốn nắn cách trình bày lời giải học sinh
I - Định nghĩa phép quay: Hoạt động 2: ( Dẫn dắt khái niệm )
Hãy quan sát đồng hồ chạy Hỏi từ lúc 12h00 đến 12h15 phút kim phút đồng hồ quay góc lợng giác radian ?
Hoạt động học sinh Hoạt động giáo viên
k2 2
Trả lời đợc: Kim phút đồng hồ quay góc lợng giác là: ( rad )
- Sử dụng mô hình đồng hồ
- DÉn d¾t vỊ gãc quay: góc quay dơng, âm
Hot ng 3: ( Dẫn dắt khái niệm )
4
Cho tia IM quay đế vị trí IM’ cho ( IM, IM’ ) = Hãy xác định điểm M’ ?
Hoạt động học sinh Hoạt động giáo viên
M’ I M
HD häc sinh dùng ®iĨm M’
- Thuyết trình định nghĩa phép quay - Tổ chức cho học sinh đọc SGK định nghĩa Phép quay
(17)Xác định đợc chiều quay dơng, âm II - Tính chất:
1- §Þnh lÝ:
Hoạt động 4: ( Dẫn dắt khái niệm ) I
Q Cho phép quay : M M’ N N’ Hãy so sánh độ dài MN M’N’ ?
Hoạt động học sinh Hoạt động giáo viên
- Đọc, nghiên cứu SGK, trao đổi nhóm - Trình bày lời giải qua đọc hiểu
- Chia nhóm để học sinh nghiên cứu sách GK lời giải toán
- Phát vấn, kiểm tra đọc hiểu học sinh
- Phát biểu hợp thức hố nội dung định lí
1 - Các hệ quả:
Hot ng 5: ( Dẫn dắt khái niệm ) I
Q Cho phÐp quay : A A’, B B’, C Cvới điểm A, B, C thẳng hàng ( B nằm A C ) Các điểm A, B, C có thẳng hàng giữ nguyên thứ tù ?
Hoạt động học sinh Hoạt động giáo viên
QI
: A A’, B B’, C C’ theo định lí: A’C’ = AC, A’B’ = AB, B’C’ = BC nên:
A’B’ + B’C’ = AB + BC = AC = A’C’
HD häc sinh ®a KL: A’, B C thẳng hàng giữ nguyên thứ tự
- Phát biểu hợp thức nội dung hệ Hoạt động 6: ( Dẫn dắt khái niệm )
I
QCho phép quay đờng thẳng a, tam giác ABC, đờng trịn tâm O, bán kính R điền vào ô trống để đợc mệnh đề đúng:
I
Q : a ABC ( O; R )
Hoạt động học sinh Hoạt động giáo viên
- §äc, nghiên cứu SGK
- Điền vào ô trống theo yêu cầu giáo viên
T chc cho hc sinh đọc SGK phần hệ
- Ph¸t biểu hợp thức hoá nội dung hệ
Hoạt động 7:( Luyện tập củng cố )
N M
N' M'
N M
(18)Cho tứ giác lồi ABCD Trên cạnh AB, CD dựng phía ngồi tam giác tam giác ABM, CDP Trên cạnh BC, AD dựng vào phía tam giác tam giác BCN, ADK Chứng minh MN = PK
Hoạt động học sinh Hoạt động giáo viên
- VÏ h×nh:
0 60 B
Q - XÐt phÐp quay : M A, N C nªn cã:
MN = AC (1)
60 D
Q - XÐt phÐp quay : A K, C P nªn cã:
AC = KP (2) - Tõ (1) vµ (2) suy ra: MN = PK
Phát vấn, gợi mở:
60 B
Q - XÐt phÐp quay h·y dùng ¶nh cđa
các điểm M, N ?
60 D
Q - XÐt phÐp quay h·y dùng ¶nh cđa
các điểm A, C ?
- Cng c định lí hệ phép quay
- ¸p dơng tÝnh chÊt cđa phÐp quay chøng minh đoạn thẳng, góc
- Un nn cỏch biểu đạt học sinh
Bµi tËp vỊ nhµ: 1, 2, ( Trang 26 - SGK )
Tuần
Tiết 8: Đ5 - Khái niệm phép dời hình hai hình nhau
Ngày dạy: A - Mục tiêu:
- Nắm đợc k/n phép dời hình hai hình tính chất phép dời hình - áp dụng đợc vào tập
B - Nội dung mức độ:
- Định nghĩa tính chất phép dời hình - Khái niệm hai hình
- Biết xác định ảnh hình qua phép dời hình - Các ví dụ 1,
- Bµi tËp 1,2,3,4 ( Trang 30 - 31 SGK ) C - ChuÈn bÞ thầy trò :
Sách giáo khoa, mô hình phép dời hình D - Tiến trình tỉ chøc bµi häc:
ổn định lớp: - Sỹ số lớp
- N¾m tình hình làm bài, học học sinh nhµ KiĨm tra bµi cị:
Hoạt động 1: ( Kiểm tra cũ)
A
B
C
D M
P N
(19)Chữa tập trang 26 ( SGK )
Hoạt động học sinh Hoạt động giáo viên
- Trình bày đợc:
MOM' M'OM'' sđ = 300 s® = 600
- Suy đợc tam giác OM’M’’
- Gọi học sinh lên bảg trình bày lời giải chuẩn bị nhà
- Củng cố phép quay, phép đối xứng trục
- ĐVĐ: Các phép đối xứng trục, đối xứng tâm, phép tịnh tiến phép quay có tính chất chung ?
I - PhÐp dêi h×nh: 1 - Định nghĩa:( SGK )
2 - TÝnh chÊt chung: ( SGK )
Hoạt động 2: ( Củng cố kiến thức )
Chứng minh tính chất: Thực liên tiếp hai phép dời hình đợc phép dời hình
Hoạt động học sinh Hoạt động giáo viên
- Hoạt động theo nhóm đợc phân cơng
- Đa đợc lời giải: Giả sử f g hai phép dời hình mà: f : M M1 N N1
g : M1 M’ vµ N1 N’
Ta chøng minh h : M M’ vµ N N’ phép dời hình MN = MN
Chia nhóm để học sinh thảo luận thực bi gii
- Định hớng cách tìm lời giải cho học sinh Để chứng minh h phép dời hình, ta phải chứng minh điều ?
Hoạt động 3:
AB Cho hình chữ nhật ABCD tâm O Tìm ảnh tam giác AOD sau thực liên tiếp hai phép biến hình sau: Phép tịnh tiến theo véctơ phép đối xứng trục có trục đờng thẳng BC
Hoạt động học sinh Hoạt động giáo viên
AB
T
Nêu đợc: : D C, A B, O O’ ĐBC: B B, C C, O’ O
AOD
BOCNªn
Hớng dẫn học sinh dựng ảnh hai phép biến hình cho
II - Khái niệm hai hình nhau: Định nghĩa hai hình nhau: Hoạt động 4:
O
M M'
M''
O' O
C
A B
(20)Đọc nghiên cứu SGK trang 29 định nghĩa hai hình ví dụ 1,
Hoạt động học sinh Hoạt động giáo viên
Đọc nghiên cứu SGK trang 29 định nghĩa hai hình ví dụ 1,
Phát vấn kiểm tra đọc hiểu học sinh
Bµi tËp vỊ nhµ:
Bµi tËp 1,2,3,4 trang 30 - 31 SGK
TuÇn
Tiết 9: Đ6 -Phép Vị tự ( Tiết ) A - Mơc tiªu:
- Nắm đợc định nghĩa biểu thức tọa độ phép vị tự
- Xác định đợc tâm tỉ số vị tự biết ảnh tạo ảnh, biết dựng ảnh hình qua phép vị tự - áp dụng đợc vào tập
B - Nội dung mức độ : - Định nghĩa biểu thức tọa độ
- Xác định ảnh hình qua phép vị tự - Tính tọa độ ảnh qua phép vị tự
- Bµi tËp chän ë trang 37,38 ( SGK )
C - ChuÈn bị thầy trò : Sách giáo khoa , mô hình phép vị tự D - Tiến trình tỉ chøc bµi häc :
ổn định lớp : - Sỹ số lớp :
- Nắm tình hình sách giáo khoa học sinh
Bài : Hoạt động 1:
Chữa tập trang 30 ( SGK )
Hoạt động học sinh Hoạt động giáo viên
u
T
u(1; 3)
: M ( x; y ) M1( x1; y1) víi th× ta cã:
1
1
x x 1 y y 3
§I: M1( x1; y1) M’(x’; y’) víi I( 0; ) th×:
I
I
x' 2.x x y' 2.y y
M’( - x - 1; - y )
- Tóm tắt đề
- Ơn biểu thức toạ độ phép tịnh tiến phép đối xứng tâm
Hoạt động 2: ( Dẫn dắt khái niệm ) 1
2
IM' 1IM 2
(21)Hoạt động học sinh Hoạt động giáo viên - Dựng ảnh A’, B’ A, B
- NhËn xÐt AB // A’B’ do:
IA IB IA' IB'
Híng dÉn học sinh tìm ảnh A, B qua phép biến hình
ĐVĐ: AB có song song với không ? Tại ?
I - nh ngha: Hoạt động 3:
Đọc, nghiên cứu phần định nghĩa SGK
Hoạt động học sinh Hoạt động giáo viên
- Đọc, nghiên cứu phần định nghĩa SGK, ví dụ minh hoạ cho định ngha
- Trả lời câu hỏi giáo viên
Phát vấn kiểm tra đọc hiểu học sinh: Định nghĩa, tâm vị tự, tỉ số vị tự, xác định phép vị tự
Các trờng hợp k = 1, - Hoạt động 4: ( Củng cố khái niệm )
Cho tam giác ABC Đờng thẳng qua trọng tâm G tam giác song song với BC cắt AB AC lần lợt M N Tìm phép vị tự biến tam giác ABC thành tam giác AMN ?
Hoạt động học sinh Hoạt động giáo viên
2
AM AB
3
2 2
AN AC AG AI
3 3
Ta cã G lµ trung điểm MN
2 A
V ABC AMN
nªn :
- Hớng dẫn học sinh tìm tâm tỉ số phép vị tự biết ảnh tạo ảnh:
A A, B M, C N
Nối BM CN cắt A nên A tâm phép vị tự, tỉ số
AM AG AN 2
AB AI AC 3 k = II - Biểu thức toạ độ:
Hoạt động 5: ( Dẫn dắt khái niệm )
Giải toán: Trong mặt phẳng toạ độ Oxy cho phép vị tự tâm I( x0; y0) tỉ số k điểm M( x; y ) tuỳ
ý Gọi M’( x’; y’) ảnh M qua phép vị tự cho Hãy tìm mối liên hệ toạ độ ( x; y ), toạ độ ( x’; y’) k ?
N
M G
I A
(22)Hoạt động 6: ( Củng cố khái niệm )
Tìm toạ độ ảnh M’ điểm M( 3; - ) qua phép vị tự tâm gốc toạ độ, tỉ số k = ?
Hoạt động học sinh Hoạt động giáo viên
Viết đợc:
x' 2.3 (1 2).0 x' 6 y' 2.( 2) (1 2).0 y' 4
M’( 6;-4 )
Kiểm tra áp dụng công thứctoạ độ phép vị tự học sinh
Cho häc sinh tìm cách giải lại toán mà không áp dụng công thức
Bài tập nhà: 1, 2, trang 37 ( SGK )
TuÇn 10 Hình học
Tiết 10: Phép Vị tự ( TiÕt ) A - Mơc tiªu:
- Nắm đợc tính chất phép vị tự, xác dịnh đợc tâm vị tự hai đờng tròn - áp dụng đợc vào tập
B - Nội dung mức độ :
Hoạt động học sinh Hoạt động giáo viên
- Đọc, nghiên cứu lời giải SGK - Cử đại diện nhóm trình bày lời giải - Nắm đợc hệ thức liên hệ:
0
0
x' kx (1 k)x y' ky (1 k)y
(23)N I
M'
N' M
- Tính chất , tâm vị tự hai đờng tròn
- Xác định tâm vị tự hai đờng trịn ( ví dụ trang 36 ) - Bài tập chọn trang 37,38 ( SGK )
C - Chuẩn bị thầy trò : Sách giáo khoa , mô hình phép vị tự D - Tiến trình tổ chức häc :
ổn định lớp : - Sỹ số lớp :
- N¾m tình hình sách giáo khoa học sinh
Bµi míi : III - TÝnh chÊt:
1 - Định lí: Hoạt động 1:
Xét phép vị tự tâm I, tỉ số k biến ®iĨm M M’ vµ N N’ M'N' k.MN
Chøng minh r»ng:
Hoạt động học sinh Hoạt động giáo viên
M'N' M'I IN' k.MI k.IN
Ta cã k.(MI IN) k.MN
( ®pcm )
- Híng dÉn häc sinh chøng minh hĐ thøc vÐct¬
- Hợp thức hố định lí
2 - HƯ qu¶: HƯ qu¶ 1:
k I
V MN M'N'
PhÐp vÞ tự : M M N N phơng với và: M'N' k MN
HƯ qu¶ 2: k
I
V PhÐp vÞ tù : A A’, B B, C C điểm A, B, C thẳng hàng ( B nằm A, C ) A, B,
C thẳng hàng ( B nằm A, C) Hệ 3:
Phép vị tự t©m I, tØ sè k:
a) Biến tam giác thành tam giác đồng dạng với tam giác cho với tỉ số đồng dạng |k| b) Biến đờng trịn bán kính r thành đờng trịn bán kính r’ = |k|.r
IV - Tâm vị tự hai đờng trịn: 1 - Bài tốn:
Cho trớc hai đờng trịn ( O; R) (O’;R’) Tìm phép vị tự biến đờng tròn (O;R) thành đờng tròn (O’;R’) ?
(24)Xét trờng hợp O O’ ( Hai đờng trịn khơng đồng tâm )
Xét trờng hợp O O’ ( Hai đờng tròn đồng tâm )
Hoạt động 3:
Hoạt động 4: ( Củng cố luyện tập )
xOy
Cho điểm A nằm miền góc Hãy dựng đờng tròn qua A tiếp xúc với hai cạnh góc
Hoạt động học sinh Hoạt động giáo viên
- §äc, nghiên cứu SGK lời giải toán - Trả lêi c©u hái cđa GV
- Chia nhóm giao nhiệm vụ cho học sinh đọc, nghiên cứu cách giải SGK ĐVĐ: ứng dụng phép vị tự vào giải tốn dựng hình nh ?
Bµi tËp vỊ nhµ: 5, 6, 7, trang 38 ( SGK )
R' R
M1
I'
I M'
O
M
O'
R' R
M1
O M' M
A
B
Hoạt động học sinh Hoạt động giáo viên
- Đọc sách GK để hiểu tìm đợc tâm vị tự hai đờng trịn khơng đồng tâm
- Thùc hµnh dùng
Hớng học sinh nghiên cứu SGK để dựng đợc tâm vị tự hai đờng tròn
Hoạt động học sinh Hoạt động giáo viên
- Đọc sách GK để hiểu tìm đợc tâm vị tự hai đờng trịn khơng đồng tâm
- Thùc hµnh dùng
(25)TuÇn 11
Tiết 11: Đ7 - Khái niệm phép đồng dạng hai hình đồng dạng A - Mục tiêu:
- Nắm vững k/n phép đồng dạng, tỉ số đồng dạng, k/n hai hình đồng dạng
- Nắm vững tính chất phép đồng dạng để vận dụng vào việc giải toán đơn giản B - Nội dung mức độ:
- Phép đồng dạng tính chất Khái niệm hai hình đồng dạng - So sánh giống, khác phép dời hình phép đồng dạng - Bài tập 1, 2, ( Trang 44 - SGK )
C - Chuẩn bị thầy trò : Sách giáo khoa D - Tiến trình tỉ chøc bµi häc :
ổn định lớp : - Sỹ số lớp :
- Nắm tình hình sách giáo khoa học sinh
Bài : I - Phộp ng dng:
1 - Định nghĩa:
Hot động 1: ( Dẫn dắt khái niệm )
Nêu trờng hợp đồng dạng hai tam giác ? Phép vị tự tỉ số k biến tam giác ABC thành tam giác A’B’C’ tam giác ABC tam giác A’B’C’ có đồng dạng khơng ?
Hoạt động học sinh Hoạt động giáo viên
(26)- Khẳng định đợc hai tam giác ABC A’B’C’ đồng dạng tỉ số đồng dạng | k |
dạng Hoạt động 2: ( Củng cố khái niệm )
Cho tam giác ABC Gọi M trung điểm AC Đờng thẳng kẻ từ M song song với BA cắt đ-ờng thẳng kẻ từ A song song với BC N Chứng minh tam giác ABC đồng dạng với tam giác MNA ? Phép đồng dạng biến A M, B N, C A ?
Hoạt động học sinh Hoạt động giáo viên
- Chứng minh đợc hai tam giác ABC MNA đồng dạng ( trờng hợp g - g )
- Phép đồng dạng phép dựng hình tạo điểm M, N mà toán nêu:
Lúc A M; B N; C A ta có: AM 1
CA 2 Tỷ số đồng dạng k =
- Vẽ hình gọi học sinh thực giải toán
- Thuyết trình phần nhận xÐt ( SGK) II - TÝnh chÊt:
Hoạt động 3: ( Dn dt khỏi nim )
Đọc nghiên cứu phần tính chất chứng minh tính chất cña SGK ( trang 40 )
Hoạt động học sinh Hoạt động giáo viên
- Đọc, nghiên cứu thảo luận theo nhóm đợc phân cơng - Chứng minh tính chất b), c), d)
- Chia nhóm để học sinh thực việc đọc, nghiên cứu phần tính chất phần chứng minh tính chất a) SGK
- Cho häc sinh chøng minh tính chất lại
III - Khỏi niệm hai hình đồng dạng: Hoạt động 4: ( Dẫn dắt khái niệm )
Đọc nghiên cứu phần “ Khái niệm hai hình đồng dạng “ SGK ( trang 40 )
Hoạt động học sinh Hoạt động giáo viên
- Đọc, nghiên cứu thảo luận theo nhóm đợc phân cơng - Chia nhóm để học sinh thực việc đọc, nghiên cứu phần “ Khái niệm hai hình đồng dạng “ SGK
- Giới thiệu sơ đồ liên hệ phép biến hình
Hoạt động 5: ( Củng cố khái niệm ) Dùng hoạt động SGK
Hoạt động học sinh Hoạt động giáo viên
- Đọc, nghiên cứu thảo luận theo nhóm đợc phân cơng - Đa lời giải
- Chia nhóm để học sinh thực việc đọc, nghiên cứu phần hoạt động SGK
- Uốn nắn cách biểu đạt học sinh: Ngơn ngữ, cách trình bày lời giải, - Củng cố định nghĩa tính chất phép đồng dạng
Bµi tËp vỊ nhµ: 1, 2, ( Trang 44 - SGK )
N
M A
(27)Tiết 12: Câu hỏi tập Ôn tập chơng ( Tiết ) A - Mơc tiªu:
- ơn tập khắc sâu đợc k/n phép biến hình, phép dời hình, phép đồng dạng - áp dụng đợc vào tập
B - Nội dung mức độ:
- Ôn tập kiến thức nêu đợc mối liên hệ phép dời hình phép đồng dạng - Chữa tập chọn trang 44, 45, 46
C - ChuÈn bÞ thầy trò : Sách giáo khoa D - Tiến trình tổ chức học :
ổn định lớp : - Sỹ số lp :
- Nắm tình hình sách giáo khoa học sinh Bài mới
Hot ng 1:
Chữa tập trang 44 ( SGK )
Hoạt động học sinh Hoạt động giáo viên
MO
- ảnh đờng thẳng d: x - 2y + = qua phép tịnh tiến đờng thẳng d’, song song với đờng thẳng d Nếu M điểm tuỳ ý thuộc d véctơ tịnh tiến ( O gốc toạ độ ) Có vơ số phép tịnh tiến nh thoả mãn đề tính chất tuỳ ý điểm M
- Gäi mét häc sinh lên bảng giải tập - Ôn tập củng cè vỊ phÐp tÞnh tiÕn
Hoạt động 2:
Chữa tập trang 45 ( SGK )
Hoạt động học sinh Hoạt động giáo viên
AB
T AB
T
Vì M’ ảnh điểm M qua phép , M’ thuộc ảnh (O1) (O) qua Vậy M’ giao điểm (O1)
vµ (O’) Suy cách dựng điểm M: AB
T
- Dựng (O1) ảnh (O) qua
- Tìm giao ®iĨm cđa (O1) vµ (O’)
AB
T
- Tìm điểm M tạo ảnh M qua
Bài toán có số nghiệm hình số giao ®iĨm cđa ( O’) vµ (O1)
- Gäi mét học sinh lên bảng giải tập - Ôn tập cđng cè vỊ phÐp tÞnh tiÕn
Hoạt động 3:
Chữa tập trang 45 ( SGK )
Hoạt động học sinh Hoạt động giáo viên
(28)2x + y + =
( Có thể trình bày theo cách tìm điểm đối xứng với điểm d qua 0x )
- Ôn tập củng cố phép đối xứng trục
Hoạt động 4:
Ch÷a bµi tËp trang 45 ( SGK )
Hoạt động học sinh Hoạt động giáo viên
a) Nếu d // d’ trục đối xứng phép đối xứng trục cần tìm đờng thẳng song song cách hai đờng thẳng d, d’
b) Nếu d d’ cắt có hai phép đối xứng trục có trục lần lợt hai đờng phân giác góc tạo hai đờng thẳng d d’
- Gọi học sinh lên bảng giải tập - Ôn tập củng cố phép đối xứng trục
Hoạt động 5:
Ch÷a bµi tËp trang 45 ( SGK )
Bµi tËp vỊ nhµ: 6, 7, 8, 9, 10 trang 45 - 46 ( SGK )
TuÇn 12
Tiết 13: Câu hỏi tập Ôn tËp ch¬ng ( TiÕt )
D0 d
D A
E' B E
C
Hoạt động học sinh Hoạt động giáo viên
a) AE = CD, AC = ED độ dài đờng gấp khúc ACDB AEDB
b) Gọi E’ điểm đối xứng E qua d Độ dài đờng gấp khúc ACDB ngắn độ dài đờng gấp khúc AEDB ngắn hay độ dài ED + DB ngắn hay độ dài E’D + DB ngắn hay E’, D, B thẳng hàng Từ suy ra:
D D0 = BE’ d
(29)A - Mơc tiªu:
- Có kĩ thành thạo áp dụng phép dời hình, phép đồng dạng vào việc giải tốn hình học - Củng cố khắc sâu đợc kiến thức
B - Nội dung mức độ: - Chữa tập tiết 12
- Bµi tËp chän ë trang 45,46,47,48 ( SGK ) C - ChuÈn bị thầy trò : Sách giáo khoa D - Tiến trình tổ chức học :
ổn định lớp : - Sỹ s lp :
- Nắm tình hình sách giáo khoa học sinh Bài mới
Hot ng 1:
Chữa tập trang 45 ( SGK )
Hoạt động học sinh Hot ng ca giỏo viờn
a) Tập hợp ®iĨm A lµ hai cung chøa gãc
2 C
V (A) M ( C
1 ) ( C2) chắn đoạn BC
2
B BC
V (M) G ; T (M) N b)
- Gọi học sinh lên bảng trình bày giải chuẩn b nh
- Ôn tập, củng cố phép vị tự phép tịnh tiến
Hot ng 2:
Chữa tập trang 45 ( SGK )
Hoạt động học sinh Hoạt động giáo viên
v
c T (D) C ; v AB
a
a) Tập hợp điểm D đờng trịn tâm A, bán kính b
- Gọi học sinh lên bảng trình bày giải chuẩn bị nhà
- Ôn tập, củng cố phép vị tự phÐp tÞnh tiÕn
N G
M
B C
A
c
b
a I
M
A B
(30)BM a BD a c b)
k
v
V (D) M
c) với tập hợp điểm D đờng tròn tâm A, bán kính b từ suy đợc tập hợp điểm M
1v
T (D) I
d) vói tập hợp điểm D đờng trịn tâm A, bán kính b từ suy đợc tập hợp điểm I
Hoạt động 3:
Chữa tập trang 46 ( SGK )
Hoạt động học sinh Hoạt động giáo viên
2 IG IP
3
2 I
V 23 I
V Gọi P trung điểm MN G là trọng tâm tam giác IMN Tam giác OMN cân có độ dài cạnh khơng đổi nênđờng cao OP không đổi Vậy tập hợp điểm P đờng trịn ( O1) tâm O, bán kính R’ = OP Vì
G trọng tâm tam giác IMN nên Suy ra: : P G Khi P chạy ( O1) G chạy đờng tròn ( O’1) ảnh
( O1) qua phÐp
- Gọi học sinh lên bảng trình bày giải chuẩn bị nhà
- Ôn tập, củng cố phép vị tự
Bài tập nhà: 9, 10 trang 46 Dặn dò chuẩn bị kiểm tra tiết
Tiết 14: Bài kiểm tra viết cuối chơng 1 Ngày dạy:
A -Mơc tiªu:
- Kiểm tra kĩ áp dụng phép dời hình, phép đồng dạng vào việc giải tốn hình học - Củng cố khắc sâu đợc kiến thức
B - Nội dung mức độ :
- Bài tốn phép dời hình ( dạng đơn giản ) có áp dụng biểu thức toạ độ toán áp dụng phép đồng dng
- Trắc nghiệm : điểm - Tù ln : ®iĨm
- Có sử dụng máy tính bỏ túi trình tÝnh to¸n
G
P O I
(31)C - Chuẩn bị thầy trò : Giấy kiểm tra, máy tính D - Tiến trình tổ chức học :
ổn định lớp : - Sỹ số lớp :
KiÓm tra viÕt Néi dung kiÓm tra:
Đề bài:
Phần trắc nghiệm:
Bi 1: Trên mặt phẳng toạ độ Oxy, cho điểm A( 1, ) đờng thẳng d: x - y + = ảnh điểm A là điểm A’ qua phép biến hình Đd là:
a)A’( - 1; ) b) A’( 1;- ) c) A’( - 1; - 3) d)A’( ; ) v
v
Bài 2: Trên mặt phẳng toạ độ Oxy cho đờng tròn ( C ): x2 + y2 - 6x - 4y - = 0, đờng tròn ( C’): x2 +
y2 - 2x - 10y + 10 = 0, ( C’ ) ảnh ( C ) qua phép tịnh tiến T với có toạ độ là:
v
7 2 vv5 7 a) ( ; ) b) ( - 2; 3) c) Một kết khác d) ( - ; )
PhÇn tù luËn:
120 C
Q Cho tam giác ABC Với điểm M khơng trùng với đỉnh tam giác ta kí hiệu M
1, M2,
M3 lần lợt ảnh điểm M qua phép đối xứng trục BC, CA, AB Xét phép quay tâm C, góc quay
1200:
0 120 C
Q a) Chøng minh r»ng mét hai ®iĨm M
1, M2 điểm tạo ảnh điểm ảnh điểm
kia phép quay
b) Chứng minh tam giác BM1M3 CM1M2 ng dng
Đáp án thang điểm: Phần tự luận:
Bài 1: ( 1, điểm ) AA ' AA '
nDùng máy tính tính toạ độ véctơ thấy = ( ; - ) = ( ; - ) véctơ pháp tuyến đờng thẳng d
3 5 ;
2 2 Tính đợc toạ độ trung điểm H AA’ H( ) thay vào phơng trình đờng thẳng d, thấy thoả mãn Nên chn d)
Bài 2: ( 1, điểm )
Đờng tròn ( C ) có tâm I( ; ), b¸n kÝnh R = II ' ( 2;3)
vĐờng tròn ( C) có tâm I( 1; ), bán kính R = = nªn ta chän b)
Phơng án Bài số
(32)1
2
PhÇn tù luËn:
Đáp án Thang ®iĨm
a) 5,0
§BC: M M1, §AC: M M2 CM1 = CM = CM2 (1) 1,0
1
BCM BCM ACM ACM ACM 2Mặt khác: ( t/c ) 1,0
1
BCM BCM ACM ACM 2 BCM ACM
Suy đợc: + = 2.( ) ACB = = 1200 (1)
2,0
0 120 C
Q Từ (1) (2) suy đợc : M
2 M1
1,0
b) 3,0
Theo chứng minh phần a) suy đợc M1CM2 cân C có góc C = 1200 1,0
Chứng minh tơng tự suy đợc M1BM3 cân B có góc B = 1200 1,0
Suy đợc M1CM2 M1BM3 đồng dạng 1,0
M2
M1
M3 A
B C
(33)TuÇn 13
Ch ơng : Đờng thẳng mặt phẳng không gian Quan hƯ song song
A - Mơc tiªu:
1 - Cho học sinh làm quen với đối tợng hình học khơng gian nh điểm, đờng thẳng mặt phẳng nắm mối quan hệ liên thuộc đối tợng khơng gian Liên hệ đực hình anhe đối tợng thực tiễn
2 - Bớc đầu làm quen với phơng pháp tiên đề việc xây dựng hình học Hiểu đợc khái niệm thơng qua hình ảnh cụ thể thực tế hiểu đợc số tính chất thừa nhận ( tiên đề ) mà khái niệm phải thoả mãn Làm quen với việc chứng minh định lí chứng minh tính chất có tốn hình học phép suy luận có lí, chặt chẽ, hợp logic
3 - Biết cách xác định mặt phẳng, hiểu đợc mối quan hệ song song áp dụng đợc vào giải tốn Rèn trí t-ởng tợng khơng gian thơng qua hình ảnh, mơ hình cụ thể thực tế qua hình biểu diễn tập đọc hình biểu diễn ý phơng pháp chứng minh phản chứng việc giải tốn hình học không gian Tiết 15: Đ1 - Đại cơng đờng thẳng mặt phẳng ( Tiết )
A - Mơc tiªu:
- Làm quen với đối tợng hình học khơng gian nh điểm, đờng thẳng, mặt phẳng - Rèn luyện trí tởng tợng khơng gian
- Xây dựng đợc mơ hình hình học khơng gian B - Nội dung mức độ :
- Giới thiệu mơn học Hình học khơng gian Đại cơng đờng thẳng mặt phẳng - Hình biểu diễn hình khơng gian
- Học sinh xây dựng mô hình hình học vật liÖu tù chän ( giÊy, tre, )
C - Chuẩn bị thầy trò : Sách giáo khoa, mô hình số hình không gian D - Tiến trình tổ chức học :
ổn định lớp : - Sỹ s lp :
- Nắm tình hình sách giáo khoa học sinh Bài mới
I - Khái niệm mở đầu: 1 - Mặt phẳng:
Hoạt động 1:
(34)Hoạt động học sinh Hoạt động giáo viên - Đọc , nghiên cứu SGK
Xem tranh, ¶nh
Cho học sinh tự đọc, nghiên cứu phần mặt phẳng SGK xem tranh mơ tả mặt phẳng Thuyết trình mặt phẳng: Biểu diễn, kí hiệu mf
2 - Điểm thuộc mặt phẳng: Hoạt động 2:
BiÓu diễn điểm thuộc mặt phẳng ?
Hot ng ca học sinh Hoạt động giáo viên
- Vẽ đợc hình biểu diễn điểm A thuộc P - Viết đợc A P, A P
ThuyÕt trình cách biểu diễn điểm A thuộc mặt phẳng P, cách kí hiệu điểm A thuộc mặt phẳng P
Hình biểu diễn hình khơng gian: Hot ng 3:
Vẽ hình lập phơng, hình hộp chữ nhật, hình tứ diện
Hot ng ca hc sinh Hoạt động giáo viên
- VÏ c¸c hình lập phơng, hình hộp chữ nhật, hình tứ diện - Cắt dán hình lập phơng, hình hộp chữ nhật, hình tứ diện
Thuyết trình cách biểu diễn hình không gian Hớng dẫn học sinh vẽ hình lập phơng, hình hộp chữ nhật, hình tø diƯn
Hoạt động 4:
Vẽ hình biểu diễn tứ diện, tam giác, đờng tròn, lục giác
Hoạt động học sinh Hoạt động giáo viên
- Vẽ hình biểu diễn tam giác, đờng tròn, lục giác
Hớng dẫn học sinh vẽ hình tứ diện, tam giác, đờng tròn, lục giác
Bài tập nhà: Cát, dán hình hộp chữ nhật, hình lập phơng hình tứ diện khơng đều
Tiết 16: Đại cơng đờng thẳng mặt phẳng ( Tiết ) A - Mục tiêu:
(35)- Rèn luyện trí tởng tợng không gian, phơng pháp chứng minh phản chứng - áp dụng đợc vào tập
B - Nội dung mức độ :
- Các tính chất thừa nhận định lí ( có chứng minh định lí )
- Hiểu đợc t/c thừa nhận hệ tiên đề hình học khơng gian - Bài tập chọn trang 64,65 ( SGK )
C - ChuÈn bị thầy trò : Sách giáo khoa D - Tiến trình tổ chức học :
ổn định lớp : - Sỹ s lp :
- Nắm tình hình sách giáo khoa học sinh Bài mới
II - Các tính chất đợc thừa nhận ( Các tiên đề ) Hoạt động 1:
Đọc, nghiên cứu tính chất đợc thừa nhận
Hoạt động học sinh Hoạt động giáo viên
- Đọc, nghiên cứu tính chất đợc thừa nhận theo nhóm đợc phân cơng
- Thảo luận theo nhóm, đa câu hỏi thắc mắc để bạn giáo viên trả lời
- Phân nhóm giao nhiệm vụ cho học sinh đọc, nghiên cứu phần tính chất đ-ợc thừa nhận
- Thuyết trình khái niệm hệ tiên đề Hoạt động 2:
Vẽ hình lấy mơ hình thực tiễn minh hoạ cho tính chất đợc thừa nhận
Hoạt động học sinh Hoạt động giáo viên
- Vẽ hình minh hoạ
- Ly cỏc mụ hỡnh thực tiễn để minh hoạ
Híng dÉn häc sinh vẽ hình minh hoạ Định lí: ( SGK )
Hoạt động 3: Chứng minh định lí
Hoạt động học sinh Hoạt động giáo viên
- VÏ h×nh biĨu diƠn
- Dùng tính chất đợc thừa nhận đẻ chứng minh định lí
Hớng dẫn học sinh dùng tính chất đợc thừa nhận đẻ chứng minh định lí
Bµi tËp vỊ nhà: 1, trang 64
Tuần 14
Tiết 17: Đại cơng đờng thẳng mặt phẳng ( Tiết ) A - Mục tiêu:
- Nắm đợc cách xác định mặt phẳng k/n hình chóp, hình tứ diện - áp dụng đợc vào tập
- Đọc, hiểu đợc " Bài đọc thêm phơng pháp tiên đề việc xây dựng hình học " B - Nội dung mức độ :
- Xác định mặt phẳng, hình chóp, hình tứ diện Các ví dụ 1, 2, ví dụ trang 63 - Xác định giao điểm, giao tuyến
- Bµi tËp chän ë trang 64,65 ( SGK )
C - Chuẩn bị thầy trò : Sách giáo khoa, mô hình hình học không gian D - Tiến trình tổ chức học :
(36)- Sü sè líp :
- Nắm tình hình sách giáo khoa học sinh Bµi míi
III - Xác định mặt phẳng: 1 - Ba cách xác định mặt phẳng: Hoạt động 1
Đọc, nghiên cứu SGK phần “ Ba cách xác định mặt phẳng “
Hoạt động học sinh Hoạt động giáo viên
- Đọc thảo luận phần “ Ba cách xác định mặt phẳng “ SGK theo nhóm đợc phân cơng
- Vẽ hình biểu diễn
- Trả lời câu hỏi giáo viên
- Phõn nhúm hc sinh, c thảo luận phần “ Ba cách xác định mặt phẳng “ SGK - Phát vấn kiểm tra đọc hiểu học sinh
Hoạt động 2
Giải tốn: Cho tam giác ABC điểm S khơng thuộc mặt phẳng ( ABC ) Gọi I điểm nằm đờng thẳng SA L điểm nằm đờng thẳng AC Đờng thẳng d qua L cắt đoạn AB, BC lần lợt M, K Tìm giao tuyến mặt phẳng (I, d) với mặt phẳng (SCA), (SAB) (SBC)
Hoạt động học sinh Hoạt động giáo viên
- Vẽ hình biểu diễn
- Giải toán: Ta có I M hai điểm chung (SAB) (I,d) nên: (SAB) (I,d) = IM
Tơng tự I L hai điểm chung hai mặt phẳng (SAC) (I,d) nên (SAC) (I,d) = IL
Gäi N = LI SC, ta cã I L hai điểm chung (SBC) (I,d) nên (SBC) (I,d) = NK
- Phát biểu cách tìm giao tuyến mặt phẳng phân biệt: Tìm hai điểm chung hai mặt phẳng phân biệt
- Thuyết trình cách tìm giao tuyến hai mặt phẳng phân biệt
- Cỏch tỡm giao điểm đờng thẳng mặt phẳng
Hoạt động 3
Giải toán: Cho hai đờng thẳng cắt Ox, Oy hai điểm A, B không nằm mặt phẳng (Ox, Oy) Biết đờng thẳng AB (Ox, Oy) có điểm chung Một mặt phẳng thay đổi chứa AB, cắt Ox, Oy lần lợt M, N Chứng minh đờng thẳng MN luôn qua điểm cố định thay đổi
A
B
C
D E
I
M K
N
x y N
M O
A
(37)Hoạt động học sinh Hoạt động giáo viên - Vẽ hình biểu diễn
- Thảo luận để hiểu đa phơng án giải toán - Trả lời câu hỏi giáo viên
- Phân nhóm học sinh, đọc thảo luận phần Ví dụ SGK
- Phát vấn kiểm tra đọc hiểu học sinh
- ĐVĐ: Chứng minh ba điểm A, B, C thẳng hàng kh«ng gian ?
IV - Hình chóp t din Hot ng 4
Đọc, nghiên cứu SGK phần Hình chóp tứ diện
Hot động học sinh Hoạt động giáo viên
Đọc, nghiên cứu SGK phần:
Hình chóp tø diƯn “ VÏ h×nh biĨu diƠn cđa h×nh chãp vµ tø diƯn
- Phân nhóm học sinh, đọc thảo luận phần “ Hình chóp tứ diện “
cña SGK
- Phát vấn KT đọc, hiểu h.s Hoạt động ( Củng cố khái niệm )
ABC
Giải toán: Cho tam giác BCD điểm A không thuộc mặt phẳng (BCD) Gọi K trung điểm đoạn AD, G trọng tâm Tìm giao điểm đờng thẳng GK mặt phẳng (BCD)
Bµi tËp vỊ nhµ: 3, 4, 5, 6, trang 64, 65 ( SGK)L
K
G
J A
B
C
D
Hoạt động học sinh Hoạt động giáo viên
- VÏ hình biểu diễn - Giải toán:
- Thuyết trình cách tìm giao tuyến hai mặt phẳng phân biÖt
(38)GB
GA G
I A
B
C
D
Tiết 18: Đại cơng đờng thẳng mặt phẳng ( Tiết ) A - Mục tiêu:
- Nắm đợc cách xác định giao điểm, giao tuyến
- Rèn luyện trí tởng tợng khơng gian, phơng pháp chứng minh phản chứng - áp dụng đợc vào tập
B - Nội dung mức độ : - Chữa tập tiết 15,16,17 - Bài tập xác định giao điểm, giao tuyến - Bài tập chọn trang 64, 65 ( SGK ) - Chú ý tới phơng pháp phản chứng
C - ChuÈn bÞ thầy trò : Sách giáo khoa, mô hình hình học không gian D - Tiến trình tổ chøc bµi häc :
ổn định lớp : - Sỹ số lớp :
- Nắm tình hình sách giáo khoa học sinh Bài mới
Hot ng 1
Chữa tËp trang 64 (SGK)
Hoạt động học sinh Hoạt động giáo viên
- Vẽ hình
- Trình bày lời giải: Gọi I trung điểm CD GA BI
vµ GB AI Gäi G = AGA BGB ta cã:
A B
IG IG 1
IB IA 3 nên GAGB // AB áp dụng định lí Ta let mặt phẳng (ABI) ta có:
A A B
GA AB
GG G G =
Gọi học sinh lên bảng trình bày giải chuẩn bị nhà
(39)// //
E
N
I
O
M
A
B
C D
S
A A
G'A G"A 3 G 'G G"G
LÝ luËn tơng tự, ta có CGC DGD
cũng cắt AGA G G
Suy G G’ G” Hoạt động 2
Dùng thiÕt diện tạo mặt phẳng với hình chóp tứ diƯn
Giải tốn: Cho hình chóp S.ABCD có đáy ABCD hình bình hành Gọi M, N P lần lợt trung điểm AB, AD SC Tìm giao mặt phẳng ( MNP) với cạnh hình chóp giao tuyến (MNP) với mặt hình chóp
Hoạt động học sinh Hoạt động giáo viên
- VÏ h×nh biĨu diƠn
- Thảo luận để hiểu đa phơng án giải toán - Trả lời câu hỏi giáo viên
- Phân nhóm học sinh, đọc thảo luận phần Ví dụ trang 63 SGK
- Phát vấn kiểm tra đọc hiểu học sinh
- Cđng cè c¸ch tìm giao tuyến hai mặt phẳng Cách tìm giao điểm đ-ờng thẳng mặt phẳng
Hot ng 3: ( Củng cố khái niệm ) Chữa tập trang 64 ( SGK )
Hoạt động học sinh Hoạt động giáo viên
a) Gäi E =AB CD ta cã (MAB) (SCD) = ME Gäi N = ME SD ta cã N = SD (MAB)
b) Gäi I = AM BN ta cã: I = AM BN, AM thuéc (SAC), BN thuéc (SBD)
vµ (SAC) (SBD) = SO nªn I SO
Gọi học sinh lên bảng trình bày giải chuẩn bị nhà
- Phát vấn: Chứng minh điểm thẳng hàng không gian nh ? - Củng cố: Tìm giao điểm đờng thẳng mặt phẳng giao tuyến mặt phẳng
P
E
K
L P
N
M
D
A B
(40)Bµi tËp vỊ nhµ: 8, 9, 10 trang 65 ( SGK )
TuÇn 15
Tiết 19 Đ2 - Hai đờng thẳng chéo
hai đờng thẳng song song ( Tiết ) A - Mục tiêu:
- Biết xác định đợc vị trí tơng đối hai đờng thẳng khơng gian tính chất song song, chéo hai đờng thẳng
- áp dụng đợc vào tập
B - Nội dung mức độ :
- Vị trí tơng đối hai đờng thẳng khơng gian - Tính chất ( định lí 1,2 hệ )
- VÝ dơ
- Bµi tËp chän ë trang 74 - 75 ( SGK )
C - Chuẩn bị thầy trò : Sách giáo khoa, mô hình hình học không gian D - Tiến trình tổ chức học :
ổn định lớp : - Sỹ s lp :
- Nắm tình hình sách giáo khoa học sinh Bài mới
(41)B'
C' A'
D
A B
C
D'
C
A D
B
S
Hoạt động ( Dẫn dắt khái niệm )
Cho hai đờng thẳng a b khơng gian, nêu vị tí tơng đối a b ?
Hoạt động học sinh Hoạt động giáo viên
- Đọc, nghiên cứu phần “Vị trí tơng đối hai đờng thẳng không gian “ trang 69 SGK theo nhóm đợc phân cơng
- Nêu đợc trờng hợp vị trí tơng đối hai đờng thẳng a, b
- Phân nhóm học sinh, đọc thảo luận phần “Vị trí tơng đối hai đờng thẳng không gian “ trang 69 SGK
- Phát vấn kiểm tra đọc hiểu học sinh
Hoạt động ( Củng cố khái niệm )
Cho hình lập phơng ABCD.A’B’C’D’ tìm đờng thẳng chứa cạnh hình lập phơng chéo với đờng thẳng AB
Hoạt động học sinh Hoạt động giáo viên
- VÏ h×nh biểu diễn hình lập phơng
- Ch đợc đờng CC’ DD’ chéo với AB
- Gọi học sinh thực giải toán - Củng cố khái niệm hai đờng thẳng song song hai đờng thẳng chéo không gian
II - Tính chất: Định lí 1: ( SGK )
Hoạt động ( Dẫn dắt khái niệm )
Đọc thảo luận phần Định lí trang 70 cña SGK
Hoạt động học sinh Hoạt động giáo viên
- Đọc, nghiên cứu phần “ Định lí “ trang 70 SGK theo nhóm đợc phân cơng
- Nắm đợc nội dung cách chứng minh định lí
- Phân nhóm học sinh, đọc thảo luận phần “ Định lí “ trang 70 SGK
- Phát vấn kim tra s c hiu ca hc sinh
Định lÝ 2: ( SGK )
Đọc thảo luận phần “ Định lí “ trang 70 SGK Hoạt động ( Dẫn dắt khái niệm )
Hoạt động học sinh Hoạt động giáo viên
- Đọc, nghiên cứu phần “ Định lí “ trang 70 SGK theo nhóm đợc phân cơng
- Nắm đợc nội dung cách chứng minh định lí
- Phân nhóm học sinh, đọc thảo luận phần “ Định lí “ trang 70 SGK
- Phát vấn kiểm tra đọc hiểu học sinh
- Phát biểu Hệ Hoạt động ( Củng cố khái niệm )
Giải tốn: Cho hình chóp S.ABCD có đáy ABCD hình bình hành Xác định giao tuyến hai mặt phẳng (SAD) (SBC)
(42)M N
J I
A
B
C
D
Hoạt động học sinh Hoạt động giáo viên
Dựng đợc giao tuyến biết điểm chung phơng giao tuyến
- Gọi học sinh thực giải toán - Củng cố định lí
Hoạt động ( Củng cố khái niệm )
Giải toán: Cho tứ diện ABCD Gọi I J lần lợt trung điểm BC BD Gọi (P) mặt phẳng chứa IJ cắt AD, AC lần lợt M N Chứng minh tứ giác IJMN hình thang Tìm vị trí M,N để tứ giác IJMN hình bình hành ?
Hoạt động học sinh Hoạt động giáo viên
- VÏ h×nh biĨu diƠn
- Dựng đợc giao tuyến biết điểm chung phơng giao tuyến
- Gọi học sinh thực giải tốn - Củng cố định lí
(43)H×nh a)
S R
Q P
A
B
C D
H×nh b) J
R
A
B
C D
S
P
Tiết 20 Hai đờng thẳng chéo
hai đờng thẳng song song ( Tiết ) A - Mục tiêu:
- Nắm đợc tính chất hai đờng thẳng song song, chéo không gian - áp dụng đợc vào tập
B - Nội dung mức độ : - Định lí
- C¸c vÝ dơ 2,
- Luyện kĩ vẽ hình
- Bµi tËp chän ë trang 74 - 75 ( SGK )
C - Chuẩn bị thầy trò : Sách giáo khoa, mô hình hình học không gian D - Tiến trình tổ chức học :
ổn định lớp : - S s lp :
- Nắm tình hình sách giáo khoa học sinh Bài mới
Hot ng 1
Chữa tập trang 74 ( SGK )
Hoạt động học sinh Hoạt động giáo viên
- VÏ h×nh biĨu diƠn - Gäi mét häc sinh thùc giải Hình c)
R
T
A C
B D
S
(44)- Dựng đợc giao tuyến biết điểm chung phơng giao tuyến
to¸n
- Củng cố định lí Dựng giao điểm v giao tuyn
Định lí 3: ( SGK )
Hoạt động ( Dẫn dắt khái niệm )
Đọc thảo luận phần Định lí trang 73 cña SGK
Hoạt động học sinh Hoạt động giáo viên
- Đọc, nghiên cứu phần “ Định lí “ trang 73 SGK theo nhóm đợc phân cơng
- Nắm đợc nội dung cách chứng minh định lí
- Phân nhóm học sinh, đọc thảo luận phần “ Định lí “ trang 73 SGK - Phát vấn kiểm tra đọc hiểu học sinh
Hoạt động ( Củng cố khái niệm )
Giải toán: Cho tứ diện ABCD Gọi M, N, P, Q, R S lần lợt trung điểm đoạn thẳng AC, BD, AB, CD, AD BC Chứng minh đoạn thẳng MN, PQ, RS đồng quy trung điểm đoạn
Bµi tËp vỊ nhà: 3, trang 75 ( SGK )
Tuần 16
Tiết 21 Đ3- Đờng thẳng mặt phẳng song song ( Tiết 1) A - Mơc tiªu:
- Biết cách xác định vị trí tơng đối đờng thẳng mặt phẳng Nắm đợc tính chất đờng thẳng song song với mặt phẳng
- áp dụng đợc vào tập
B - Nội dung mức độ :
- Vị trí tơng đối đờng thẳng mặt phẳng Tính chất ( định lí 1, ví dụ ) - Bài tập chọn trang 79 ( SGK )
G N M
S
R
Q P
A
B
C
D
Hoạt động học sinh Hoạt động giáo viên
- VÏ h×nh biĨu diƠn
- Trình bày đợc cách chứng minh nhiều đờng thẳng đồng quy không gian
- áp dụng đợc vaod giải toán
- Gäi mét häc sinh thực giải toán
- Cng c định lí 1,
(45)C - Chuẩn bị thầy trò : Sách giáo khoa, mô hình hình học không gian D - Tiến trình tổ chức học :
ổn định lớp : - Sỹ số lp :
- Nắm tình hình sách giáo khoa học sinh Bài mới
I - Vị trí tơng đối đờng thẳng mặt phẳng Hoạt động ( Dẫn dắt khái niệm )
Nêu vị trí tơng đối đờng thẳng d mặt phẳng không gian ?
Hoạt động học sinh Hoạt động giáo viên
- Thảo luận đa câu trả lời
- Vẽ hình minh hoạ cho trờng hợp d vµ
- Phân nhóm để học sinh thảo luận - Phát vấn nêu trờng hợp d II - Tính chất:
Định lí 1: d // d’ d // Hoạt động ( Dẫn dắt khái niệm )
Hoạt động học sinh Hoạt động giáo viên
- VÏ h×nh biĨu diƠn
- Dùng phơng pháp phản chứng chứng minh định lí
- Thuyết trình định lí
- Hớng dẫn học sinh chứng minh định lí - Chú ý phơng pháp chứng minh phản chứng
Hoạt động 3: ( Củng cố khái niệm )
Cho hình lập phơng ABCD.A’B’C’D’ kể tên đờng thẳng qua A’ đỉnh khác hình lập phơng mà song song với mặt phẳng ( ABCD )
Hoạt động học sinh Hoạt động giáo viên
- VÏ h×nh biĨu diƠn
- Nêu đợc đờng thẳng song song với mặt phẳng (ABCD)
- Gọi học sinh thực - Củng cố định lí
Định lí 2: d // , d = d’ d // d’ Hoạt động 4: (Củng cố khái niệm )
Giải toán: Cho tứ diện ABCD Lấy M điểm thuộc miền tam giác ABC Gọi mặt phẳng qua M song song với đờng thẳng AB CD Dựng thiết diện tạo tứ diện ABCD
d' d
G
H
F
A
B
C
D E
(46)Hoạt động học sinh Hoạt động giáo viên Nêu cách dựng giao tuyến nhờ tính chất song song
VÏ h×nh biĨu diƠn
- Ôn tập: Dựng giao tuyến hai mặt phẳng nhờ tÝnh chÊt song song
- Gäi mét häc sinh thực giải toán Bài tập nhà:1, trang 79
Tiết 22 Đờng thẳng mặt ph¼ng song song ( TiÕt 2) A - Mơc tiªu:
- Nắm đợc tính chất đờng thẳng song song với mặt phẳng - áp dụng đợc vào tập
B - Nội dung mức độ : - Định lí 3,
- Luyện tập kĩ vẽ hình cách biểu đạt học sinh trình bày giải - Bài tập chọn trang 79 ( SGK )
C - Chuẩn bị thầy trò : Sách giáo khoa, mô hình hình học không gian D - Tiến trình tổ chức học :
ổn định lớp : - Sỹ số lp :
- Nắm tình hình sách giáo khoa học sinh Bài mới
Hot động ( Kiểm tra cũ ) Chữa tập trang 79
N
M I
O'
O F
D A
B
(47)Hoạt động học sinh Hoạt động giáo viên a) Chứng ninh đợc OO’ // DF, OO’ // CE suy đợc
OO’ // (ADF), OO’ // (BCE)
b) áp dụng đợc định lí Talet đảo (IDE) để chứng minh đợc MN // DE suy MN // (IDE)
- Gọi học sinh trình bày giải chuẩn bị nhà
- Củng cố định lí 1, Định lí 3: d // , d // = d’ d // d’
Hoạt động ( Dẫn dắt khái niệm )
Đọc, nghiên cứu phần chứng minh định lí ( SGK )
Hoạt động học sinh Hoạt động giáo viên
- Đọc, nghiên cứu phần chứng minh định lí ( SGK ) - Vẽ hình minh hoạ cho định lí
Cho học sinh đọc SGK phần chứng minh định lí
Cđng cè lÝ thut c¬ Định lí 4: a b chéo nhau, có mặt phẳng chứa a // b
Hoạt động ( Dẫn dắt khái niệm )
Đọc, nghiên cứu phần chứng minh định lí ( SGK )
Hoạt động học sinh Hoạt động giáo viên
- Đọc, nghiên cứu phần chứng minh định lí ( SGK ) - Vẽ hình minh hoạ cho định lí
Cho học sinh đọc SGK phần chứng minh định lí
Củng cố lí thuyết Hoạt ng 4: (Cng c khỏi nim )
Chữa tËp trang 79 ( SGK)
Bµi tËp vỊ nhµ: 3, trang 79 ( SGK )
P
Q
N
M O A
B
C
D S
Hoạt động học sinh Hot ng ca giỏo viờn
Trình bày giải tập:
Nờu c cỏch dng v chng minh đợc tứ giác MNPQ hình thang Vẽ đợc hình biểu diễn trực quan, đẹp
- Gọi học sinh trình bày giải chuẩn bị nhà
(48)TuÇn 17
Tiết 23 Ôn tập cuối học kì ( TiÕt ) A - Mơc tiªu:
- Ôn tập khắc sâu đợc kiến thức phép biến hình, phép đồng dạng - Kĩ giải tốn dời hình đồng dạng tốt
B - Nội dung mức độ :
- Chọn chữa toán phần ôn tập chơng phần Gợi ý kiểm tra cuối chơng Sách Giáo viên
- Luyn k biểu đạt học sinh trình giải tốn C - Chuẩn bị thầy trị : Sách giáo khoa, mơ hình hình học D - Tiến trình tổ chức học :
ổn định lớp : - Sỹ số lớp :
- Nắm tình hình sách giáo khoa cđa häc sinh Bµi míi
Hoạt động 1
Giải tốn: Tích phép đối xứng tâm với tâm đối xứng phân biệt phép đối xứng tâm
Hoạt động học sinh Hoạt động giáo viên
Xét phép đối xứng tâm ĐA, ĐB, ĐC A, B, C l
điểm phân biệt
Đặt f = ĐCĐBĐA phép biến hình.Trớc hết ta
chøng minh f cã mét ®iĨm bÊt
động Thật vậy, gọi O điểm bất động f, theo định nghĩa ta có:
AO1 AO
BO2 BO1
COCO2
ĐA:
O O1 §B: O1 O2 vµ §C: O2 O vµ
BOBABC
Từ kết suy ra: chứng tỏ O điểm bất động
Bây ta chứng minh f phép đối xứng tâm O: OM 'OM
Giả sử với M điểm f( M ) = M’ ta cÇn chøng minh
ThËt vËy ta cã:
O M1 OM
§A: M M1 , O O1
vµ ( )
O M2 O M1
§B: M1 M2 , O1 O2
- Ôn tập, củng cố phép dời hình học: Tịnh tiến, đối xứng tâm, đối xứng trục
(49)vµ ( )
OM'OM
§C: M2M’ , O2 O vµ
( )
OMOM '
Từ ( ), ( ), ( ) suy : ( pcm ) Hot ng 2
Giải toán: Cho tam giác ABC Trên cạnh BC lấy điểm A1, A2, cạnh CA lấy điểm B1, B2 ,
trên cạnh AB lấy điểm C1, C2 cho điểm nằm đờng tròn Gọi x x’ đờng
thẳng lần lợt qua A1, A2 vng góc với BC y y’ đờng thẳng lần lợt qua B1, B2 vng góc
với CA z z’ đờng thẳng lần lợt qua C1, C2 vng góc với AB.Chứng minh x, y, z
đồng quy x’, y’, z’ đồng quy
Hoạt động học sinh Hoạt động giáo viên
Gọi ( C ) đờng tròn tâm O qua điểm '
1 A A
1, A2, B1, B2, C1, C2 Gäi = x ( C ) th×
' A A
2 đờng kính ( C ) nên:
'
A Đ0: A2 x x qua A2 x’ // x hay x’ // BC
T¬ng tù :
Đ0: y y’ qua B2, vuông góc với AC z z’ qua C2, vng góc với AB Theo giả thiết x, y, z đồng quy S S’ ảnh
cđa S qua Đ0 điểm chung x, y, z tøc lµ x’, y’, z’
đồng quy
- Ôn tập, củng cố phép dời hình học: Tịnh tiến, đối xứng tâm, đối xứng trục
- Hớng dẫn học sinh giải toán
Bài tập nhà: Xem lại tập chơng phép biến hình
Tiết 24 Ôn tập cuối học k× ( TiÕt ) A - Mơc tiªu:
c1
x'
B C
x
B2
B1 C2
A2 A'1
A1 A
(50)- Ôn tập khắc sâu đợc kiến thức xác định giao điểm đờng thẳng mặt phẳng, giao tuyến hai mặt phẳng Tính chất song song hai đờng thẳng, ca ng thng v mt phng
- Kĩ giải toán tốt
B - Ni dung v mc độ :
- Chọn chữa toán đề thi tuyển sinh
- Biến đổi lợng giác đơn giản, tránh có cách giải đặc biệt - Luyện kĩ biểu đạt học sinh q trình giải tốn C - Chuẩn bị thầy trò : Sách giáo khoa, mơ hình hình học D - Tiến trình tổ chức học :
ổn định lớp : - Sỹ số lớp :
- Nắm tình hình sách giáo khoa häc sinh Bµi míi
Hoạt động 1
Giải tốn: Cho hai hình thang ABCD ABEF có chung đáy lớn AB khơng nằm mặt phẳng
a) Tìm giao tuyến mặt phẳng sau: (AEC) (BFD) ; (BCE) (ADF) b) Lấy M điểm thuộc đoạn DF Tìm giao điểm đờng thẳng AM với (BCE) c) Chứng minh hai đờng thẳng AC BF hai đờng thẳng cắt
Hoạt động 2
Giả tốn: hình chóp S.ABCD có đáy ABCD hình bình hành Gọi M, N, P theo thứ tự trung điểm SA, BC CD O tâm hình bình hành
a) T×m thiÕt diƯn hình chóp bị cắt mặt phẳng (MNP) b) Tìm giao điểm SO với mặt phẳng (MNP)
M
K I
H G
A B
C
E D
F N
R
Q
F
E
I
H
O P
N M
A D
B
S
C
Hoạt động học sinh Hoạt động giáo viên
a) Gäi G = AC BD, H = AE BF ta cã: (AEC) (BFD) = HG
Gäi I = AD BC vµ K = AF BE ta cã: (BCE) (ADF) = IK
b) Gäi N = AM IK ta cã N = AM (BCE)
- Ôn tập tìm giao điểm tìm giao tuyến
(51)Hoạt động học sinh Hoạt động giáo viên a) Gọi E = AB NP ; F = AD NP ;
R = SB ME ; Q = SD MF thiÕt diÖn ngũ giác MQPNR
b) Gọi H = NP AC ; I = MH SO ta cã: I = SO (MNP)
- Ôn tập tìm giao điểm tìm giao tuyến
- Dựng thiết diện mặt phẳng với hình chóp
Bài tập nhà: Ôn tập chuẩn bị kiểm tra học kì theo đề GD ĐT
Tuần 18
Tiết 46 Đại số tiết 25 Hình học Bài kiểm tra viết cuối học kì 1 A - Mục tiêu:
Theo yờu cầu Bộ Giáo dục Đào tạo B - Nội dung mức độ :
§Ị Bộ GD ĐT tổ chức kiểm tra
Tiết 26 Đ4 - Hai mặt ph¼ng song song ( TiÕt ) A - Mơc tiªu:
- Nắm đợc định nghĩa tính chất hai mặt phẳng song song - áp dụng đợc vào tập
B - Nội dung mức độ : - Đ/n tính chất
-Bµi tËp chän ë trang 89 , 90 ( SGK )
C - Chuẩn bị thầy trò : Sách giáo khoa, oô hình hình học D - Tiến trình tổ chức học :
(52)- Nắm tình hình sách giáo khoa học sinh Bài mới
I - Định nghĩa: ( SGK ) Hoạt động 1
Cho hai mặt phẳng song song , đờng thẳn d nằm Hỏi d có điểm chung khơng ?
Hoạt động học sinh Hoạt động giáo viên
- Trả lời đợc d khơng có điểm chung - Vẽ hình biểu diễn
- Củng cố định nghũa hai mặt phẳng song song
II - TÝnh chÊt: a b
a , b //
a // , b //
Định lí 1: Hoạt động 2
Đọc thảo luận phần chứng mimh định lí trang 81 ( SGK)
Hoạt động học sinh Hoạt động giáo viên
- Đọc thảo luận phần chứng mimh định lí theo nhóm đ-ợc phân cơng
- Vẽ hình minh hoạ cho định lí
- Phân nhóm để học sinh đọc thảo luận phần chứng minh định lí trang 81 ( SGK)
- Phát vấn, kiểm tra đọc hiểu học sinh
Hoạt động 3
Giải toán: Cho tứ diện S.ABC HÃy dựng mặt phẳng qua trung điểm I đoạn SA song song với mặt phẳng (ABC)
nh lí 2: ( SGK) Hoạt động 4
Đọc thảo luận phần chứng mimh định lí trang 81 ( SGK)
Hoạt động học sinh Hoạt động giáo viên
- Đọc thảo luận phần chứng mimh định lí theo nhóm đ-ợc phân cơng
- Phân nhóm để học sinh đọc thảo luận phần chứng minh định lí trang 81
E
F I
A B
C S
Hoạt động học sinh Hoạt động giáo viên
- Nêu đợc cách sựng mặt phẳng - Vẽ đợc hình biểu diễn
- Gäi mét häc sinh thực giải toán
(53)- Vẽ hình minh hoạ cho định lí ( SGK)
- Phát vấn, kiểm tra đọc hiểu ca hc sinh
- Thuyết trình hệ 1, 2, //
d '// d d
Định lí 3:
Hoạt động 5
Đọc thảo luận phần chứng mimh định lí trang 83 ( SGK)
Hoạt động học sinh Hoạt động giáo viên
- Đọc thảo luận phần chứng mimh định lí theo nhóm đ-ợc phân cơng
- Vẽ hình minh hoạ cho định lí
- Phân nhóm để học sinh đọc thảo luận phần chứng minh định lí trang 81 ( SGK)
- Phát vấn, kiểm tra đọc hiểu học sinh
Hoạt động 6 Giải toán:
BSC, CSA, ASB Cho tø diÖn S.ABC cã SA = SB = SC Gäi Sx, Sy, Sz lÇn lợt tia phân giác
của c¸c gãc HoiSX, Sy, Sz cã cïng thuéc mét mặt phẳng không ? Tại ?
Hot ng học sinh Hoạt động giáo viên
- Đọc thảo luận phần chứng mimh ví dụ trang 82 ( SGK)
- Trả lời câu hỏi giáo viên: Sx // BC, Sy // AB Sz // AC nên suy đợc Sx, Sy, Sz thuộc mặt phẳng song song với (ABC)
- Phân nhóm để học sinh đọc thảo luận phần chứng minh ví dụ trang 82 ( SGK)
- Phát vấn, kiểm tra đọc hiểu học sinh
Bµi tËp vỊ nhµ: bµi tËp 1, trang 89 ( SGK )
z y x
A B
(54)TuÇn 19
Tiết 27 Hai mặt phẳng song song ( TiÕt ) A - Mơc tiªu:
- Nắm đợc định lí Thales khơng gian - Bớc đầu vận dụng đợc vào tập
B - Nội dung mức độ : - Định lí 4, định lí Thales thuận - Bài tập chọn trang 89, 90 ( SGK )
C - Chuẩn bị thầy trò : Sách giáo khoa, mô hình hình học D - Tiến trình tổ chức học :
n nh lớp : - Sỹ số lớp :
- Nắm tình hình sách giáo khoa häc sinh Bµi míi
Hoạt động 1: ( kiểm tra cũ ) Chữabài tập trang 89 - SGK
Cho hình lăng trụ tam giác ABC.ABC với cạnh bên AA, BB, CC Gọi M M lần lợt trung điểm cạnh BC vµ B’C’
a) Chøng minh r»ng AM // A’M’
b) Tìm giao điểm mặt phẳng ( AB’C’) với đờng thẳng A’M c) Tìm giao tuyến d hai mặt phẳng ( AB’C’) ( BA’C’)
d) Tìm giao điểm G đờng thẳng d với mặt phẳng ( AMA’) Chứng minh G trọng tâm tam giác AB’C’
I G
M M'
O
C'
B'
A
B
(55)Hoạt động học sinh Hoạt động giáo viên a) MM’ // BB’ MM’ = BB’ tứ giác AA’M’M hỡnh
bình hành AM // AM
b) A’M ( AB’C’) = I víi I = A’MAM’
c) d = C’O = ( AB’C’) ( BA’C’); O = AB’ A’B d) G = C’O AM’ G lµ giao cđa hai trung tun
- Gäi mét häc sinh vÏ h×nh biĨu diƠn - Gọi học sinh thực giải - Uốn nắn cách trình bày h.s
III - nh lí Ta - let ( Thalès ) Hoạt động 1: ( dẫn dắt khái niệm ) Phát biểu định lí Ta - let mặt phẳng
Hoạt động học sinh Hoạt động giáo viên
- Phát biểu định lí Ta- lét mặt phẳng - Trả lời câu hỏi giáo viên
- Gọi học sinh phát biểu định lí Ta - let mặt phẳng
- ĐVĐ: Thay đờng thẳng song song định lý mặt phẳng song song
Hoạt động 2: ( dẫn dắt khái niệm ) Đọc, thảo luận nghiên cứu định lí
Hoạt động học sinh Hoạt động giáo viên
- Đọc, thảo luận nghiên cứu định lí theo nhóm đợc phân cơng
- Tr¶ lêi câu hỏi giáo viên
- T chc cho học sinh đọc, thảo luận nghiên cứu định lí
- Phát vấn kiểm tra đọc hiểu học sinh
( ) //( ) a // b
AA ' BB ' a ( ) A, a ( ) B
b ( ) A ', b ( ) B '
Định lí 4:
Hoạt động 3: ( dẫn dắt khái niệm )
Đọc, thảo luận nghiên cứu định lí ta - lét
Hoạt động học sinh Hoạt động giáo viên
- Hoạt động 3: ( dẫn dắt khái niệm )
Đọc, thảo luận nghiên cứu định lí Ta - lét theo nhóm đợc phân cơng
- Trả lời câu hỏi giáo viên
- Tổ chức cho học sinh đọc, thảo luận nghiên cứu định lí Ta -lét
- Phát vấn kiểm tra đọc hiểu học sinh
- Phát biểu định lí Định lí 5: Định lí Ta - lét
( ) //( ) //( )
d ( ) A, d ( ) B, d ( ) C d' ( ) A', d' ( ) B ', d' ( ) C '
AB BC CA
A ' B ' B 'C ' C ' A '
(56)Cho hình hộp ABCD A’B’C’D’ Qua trung điểm M cạnh AA’, dựng mặt phẳng ( ) song song với đáy hình hộp Gọi O O’ lần lợt giao điểm hai đờng chéo hai đáy ABCD, A’B’C’D’ Gọi I, J lần lợt trung điểm OD O’C’
a) Xác định giao điểm K IJ mặt phẳng ( ) b) Điểm K cia IJ theo tỉ số ?
Hoạt động học sinh Hoạt động giáo viên
a) Dựng mặt phẳng ( ) chứa IJ // ( ABBA ) mặt phẳng
này cắt ( ) theo giao tuyÕn EF EF IJ = K điểm cần dựng
A ' M JK 1
MA KI b) áp dụng định lí Ta - lét cho mặt phẳng ( ), ( ABCD ), ( A’B’C’D’) cát tuyến AA’, IJ ta có:
- Gäi häc sinh vÏ h×nh biểu diễn
- Gọi học sinh nêu cách dùng ®iĨm K
- Gäi mét häc sinh chøng minh K trung điểm IJ
- Cng cố định lí Ta - lét
Bµi tËp vÌ nhµ: 2, 4, trang 89 - 90 - SGK.
K
F E
I J
O O'
N
P Q
M
D'
B' C'
D
A
B C
(57)TuÇn 20
TiÕt 28 Hai mặt phẳng song song ( Tiết ) A - Mơc tiªu:
- Nắm đợc định lí Thales đảo khái niệm hình hộp, hình lăng trụ - áp dụng đợc vào tập
B - Nội dung mức độ :
- Định lí Thales đảo, hình hộp, hình lăng trụ - Các ví dụ 1,
- Bµi tËp chän ë trang 89, 90 ( SGK )
C - Chuẩn bị thầy trò : Sách giáo khoa, mô hình hình học D - Tiến trình tổ chức học :
n định lớp : - Sỹ số lớp :
- Nắm tình hình sách giáo khoa cđa häc sinh Bµi míi
Hoạt động 1: ( kiểm tra cũ ) Chữa tập trang 89 - SGK
Cho điểm M, N di động nửa đờng thẳng chéo Ax v By
a) HÃy mặt phẳng ( P ) chøa By vµ song song víi Ax Đờng thẳng kẻ từ M song song với AB cắt mặt phẳng ( P ) E Tìm tập hợp ®iÓm E
b) Khi M N di động cho AM = BN, chứng minh đờng thẳng MN song song với mặt phẳng cố định
Hoạt động học sinh Hoạt động giáo viên
a) Dùng Bz // Ax Ax // ( By, Bz ), ( P ) ( By, Bz )
Lại có Ax // Bz nên ( Q ) ( Ax, Bz )
VÏ ME // AB ( E Bz ) E thuéc giao tuyÕn cđa ( P ) vµ ( Q ) M A E B nên tập hợp điểm E lµ tia Bz
BNE
b) AM = BN AM = AE nên cân B.
Dựng đờng phân giác góc B Bt Bt’ Bt Bt’ NE Bt nên suy đợc Bt’ // NE Suy ( AB, Bt’ ) = ( R ) cố định Do ME // AB ME // ( R ), NE // ( R ) nên ( MNE ) // ( R ) MN // ( R ) cố định
- Ph¸t vÊn:
+ Dựng mặt phẳng ( P ) ?
+ Dựng ME // AB, E thuộc mặt phẳng ?
+ Khi M A vị trí cña E ? + Chøng minh BE = BN ?
+ Dựng phân giác ngồi góc B Hai đờng phân giác có tính chất ?
- Củng cố : Phơng pháp chứng minh đ-ờng thẳng song song với mặt phẳng Định lý 6; Định lí Ta - lét đảo
t'
t x
z
y
E A
B
M
(58)Hoạt động 2: ( dẫn dắt khái niệm )
Đọc, nghiên cứu thảo luận định lý trang 85 - SGK
Hoạt động học sinh Hoạt động giáo viên
- Đọc, nghiên cứu thảo luận định lý trang 85 - SGK theo nhóm đợc phân cụng
- Trả lời câu hỏi giáo viên
ĐVĐ: Cho hai đờng thẳng chéo d d’ Trên d d’ lần lợt lấy A, B, C A’, B’, C’ cho B nằm A, C, B’ nằm A’, C’ thỏa mãn:
AB BC CA
A ' B 'B 'C ' C ' A'
NhËn xÐt quan hệ đoạn thẳng AA, BB, CC ?
- Tổ chức cho học sinh đọc, nghiên cứu định lý trang 85
- Phát vấn kiểm tra đọc hiểu học sinh
Hoạt động 3: ( cng c khỏi nim )
Đọc, nghiên cứu thảo luận ví dụ trang 86 - SGK
Hoạt động học sinh Hoạt động giáo viên
- Đọc, nghiên cứu thảo luận ví dụ trang 86 - SGK theo nhóm đợc phân cụng
- Trả lời câu hỏi giáo viên
- Tổ chức cho học sinh đọc, nghiên cứu ví dụ trang 86
- Phát vấn kiểm tra đọc hiểu học sinh
- Củng cố định lý Ta - lét đảo Hoạt động 4: ( cng c khỏi nim )
Đọc, nghiên cứu thảo luận ví dụ trang 86 - SGK
Hoạt động học sinh Hoạt động giáo viên
- Đọc, nghiên cứu thảo luận ví dụ trang 86 - SGK theo nhóm đợc phân cụng
- Trả lời câu hỏi giáo viên
- Tổ chức cho học sinh đọc, nghiên cứu ví dụ trang 86
- Phát vấn kiểm tra đọc hiểu học sinh
- Củng cố định lý Ta - lét đảo IV - Hình lăng trụ hình hộp:
Hoạt động 5: ( dn dt khỏi nim )
Đọc, nghiên cứu th¶o ln mơc IV trang 87 - SGK
Hoạt động học sinh Hoạt động giáo viên
- Đọc, nghiên cứu thảo luận mục “ Hình lăng trụ hình hộp “ trang 87 - SGK theo nhóm đợc phân cơng - Trả lời câu hỏi giáo viên
- VÏ h×nh biĨu diƠn cđa hình lăng trụ hình hộp
- T chc cho học sinh đọc, nghiên cứu thảo luận mục “ Hình lăng trụ hình hộp “ trang 87
- Sử dụng mô hình hình lăng trụ h×nh hép
- Phát vấn kiểm tra đọc hiểu học sinh
(59)TuÇn 21
TiÕt 29 §5- PhÐp chiÕu song song A - Mơc tiªu:
- Nắm đợc đ/n phép chiếu song song
- Hiểu rõ đợc t/c phép chiếu song song, áp dụng đợc vào việc biểu diễn hình đơn giản B - Nội dung mức độ :
- PhÐp chiÕu song song tính chất Hình biểu diễn hình không gian mặt phẳng
- Bit tỡm hỡnh chiếu điểm mặt phẳng theo phơng chiếu định Biểu diễn đợc hình khơng gian mặt phng
- Luyện kĩ vẽ hình
C - Chuẩn bị thầy trò : Sách giáo khoa, mô hình hình học D - Tiến trình tổ chức học :
n định lớp : - Sỹ số lớp :
- Nắm tình hình sách giáo khoa cđa häc sinh Bµi míi
Hoạt động 1: ( kiểm tra cũ ) Chữa tập trang 90 - SGK
(60)a) Chøng minh hai mặt phẳng ( BDA) ( BDC ) song song víi
b) Chứng minh đờng chéo AC’ qua trọng tâm G1 G2 lần lợt hai tam giác BDA’ B’D’C
c) Chứng minh G1, G2 chia đoạn AC thành phÇn b»ng
d) Gọi O I lần lợt tâm hình bình hành ABCD AA’C’C Xác định thiết diện mặt phẳng ( A’IO ) với hình hộp cho
Hoạt động học sinh Hoạt động giáo viên
- VÏ hình biểu diễn - Trình bày giải:
Lần lợt gọi học sinh trình bầy phần giải chuẩn bị nhà
I - Phép chiếu song song: Hoạt động 2: ( dẫn dắt khái niệm )
Cho mặt phẳng ( ) đờng thẳng l cắt ( ) điểm A Từ điểm M không gian, dựng đờng thẳng d // l cắt ( ) M’ Xác định M’
( XÐt c¶ trêng hỵp M thc l, M thc ( ) )
Hoạt động học sinh Hoạt động giáo viên
- Dựng đợc M’ Trong trờng hợp M l M’ trùng điểm A Trong trờng hợp M ( ) M’ trùng M
- Gọi học sinh thực phép dựng - Thuyết trình phép chiếu song song Hoạt động 3: ( dn dt khỏi nim )
Đọc nghiên cøu phÇn “ PhÐp chiÕu song song “
Hoạt động học sinh Hoạt động giáo viên
- Đọc nghiên cứu phần Phép chiếu song song SGK
- Trả lời câu hỏi giáo viªn
- Tổ chức cho học sinh đọc phần Phép chiếu song song
- Phát vấn, kiểm tra đọc hiểu học sinh
II - Các tính chất phép chiếu song song: Hoạt động 4: ( dn dt khỏi nim )
Đọc nghiên cøu phÇn “ TÝnh chÊt cđa PhÐp chiÕu song song “ trang 91 - SGK
Hoạt động học sinh Hot ng ca giỏo viờn
- Đọc nghiên cứu phần Phép chiếu song song SGK
- Trả lời câu hỏi giáo viên
- Tổ chức cho học sinh đọc phần Tính chất Phép chiếu song song
- Phát vấn, kiểm tra đọc hiểu học sinh
Hoạt động 5: ( dẫn dắt khái niệm )
Hình vẽ sau có phải hình biểu diễn lục giác khơng ? Tại ?
Trong AB song song ED, BC song song EF, AF song song CD tứ giác ABOF, ABCO, EDOF, CDEO hình thang
B C
A D
C'
D'
B'
A'
G2
G1
I O'
O B'
F O
E
A B
D
(61)Hoạt động học sinh Hoạt động giáo viên Từ tính chất đa giác đều, phân tích để thấy đợc hình
vẽ cho khơng phải hình biểu diễn lục giác
Cñng cè tÝnh chÊt cña phÐp chiÕu song song
III - Hình biểu diễn hình không gian mặt phẳng: 1 - Khái niệm chung:
Hot ng 6: ( dn dt khỏi nim )
Các hình biểu diễn sau biểu diễn hình ?
Hot ng học sinh Hoạt động giáo viên
- Nói đợc hình biểu diễn cho hình biểu diễn khối tứ diện ( hình có mặt,mỗi mặt tam giác )
- Hớng dẫn học sinh chọn hình biểu diễn đẹp,
- ĐVĐ: Biểu diễn hình không gian mặt ph¼ng ?
Hoạt động 7: ( dẫn dắt khái nim )
Đọc nghiên cứu, thảo luận phần Hình biểu diễn hình không gian mặt phẳng trang 92 - 93 - 94 - SGK
Hoạt động học sinh Hoạt động giỏo viờn
-Đọc nghiên cứu, thảo luận phần Hình biểu diễn hình không gian mặt phẳng trang 92 93 94 -SGK
- Vẽ hình biểu diễn hình tam giác
( thờng, cân; đều, vng ), tứ giác ( bình hành, vng, chữ nhật, thoi vng, hình thang, lục giác đờng tròn
- Tổ chức cho học sinh đọc, nghiên cứu theo nhóm
- Sư dơng m« hình hình học khối hình học thờng gặp
Hoạt động 8: ( củng cố khái niệm )
Cho mặt phẳng ( P ) // ( Q ) AC // BD Hình vẽ sau có khơng ? Tại ?
A
B C
D
B D
C A
B D
A
C
Q P
A
B
C
(62)Hoạt động học sinh Hoạt động giáo viên - Nói đợc AC // BD giải thích nhờ vào tính chất giao
tuyến song song - Sửa đợc hình vẽ
- Gäi mét häc sinh thùc hiƯn bµi tËp ¤n tËp vỊ giao tun song song Bµi tËp vỊ nhà:
- Các 1, 2, 3, 4, trang 96 - SGK - Dặn dò ôn tập chơng
(63)Tiết 30 Câu hỏi tập ôn chơng ( Tiết ) A - Mơc tiªu:
- Ơn tập khắc sâu đợc kiến thức xác định mặt phẳng, xác định giao tuyến, giao điểm - Kĩ vẽ hình biểu diễn, kĩ giải tốn tốt
B - Nội dung mức độ : - Chữa tập tiết 27, 28, 29
- Bài toán xác định giao tuyến, giao điểm - Bài tập chọn trang 95 ( SGK )
C - Chuẩn bị thầy trò : Sách giáo khoa, mô hình hình học D - Tiến trình tổ chức học :
ổn định lớp : - Sỹ số lp :
- Nắm tình hình sách giáo khoa học sinh Bài mới
Hot động 1: ( kiểm tra cũ ) Chữa tập trang 95 - SGK
Cho hai hình thang ABCD ABEF có chung đáy lớn AB khơng nằm mặt phẳng a) Tìm giao tuyến cặp mặt phẳng sau: ( AEC ) ( BFD ); ( BCE ) ( ADF )
b) Lấy M điểm thuộc đoạn DF Tìm giao điểm đờng thẳng AM mặt phẳng ( BCE ) c) Chứng minh hai đờng thẳng AC BF hai đờng thẳng không cắt
Hoạt động học sinh Hoạt động giáo viên
- VÏ h×nh biĨu diƠn
a) Gäi G = AC BD; H = AE BF Ta cã:
( AEC ) ( BFD ) = HG T¬ng tù gäi I = AD BC; K = AF BE ta cã ( BCE ) ( ADF ) = IK
b) Gäi N = AM IK th× N = AM ( BCE )
c) Giả sử AC BF cắt hình thang cho thuộc mặt phẳng: mâu thuẫn
- Gäi mét học sinh tóm tắt toán vẽ hình biểu diễn
- Gọi học sinh lần lợt chữa phÇn a, b, c
- Củng cố: Cách tìm giao tuyến hai mặt phẳng, tìm giao điểm đờng thẳng mặt phẳng
Hoạt động 2: ( kiểm tra cũ ) Chữa tập trang 95 - SGK
Cho hình chóp S.ABCD có đáy ABCD hình bình hành Gọi M, N P theo thứ tự trung điểm đoạn SA, BC CD Tìm thiết diện hình chóp bị cắt mặt phănge ( MNP )
Gọi O tâm hình bình hành, tìm giao điểm đờng thẳng SO với mặt phẳng (MNP )
B
H E
C N
I
D
F
A K
G
M
I
H
Q
R
E
F M
P N
O D
A B
(64)
Hoạt động học sinh Hoạt động giáo viên
Gäi E = AD NP; F = AB NP; R = SD ME Q = SB MF Thiết diện ngũ giác NPQMR
Gäi H = NP AC; I = SO MH ta cã: I = SO ( MNP )
- Phát vấn: Dựng thiết diện mặt phẳng với khối hình học ?
- Gọi mét häc sinh thùc hiƯn bµi tËp - Cđng cè: Dựng thiết diện tạo mặt phẳng với đa diện
- Uốn nắn sai sót trình bày lời giải học sinh, sai sót hình vẽ Hoạt động 3: ( kiểm tra cũ )
Chữa tập trang 96 - SGK
Cho hình chóp đỉnh S có đáy hình thang ABCD với AB đáy lớn Gọi M N theo thứ tự trung điểm cạnh SB SC
a) Tìm giao tuyến hai mặt phẳng ( SAD ) ( SBC ) b) Tìm giao điểm đờng thẳng SD với mặt phẳng ( AMN )
c) T×m thiÕt diƯn cđa h×nh chãp S.ABCD cát mặt phẳng ( AMN )
Hot ng học sinh Hoạt động giáo viên
a) Gäi E = AD BC
Ta cã ( SAD ) ( SBC ) = SE
b) Gäi F = SE MN; P = SD AE Ta cã: P = SD ( AMN )
- Gọi học sinh tóm tắt toán vẽ hình biểu diễn
- Gọi học sinh lần lợt chữa phần a, b, c
P F
E N
M
A B
C S
(65)c) Thiết diện tứ giác AMNP - Củng cố: Cách tìm giao tuyến hai mặt phẳng, tìm giao điểm đờng thẳng mặt phẳng
- Uốn nắn cách biểu đạt học sinh Bài tập nhà:
Hoµn thành tập lại phần ôn tập chơng
Tuần 23
Tiết 31 Câu hỏi tập ôn chơng ( Tiết ) A - Mơc tiªu:
- Ơn tập khắc sâu đợc kiến thức xác định mặt phẳng, xác định giao tuyến, giao điểm - Kĩ vẽ hình biểu diễn, kĩ giải tốn tốt
B - Nội dung mức độ :
- Bài toán dựng thiết diện mặt phẳng với hình chóp, hình lăng trụ - Chữa tËp ë tiÕt 30
- Chọn đề thi tuyển sinh tập loại dạng đơn giản C - Chuẩn bị thầy trị : Sách giáo khoa, mơ hình hình học D - Tiến trình tổ chức học :
ổn định lớp : - Sỹ s lp :
- Nắm tình hình sách giáo khoa học sinh Bài mới
Hoạt động 1: ( kiểm tra cũ ) Chữa tập trang 96 - SGK
Cho tø diện ABCD Gọi I J lần lợt trung điểm AC BC Trên BD lấy điểm K cho BK = 2KD
a) Tìm giao điểm E đờng thẳng CD với mặt phẳng ( IJK ) Chứng minh DE = DC
b) Tìm giao điểm F đờng thẳng AD với mặt phẳng ( IJK ) Chứng minh FA = 2FD
c) Chøng minh FK // IJ
d) Gọi M N lần lợt hai điểm AB CD Tìm giao điểm đờng thẳng MN với mặt phẳng ( IJK )
D'
O Q
P
F E
J I A
B
C
D K
(66)
Hoạt động học sinh Hoạt động giáo viên
a) Gäi E = JK CD Ta cã E = CD ( IJK ) Trong ( BCD ), kỴ DD’ // JK ( D’ BC ) ta cã:
1
KD KB 1 1
JD' JB JC 2
2 2
DD '// JK
nên D trung
điểm JC, suy D trung điểm CE
ACE
b) Gọi F = AD IE, ta có F = AD ( IJK ) Chứng minh đợc F trọng tâm nên suy c FA = 2FD
c) Vì K F lần lợt trọng tâm tam giác BCE ACE nên ta có:
KE FE
2 FK // IJ KJ FI
d) Gäi P = MC IJ; Q = MD FK Ta cã:
PQ = ( MCD ) ( IJK ) Gäi O = MN PQ, ta cã O = MN ( IJK )
- Gọi học sinh tóm tắt toán vẽ hình biểu diễn
- Gọi học sinh lần lợt chữa phần a, b, c, d
- Củng cố: Cách tìm giao tuyến hai mặt phẳng, tìm giao điểm đờng thẳng mặt phẳng
- Uốn nắn cách biểu đạt học sinh
Hoạt động 2: ( kiểm tra cũ ) Chữa tập trang 96 - SGK
Cho h×nh lập phơng ABCD,ABCD có E F lần lợt trung điểm cạnh AB DD HÃy tìm thiết diện hình lập phơng cắt mặt phẳng ( EFB ), ( EFC ) ( EFA), ( EFC’), vµ ( EFK ) víi K lµ trung ®iĨm cđa c¹nh B’C’
Hoạt động học sinh Hoạt động giáo viên
- Dùng thiÕt diÖn - VÏ h×nh biĨu diƠn
- Gäi häc sinh lên bảng trình bày cách dựng thiết diện
- Củng cố: Tìm giao tuyến hai mặt phẳng
G
E
F
A' B'
C' G
E
F
A' B'
C'
A B
D D
B A
C
D'
C
(67)
Hoạt động 3: ( củng c )
Hớng dẫn trả lời câu hỏi trắc nghiƯm bµi 1, bµi trang 96, 97 - SGK Bài tập nhà:
Làm câu hỏi trắc nghiệm phần ôn tập chơng
G H
I
E
F
A' B'
C' E
F
A' B'
C'
A B
D A
B A
C
D'
C
D'
C
G
K G
H
E
A' B'
C'
A B
D
(68)
TuÇn 24 Ch
¬ng : Vect¬ kh«ng gian
Quan hƯ vu«ng gãc kh«ng gian ( 17 tiÕt )
A - Môc tiªu:
1 - Cho học sinh hiểu đợc khái niệm véctơ khơng gian phép tốn cộng véctơ, nhân véctơ với số thực, đồng phẳng ba véctơ, tích vơ hớng ba véctơ không gian
2 - Nắm đợc định nghĩa vectơ phơng đờng thẳng định nghĩa hai đờng thẳng khơng gian vng góc với
3 - Hiểu rõ định nghĩa đờng thẳng vng góc với mặt phẳng, nắm đợc điều kiện để đờng thẳng vng góc với mặt phẳng, biết cách xác định mặt phẳng qua điểm cho trớc vng góc với đờng thẳng cho trớc Thông qua khái niệm đờng thẳng vng góc với mặt phẳng để nắm vững định nghĩa phép chiếu vng góc hiểu rõ định lí đờng vng góc, đồng thời biết cách xác định góc đờng thẳng mặt phẳng
4 - Nắm đợc định nghĩa mặt phẳng vng góc định lý điều kiện cần đủ để hai mặt phẳng vng góc với Hiểu rõ định nghĩa hình lăng trụ đứng, hình hộp chữ nhật, hình lập phơng, hình chóp hình chóp cụt
5 - Nắm đợc định nghĩa cách xác định:
- Khoảng cách từ điểm đến đờng thẳng - Khoảng cách từ điểm đến mặt phẳng
- Khoảng cách đờng thẳng mặt phẳng song song
- Khoảng cách hai đờng thẳng chéo cách xác định đờng vng góc chung hai đờng thẳng chéo
B - Nội dung mức độ: Nội dung:
1 - Các khái niệm có liên quan đến vectơ khơng gian phép tốn véctơ khơng gian - Các định nghĩa có liên quan đến quan hệ vng góc khơng gian nh:
- Hai đờng thẳng vng góc, góc hai đờng thng
- Đờng thẳng vuông góc với mặt phẳng Phép chiếu vuông góc - Hai mặt phẳng vuông góc
- Hình lăng trụ đứng, hình hộp chữ nhật, hình lập phơng - Hình chóp hình chóp cụt
3 - Các định lí:
- Định lí điều kiện đồng phẳng véctơ khơng gian
- Định lí điều kiện cần đủ để đờng thẳng vng góc với mặt phẳng
- Định lí xác định mặt phẳng qua điểm cho trớc vng góc với đờng thẳng cho trớc - Định lí đờng vng góc
- Định lí điều kiện cần đủ để mặt phẳng vng góc với
- Định lí xác định đờng vng góc chung hai đờng thẳng chéo Mức độ:
(69)Khái niệm hai véctơ định nghĩa véctơ - không
2 - BiÕt thùc hiƯn phÐp céng hai vÐc t¬, phép trừ hai véctơ, phép nhân véctơ với số
3 - Hiểu khái niệm ba véctơ đồng phẳng, điều kiện đồng phẳng ba véctơ Biết phân tích véctơ theo véctơ không đồng phẳng
4 - Biết tính tích vơ hớng hai véctơ biết sử dụng tích vơ hớng để giải tập đơn giản - Không sâu vào việc chứng minh định lí, cần vận dụng chúng vào để giải toán về: - Hai đờng thng vuụng gúc
- Đờng rhẳng vuông góc với mặt phẳng - Hai mặt phẳng vuông góc
6 - BiÕt tÝnh kháng c¸ch:
- Từ điểm đến đờng thẳng - Từ điểm đến mặt phẳng - Giữa hai mặt phẳng song song
- Giữa hai đờng thẳng chéo xác định đờng vng góc chung hai đờng thẳng chéo Tiết 32 Đ1- Vectơ khơng gian ( tiết )
A - Mơc tiªu:
- Nắm đợc định nghĩa, phép toán cộng hai véctơ không gian, phép nhân vectơ với số thực - áp dụng đợc vào tập
B - Nội dung mức độ :
- Định nghĩa véctơ không gian, cộng véctơ, nhân vectơ với số thực ( tính chất a, b, c, d ) - VÝ dô
- Bµi tËp chän ë trang 113 - 114 ( SGK )
C - Chuẩn bị thầy trò : Sách giáo khoa, mô hình hình học D - Tiến trình tổ chức học :
ổn định lớp : - Sỹ s lp :
- Nắm tình hình sách giáo khoa học sinh Bài mới
I - Định nghĩa: Hoạt động 1:
Nhắc lại khái niệm véctơ mặt phẳng: - Định nghĩa, giá, độ lớn
- Hai vÐc t¬ cïng phơng, hớng Hai véctơ
- Các phép toán cộng, trừ hai véc tơ Nhân véctơ với số Nhân vô hớng hai véctơ
Hot ng học sinh Hoạt động giáo viên
- Ôn tập khái niệm véctơ mặt phẳng: Trả lời câu hỏi giáo viên
- Phỏt vn: Cỏc khái niệm vectơ mặt phẳng khơng gian ? - Thuyết trình định nghĩa véc tơ không gian
Hoạt động 2:( củng cố khái niệm )
Cho tứ diện ABCD Hãy véctơ có điểm đầu A, điểm cuối điểm A, B, C, D ? Hãy véctơ véctơ đối véctơ ?
A
B
(70)Hoạt động học sinh Hoạt động giáo viên AB , AC , AD , AA
- Thống kê đợc véc tơ: - Các véctơ đối véctơ lân lợt là:
BA , CA , DA , AA0
- Gäi mét học sinh lên bảng thực tập
- Củng cố khái niệm véctơ không gian
II - Céng hai vect¬:
Hoạt động 3:( dẫn dắt khỏi nim )
Đọc nghiên cứu khái niệm cộng hai véctơ không gian
Hot ng ca học sinh Hoạt động giáo viên
- §äc nghiên cứu khái niệm cộng hai véctơ không gian
- Trả lời câu hỏi giáo viên
- Tổ chức cho họcóinh đọc, thảo luận phép cộng hai véc tơ
- Phát vấn kiểm tra đọc, hiểu học sinh
Hoạt động 4:( củng cố khái niệm ) Cho hình hộp ABCD.A’B’C’D’
AB , AC
a) H·y chØ véctơ véctơ ABA ' D 'CC '
AB A 'C '
b) Tìm tổng: hiệu: ABBCCC 'C ' D '
c) T×m tỉng:
Hoạt động học sinh Hoạt động giáo viên
ABA ' B 'DCD'C '
AC A 'C '
a) Chỉ đợc: , ABA ' D 'CC '
ABBCCC 'AC
b) = AB A 'C '
AB AC CB = ABBCCC 'C ' D '
AD '
c) =
- Gọi học sinh thực giải tËp - Cđng cè: PhÐp céng, trõ hai vÐc t¬ kh«ng gian
- Uốn nắn cách biểu đạt học sinh Củng cố:
(71)III - Phép nhân véctơ với số: Hoạt động 5:( dẫn dắt khái niệm )
ABD 'C '
Cho h×nh hép ABCD.A’B’C’D’ T×m tỉng
Hoạt động học sinh Hoạt động giáo viên
ABD 'C '
ABAB2AB
Ta có: =
- Đọc, nghiên cứu phần Phép nhân véctơ với số trang 105 - 106
- Thuyết trình định nghĩa tính chất phép nhân vectơ với số thực
Hoạt động 6:( củng cố khái niệm ) Cho t din ABCD
Gọi M, N lần lợt trung điểm cạnh AD, BC O trung ®iĨm cđa MN Chøng minh r»ng:
1
MN AB DC
2
a) OAOBOCOD0
b)
Hoạt động học sinh Hoạt động giáo viên
MNMAABBN
a) Ta cã: MNMDDCCN
2MN MA MD ABDC
Suy ra: BNCN ABDC
+
1
MN AB DC
2
Do ú:
b) Do O trung điểm MN nªn: OMON 0
1
OM OA OD
2 Mặt khác: 1
ON OB OC
2
OAOBOCOD0
nªn suy ra:
- Gọi học sinh thực giải bảng Các học sinh khác nghiên cứu lời giải SGK
- Củng cố:
I trung điểm AB IA IB 0 MA MB 2MI
víi ®iĨm M tïy ý
- Träng tâm tứ diện: Điểm O trọng tâm tø diƯnABCD Víi mäi ®iĨm M ta cịng cã:
MAMBMCMD4MO
Bµi tËp vỊ nhµ:
1, 2, 3, trang 113 - 114 - SGK
(72)TuÇn 25
Tiết 33 Vectơ không gian ( tiết ) A - Mơc tiªu:
- Nắm đợc k/n đồng phẳng véctơ tính chất véctơ đồng phẳng - áp dụng đợc vào tập
B - Nội dung mức độ :
- Định nghĩa tính chất, điều kiện để véc tơ đồng phẳng ( định lí 1, ) - Các ví dụ
- Bµi tËp chän ë trang 113 - 114 ( SGK )
C - Chuẩn bị thầy trò : Sách giáo khoa, mô hình hình học D - Tiến trình tổ chức học :
ổn định lớp : - Sỹ số lp :
- Nắm tình hình sách giáo khoa học sinh Bài mới
Hot động 1: ( kiểm tra cũ ) Chữa tập trang 113 - SGK
Cho h×nh hép ABCD.A’B’C’D’ Chøng minh r»ng: ABADAA 'AC '
a) BD D ' D B ' D 'BB '
b)
C'
B' A'
D
A B
C
(73)Hoạt động học sinh Hoạt động giáo viên ABADAA '
ABBCCC '
AC
a) BD D ' D B ' D '
BDDD 'D ' B 'BB '
b)
- Gọi học sinh thực giải chuẩn bị nhà
- Củng cố: Cộng trừ hai véctơ IV - Sự đồng phẳng vộct:
1 - Định nghĩa: 2 - Tính chất:
Hoạt động 2: ( dẫn dắt khái niệm ) Cho tứ diện ABCD Gọi M, N lần lợt
trung điểm AB, AC Một mặt phẳng ( P ) song song với mặt phẳng ( BCD )
AB, AC, AD
a) Giá véctơ có
song song vi mt mặt phẳng khơng ? b) Cũng hỏi nh giá véctơ
MN, BD, CD
?
Hoạt động học sinh Hoạt động giáo viên
AB, AC, AD
a) Dùng phơng pháp chứng minh phản chứng khẳng định đợc: Giá véctơ khơng thể song song vói mặt phẳng
MN, BD, CD
b) Chỉ đợc giá véctơ song song với mặt phẳng ( BCD ) ( P )
- Thuyết trình khái niệm véctơ đồng phẳng không đồng phẳng
( định nghĩa tính chất ) - Phát vấn:
MN, BD, CD
AB, AC, AD
Các ba véctơ: véctơ đồng phẳng véctơ không đồng phẳng ? 3 - Điều kiện để véctơ đồng phẳng:
a) Định lí 1:
a, b, c cm.an.b đồng phẳng m, n R để Hoạt động 3: ( dẫn dắt khái niệm )
Đọc thảo luận theo nhóm định lí trang 108 - SGK
Hoạt động học sinh Hoạt động giáo viên
- Đọc thảo luận theo nhóm đợc phân cơng - Trả lời câu hỏi giáo viên
- Tổ chức cho học sinh đọc, thảo luận theo nhóm đợc phân cơng
- Phát vấn, kiểm tra đọc hiểu hc sinh
b) Định lí 2: a, b, c
x
xmanbpc
khơng đồng phẳng ln có số thực m, n, p để: Hoạt động 4: ( dẫn dắt khái niệm )
Đọc thảo luận theo nhóm định lí trang 109 - SGK
Hoạt động học sinh Hoạt động giáo viên
- Đọc thảo luận theo nhóm đợc phân cơng - Trả lời câu hỏi giáo viên
- Tổ chức cho học sinh đọc, thảo luận theo nhóm đợc phân công
(74)Hoạt động 5: ( củng cố khái niệm )
Cho tø diÖn ABCD Gọi M, N, P, Q lần lợt trung ®iĨm cđa AB, CD, AC BD
a) Chøng minh tứ giác MPNQ hình bình hành MN, BC, AD
b) Chứng minh ba véctơ đồng phẳng MN
c) H·y ph©n tích véc tơ theo véc tơ không BC AD
cïng ph¬ng
Hoạt động 6: ( củng cố khái niệm )
Đọc thảo luận theo nhóm thí dụ trang 109 - SGK
Hoạt động học sinh Hoạt động giáo viên
- Đọc thảo luận theo nhóm đợc phân cơng - Trả lời câu hỏi giáo viên
- Tổ chức cho học sinh đọc, thảo luận theo nhóm đợc phân cơng
- Phát vấn, kiểm tra đọc hiểu học sinh
Bµi tËp vỊ nhµ: Bµi 5, bµi trang 114 - SGK.
Q P
N M
A
B
C
D
Hoạt động học sinh Hoạt động giáo viên
- Giải tập báo cáo kết trớc lớp a) Chứng minh đợc MPQN
b) Chứng minh đợc có giá song song với mặt phẳng
( MPNQ ) chøa BC, AD
MN
- Gäi häc sinh thùc lần lợt phần a, b, c
- Những học sinh khác thực giải tập chỗ
(75)Tuần 26
Tiết 34 Vectơ không gian ( tiết ) A - Mơc tiªu:
- Nắm đợc k/n tích vơ hớng hai vectơ - áp dụng đợc vào tập
B - Nội dung mức độ :
- TÝch v« híng cđa hai véctơ (góc hai véctơ, đ/n, tính chất) mét sè øng dơng - Bµi tËp chän ë trang 113 - 114 ( SGK )
C - Chuẩn bị thầy trò : Sách giáo khoa, mô hình hình học D - Tiến trình tỉ chøc bµi häc :
ổn định lớp : - Sỹ số lớp :
- Nắm tình hình sách giáo khoa học sinh Bµi míi
Hoạt động 1: ( kiểm tra cũ ) Chữa tập trang 114 - SGK
MA2MD
NB2NC
AB, DC, MN
Cho điểm A, B, C, D không đồng phẳng Trên đoạn thẳng AD lấy điểm M cho đoạn thẳng BC lấy điểm N cho Chứng minh ba véctơ đồng phẳng
Hoạt động học sinh Hoạt động giáo viên
MA2MD
NB2NC
Tõ giả thiết: MNMAABBN
Ta cã: (1) MNMDDCCN
2MN 2MD2DC2CN
(2) hay từ (2) suy đợc: (3)
3MN AB2DC
Tõ (1) vµ (3):
- Gọi học sinh lên bảng trình bày giải chuẩn bị nhà
- Uèn nắn cách trình bày lời giải học sinh
- Cñng cè:
+ Khái nịêm đồng phẳng véctơ + Điều kiện để véctơ đồng phẳng
A
B
C
D N
(76)MA2MD0
BN2CN0
( , ) Suy ra:
1 2
MN AB DC
3 3
AB, DC, MN
Hay: Ba véctơ đồng phẳng
V - Tích vô hớng hai véctơ không gian: 1 - Góc hai véctơ không gian.
Hoạt động 2: ( dẫn dắt khái niệm ) u, v
0
AB u
ACv
BACTrong kh«ng gian cho Lấy điểm A tùy ý gọi B, C hai điểm cho Chứng minh góc không phụ thuộc vào việc chọn điểm A
2 - Tích vơ hớng hai véctơ không gian: Hoạt động 3: ( dẫn dắt khái niệm )
Nêu định nghĩa tích vơ hớng hai véctơ mặt phẳng
Hoạt động học sinh Hoạt động giáo viên
Nêu đợc:
u.v u v cos u, v
- Thuyết trình khái niệm tích vô hớng hai véctơ không gian
u.v 0u, v
- Phát vấn: Nếu ? Hoạt động 4: ( củng cố khái niệm )
Cho hình chóp S.ABCD có đáy ABCD hình vng Tất cạnh bên cạnh đáy hình chóp dều a Hãy tính tích vơ hớng sau:
SA.SB
SA.SC
SA.BA
a) b) c)
A
B
C
u
v
O
C A
B D
S
Hoạt động học sinh Hoạt động giáo viên
- Lấy điểm A’ khác A điểm B’, C’ khác B, C cho: , Chứng minh đợc A ' B 'u
A 'C 'v
(77)Hoạt động học sinh Hoạt động giáo viên
SA.SB
1 1
SA SB cos60 a.a a
2 2
a) =
SA.SC
1
SA SC cos60 a 2
b) =
SA.BA
1
SA BA cos120 a 2
c) =
- Gäi học sinh thực giải Các học sinh khác thực chỗ, cá nhân
- Củng cố: Phép nhân vô hớng
3 - Tính chất:
Hoạt động 5: ( dẫn dắt khái niệm )
Đọc, nghiên cứu phần tính chất trang 111 - SGK
Hoạt động học sinh Hoạt động giáo viên
Đọc, nghiên cứu phần tính chất theo nhúm c phõn cụng
- Trả lời câu hỏi giáo viên
- T chc cho hc sinh đọc, thảo luận theo nhóm đợc phân cơng
- Phát vấn, kiểm tra đọc hiểu học sinh
4 - ¸p dơng:
a) Tính độ dài đoạn thẳng:
AB AB
Dựa vào công thức: b) Xác định góc hai véctơ:
AB,CD AB.CD AB CD
Dựa vào công thức: cos c) Chứng minh hai đờng thẳng vng góc:
ABCD AB.CD0
Hoạt động 6: ( củng cố khái niệm )
Cho điểm A, B, C, D kh«ng gian AB.DCBC.DACA.DB0
Chøng minh r»ng:
Hoạt động học sinh Hoạt động giáo viên
- Thùc đa vectơ có mặt biểu thức cïng mét gèc lùa chän:
AB.DC
AB AC AD AB.AC AB.AD =
BC.DA AC AB AD AB.AD ADAC
CA.DBAC AB AD AC.AD AB.AC
- Cộng đẳng thức vế ta có đpcm
- Híng dÉn: §a vỊ cung mét gèc tùy ý chọn
- áp dụng hệ thức giải toán vuông góc
(78)Tuần 27
Tiết 35 Đ2- Hai đờng thẳng vuông góc ( Tiết ) A - Mục tiêu:
- Nắm đợc k/n véctơ phơng góc hai đờng thẳng - áp dụng đợc vào tập
B - Nội dung mức độ : - Véctơ phơng, góc
- VÝ dơ ¸p dơng ( Trang 117, 118 ) - Bµi tËp chän ë trang 120 ( SGK )
C - Chuẩn bị thầy trò : Sách giáo khoa, mô hình hình học D - Tiến trình tổ chức học :
n nh lớp : - Sỹ số lớp :
- Nắm tình hình sách giáo khoa häc sinh Bµi míi
Hoạt động 1: ( kiểm tra cũ ) Chữa tập trang 114 - SGK
Cho hình chữ nhật ABCD ®iÓm M tïy ý Chøng minh r»ng: MA.MCMB.MD
2 2 2 2
MA MC MB MD
a) b)
Hoạt động học sinh Hoạt động giáo viên
MA.MC MOOA MOOC
a) Ta cã:
2
MO OA.OCMO OAOC
=
MO OA.OC
2
MO
OA OC cos180
= = +
MO
OA OC = -
2
MB.MDMO OB OD
T¬ng tù: Mặt khác:OA = OB = OC = OD nên suy ®pcm
- Gọi học sinh lên bảng trình bày giải chuẩn bị nhà
- Uốn nắn cách trình bày lời giải häc sinh
- Cđng cè: + TÝch v« híng
+ Tính độ dài đoạn thẳng + Chứng minh vng góc
- Cho thêm tập để học sinh làm lớp:
Chứng minh đờng cao tam giác đồng quy trực tâm ca nú
HD: Giả sử tam giác ABC có trùc t©m D Dïng hƯ thøc:
O
C A
B D
(79) 2
2 2
MA MOOA MO OA 2MO.MA
b )
2
2 2
MC MOOC MC OC 2MO.OC
2 2 2
MA MC 2MO OA OC 2MO.0
2 2
2MO OA OC
=
2 2 2
MB MD 2MO OB OD
T¬ng tù:
2 2
MA MC MB MD
Nên suy ra: ( đpcm )
AB.DCBC.DACA.DB0
I - Véctơ phơng đờng thẳng: 1 - Định nghĩa:
Hoạt động 2: ( Dẫn dắt khái niệm )
Nêu định nghĩa vectơ phơng đờng thẳng góc đờng thẳng mặt phẳng ?
Hoạt động học sinh Hoạt động giáo viên
- Nêu đợc định nghĩa véctơ phơng (VTCP) đờng thẳng, góc hai đờng thẳng mặt phẳng
- Liên hệ đợc với khái niệm véctơ phơng, góc hai đờng thẳng khơng gian
- Thuyết trình khái niệm véctơ ph-ơng đờng thẳng tính chất khơng gian
- Ph¸t vÊn:
vvVéctơ VTCP đờngthẳng d, véctơ k ( k 0) VTCP d ?
II - Góc hai đờng thẳng: 1 - Định nghĩa:
Hoạt động 3: ( Dẫn dắt khái niệm )
Đọc nghiên cứu phần định nghĩa góc hai đờng thẳng không gian phần nhận xét trang 117 - SGK
Hoạt động học sinh Hoạt động giáo viên
Đọc, nghiên cứu phần định nghĩa theo nhóm đợc phân cơng
- Trả lời câu hỏi giáo viên
- Tổ chức cho học sinh đọc, thảo luận theo nhóm đợc phân công
- Phát vấn, kiểm tra đọc hiểu học sinh
Hoạt động 4: ( củng cố khái niệm )
Cho hình lập phơng ABCD.A’B’C’D’ Tính góc hai đờng thẳng:
a) AB vµ B’C’ b) AC vµ B’C’ c) A’C’ vµ B’C
(80)Hoạt động học sinh Hoạt động giáo viên
A ' B ', B 'C ' AB, B ' C ' 900
a) Ta cã A’B’ // AB mà g = 900 nên suy ra: g
b) Vì tứ giác ABCD hình vuông nên: ACB = 450
AC, B ' C '
Ta lại có BC // BC nên g = 450.
A ' C ', B ' C g AC, B ' C 60
c) A’C’ // AC tam giác AB’C nên ta có: g
- Gọi học sinh thực giải toán ( học sinh thực phần ) - Ôn tËp cđng cè:
+ Xác định góc hai đờng thẳng khơng gian
+ Phơng pháp tính góc hai đờng thẳng khơng gian
Bµi tËp vỊ nhµ: Bµi 1, trang 120 - SGK.
TuÇn 28
Tiết 36 Hai đờng thẳng vng góc ( Tiết ) A - Mục tiêu:
- Nắm đợc định nghĩa hai đờng thẳng vng góc - áp dụng đợc vào tập
B - Nội dung mức độ : - Định nghĩa ví dụ
- Ch÷a bµi tËp cho ë tiÕt 35
- Bµi tËp chän ë trang 120 ( SGK )
C - Chuẩn bị thầy trò : Sách giáo khoa, mô hình hình học D - Tiến trình tổ chức học :
n nh lớp : - Sỹ số lớp :
- Nắm tình hình sách giáo khoa học sinh Bài mới
(81)Chữa bµi tËp trang 120 - SGK
Cho hình lập phơng ABCD.A1B1C1D1 Tính góc hai đờng thẳng AB1 BC1
Hoạt động học sinh Hoạt động giáo viên
AB , BC1 1 AB , AD 1 AB , AD 1 AB , BC 1 D o BC1 // AD1 nên g = g Mặt khác tan giác AB1D1 tam
giác nên ta có: g = 600 hay g = 600.
- Gọi học sinh thực giải chuẩn bị nhà
- Uốn nắn cách trình bày lời giải học sinh
- Củng cố: Xác định góc hai đờng thẳng không gian
II - Hai đờng thẳng vng góc: - Định nghĩa:
Hoạt động 2: ( Dẫn dắt khái niệm )
Đọc nghiên cứu thảo luận phần định nghĩa, nhận xét, ý trang 118 - SGK
Hoạt động học sinh Hoạt động giáo viên
Đọc, nghiên cứu phần tính chất theo nhóm đợc phân cơng
- Trả lời câu hỏi giáo viên
- Tổ chức cho học sinh đọc, thảo luận theo nhóm đợc phân công
- Phát vấn, kiểm tra đọc hiểu học sinh
Hoạt động 3: ( củng cố khái niệm )
Cho hình lập phơng ABCD.A1B1C1D1 Hãy nêu tên đờng thẳng qua đỉnh hình lập phơng
vu«ng gãc với:
a) Đờng thẳng AB b) Đờng thẳng AC
Hot ng ca hc sinh Hoạt động giáo viên
a) Kể đợc đờng thẳng: DA, CB, D1A1, C1B1 A1A, B1B,
C1C, D1D ( đờng thẳng )
b) Kể đợc đờng thẳng: DB, D1B1, AA1, CC1 BB1, DD1
( đờng thẳng ) Đối với học sinh thêm đờng
- Gọi học sinh trả lời câu hỏi đặt ( sơ bớc đầu có giải thích )
- Củng cố: Khái niệm vng góc hai đờng thẳng
D1 C1
B1 A1
D
A B
C
D1 C1
B1 A1
D
A B
(82)thẳng: DB1 BD1
Hot động 4: ( củng cố khái niệm )
§äc nghiên cứu thảo luận phần ví dụ trang 119 - SGK
Hoạt động học sinh Hoạt động giáo viên
- Đọc, nghiên cứu phần tính chất theo nhóm đợc phân cơng
- Tr¶ lời câu hỏi giáo viên
- T chc cho học sinh đọc, thảo luận theo nhóm đợc phân công
- Phát vấn, kiểm tra đọc hiểu học sinh
Hoạt động 5: ( củng cố khái niệm )
Cho đờng thẳn a b vng góc với Gọi c đờng thẳng vng góc với a Vậy c có vng góc với b khơng ? Hãy lấy ví dụ minh họa cho khẳng định hình lập phơng ABCD.A1B1C1D1
hoạt động
Hoạt động học sinh Hoạt động giáo viên
- Khẳng định đợc: c cha vng góc với b
- Lấy đợc ví dụ minh họa hình lập phng ABCD.A1B1C1D1
Gọi học sinh phát biểu trình bày quan điểm cá nhân
Bài tập nhà: Bài 1, 2, 3, trang 120 - SGK. Tuần 29
Tiết 37 Đ3- Đờng thẳng vuông góc với mặt phẳng ( Tiết ) A - Mơc tiªu:
- Nắm đợc k/n đờng thẳng vng góc với mặt phẳng - áp dụng đợc vào tập
B - Nội dung mức độ :
- Định nghĩa, điều kiện, cặp véc tơ phơng mặt phẳng - Các ví dụ
- Bµi tËp chän ë trang 130 - 131 ( SGK )
C - Chn bÞ cđa thầy trò : Sách giáo khoa, mô hình hình học D - Tiến trình tổ chức häc :
ổn định lớp : - Sỹ số lớp :
- N¾m tình hình sách giáo khoa học sinh Bài míi
Hoạt động 1: ( kiểm tra cũ ) Chữa tập trang 120 - SGK
Cho tam giác ABC ABC’ có chung cạnh AB nằm mặt phẳng khác Gọi M, N, P Q lần lợt trung điểm cạnh AC, CB, BC’ C’A
Chøng minh r»ng: a) AB CC’
b) Tø giác MNPQ hình chữ nhật a 6
2 c) Tính diện tích hình chữ nhật nói trên, cho biÕt CC’ = vµ AB = a
600
600
H
Q
P N
M
A
B
(83)Hoạt động học sinh Hoạt động giáo viên
CC '.AB AC ' AC AB
a) Ta cã AC '.AB AC.AB
= Đặt AB = a AC’ = AB = AC = a Do đó:
2 1
AC '.AB a cos60 a 2
2 1
AC.AB a cos60 a 2
CC '.ABAC '.AB AC.AB0
, Suy ra: hay: AB CC’
b) Vì MN // AB, PQ // AB nên MN // PQ Tơng tự, ta có MQ // NP Do tứ giác MNPQ hình bình hành Mặt khác, AB CC’ ( cmt ) nên MN NP tứ giác MNPQ hình ch nht
c) Gọi H trung điểm AB, ta cã: a 3
2 CH = C’H =
1 a 6
CC '
2 4
1 a
AB
2 2 NP = vµ MN = Suy diƯn tích S hình chữ nhật MNPQ là:
2 a 6
8 S = MN NP =
- Gọi học sinh lên bảng thực giải tập chuẩn bị nhà
- Cđng cè:
+ Chứng minh vng góc + Tớnh di on thng
- Uốn nắn cách trình bày lời giải học sinh
I - Đờng thẳng vuông góc với mặt phẳng: 1 - Định nghÜa:
Hoạt động 2: ( Dẫn dắt khái niệm ) Trong ví dụ ( hoạt động1)
Gọi d đờng thẳng tùy ý thuộc mặt phẳng ( CHC’) Chứng minh AB d
Hoạt động học sinh Hoạt động giáo viên
u v- Do CH C’H cắt nên véctơ không phơng Suy có số thực x, y để:
w
u v = x + y
e
- Gọi véctơ phơng AB, ta cã:
u, v w w u, v - HD: Gọi , lần lợt véctơ phơng đờng thẳng CH, C’H d Hãy biểu diễn qua
- Gäi mét häc sinh lên thực tập
(84)e w e
u veu ev
= ( x + y ) = x + y = ( AB CH vµ AB C’H )
Suy ra: AB d ( đpcm )
mặt phẳng
- Thuyết trình định nghĩa đờng thẳng vng góc với đờng thẳng
Hoạt động 3: ( củng cố khái niệm ) AB.MN 0
Cho tứ diện ABCD có AB AD AB AC Trên đờng thẳng AC, AD lần lợt lấy điểm M N Chứng minh
Hoạt động học sinh Hoạt động giáo viên
AB.AD0
AB.AC0
AB, AC không ph ơng AB, AC,
Do AB AD, AB AC , Mặt khác v MN
đồng phẳng nên có số thực x, y để: MN AD AC
= x + y AB.MN AB AD AB AC
Do đó: x +y =
- Gọi học sinh thực giải toán - Nhận xét, đặt vấn đề:
AB AD AB AC ta chứng minh đợc AB MN
LiƯu AB cã vu«ng gãc víi mặt phẳng ( ACD ) không ?
2 - Điều kiện để đờng thẳng vng góc với mặt phẳng: Định lí ( SGK )
Hoạt động 4: ( Dẫn dắt khái niệm )
Đọc, nghiên cứu thảo luận định lí phần hệ
Hoạt động học sinh Hoạt động giáo viên
- Đọc, nghiên cứu phần định lí theo nhúm c phõn cụng
- Trả lời câu hỏi giáo viên
- T chc cho hc sinh đọc, thảo luận theo nhóm đợc phân cơng
- Phát vấn, kiểm tra đọc hiểu học sinh
- Phát biểu định lí hệ nó, 3 - Cặp véctơ phơng mặt phng.
a) Định nghĩa:
Hot ng 5: ( Dẫn dắt khái niệm ) AC, AD
CA, CD
Trong hoạt động 3, véctơ không phơng đợc gọi cặp véctơ phơng ( ABD ) Cũng vậy, véctơ cặp véctơ phơng mặt phẳng ( ABD ) Hãy thêm cặp véctơ phơng mặt phẳng ( ABD )
Hoạt động học sinh Hoạt động giáo viên
- Nêu đợc cặp véctơ phơng khác mặt phẳng ( ABD )
- Gäi häc sinh ph¸t biĨu trình bày ý hiểu thân
(85)- Phát biểu đợc quan điểm cặp véctơ ph-ơng mặt phẳng
- Thuyết trình định nghĩa cặp véctơ vhỉ phơng mặt phẳng nhận xét cặp véctơ phơng
b) Định lí 2: ( SGK )
Hot động 6: ( Dẫn dắt khái niệm )
Đọc nghiên cứu thảo luận định lí trang 123 - SGK
Hoạt động học sinh Hoạt động giáo viên
- Đọc, nghiên cứu phần định lí theo nhóm đợc phân cơng
- Tr¶ lời câu hỏi giáo viên
- T chc cho học sinh đọc, thảo luận theo nhóm đợc phân công
- Phát vấn, kiểm tra đọc hiểu học sinh
- Phát biểu định lí nhận xét phần định lí
(86)Tiết 38 Đờng thẳng vuông góc với mặt phẳng ( Tiết ) A - Mục tiêu:
- Nắm đợc k/n véctơ pháp tuyến mặt phẳng - áp dụng đợc vào tập
B - Nội dung mức độ :
- Định nghĩa, tính chất, liên quan, xác định mặt phẳng vng góc, mặt phẳng trung trực - Bài tập chọn trang 130 - 131 ( SGK )
C - Chuẩn bị thầy trò : Sách giáo khoa, mô hình hình học D - Tiến trình tổ chức học :
ổn định lớp : - Sỹ số lớp :
- Nắm tình hình sách giáo khoa cđa häc sinh Bµi míi
Hoạt động 1: ( kiểm tra cũ ) Chữa tập trang 130 - SGK
Cho tứ diện ABCD có hai mặt ABC BCD hai tam giác cân có chung đáy BC a) Gọi I trung điểm BC Chứng minh BC ( ADI )
b) Gọi AH đờng cao tam giác ADI Chứng minh AH ( BCD )
Hoạt động học sinh Hoạt động giáo viờn
a) Do tam giác ABC DBC cân A D I trung điểm cđa BC nªn :
AI BC DI BC
BC ( ADI ) ( ®pcm )
b) Do BC ( ADI ) BC AH MỈt khác theo gt AH DI nên AH ( BCD ) ( ®pcm )
- Gäi häc sinh lên bảng thực giả toán
- Củng cè:
+ Điều kiện để đờng thẳng vng góc với mặt phẳng
+ Phơng pháp chứng minh đờng thẳng vng góc với mặt phẳng
Hoạt động 2: ( kiểm tra cũ ) Chữa tập trang 130 - SGK
Cho hình chóp S.ABCD có đáy hình thoi ABCD tâm O có SA = SC, SB = SD Chứng minh rằng:
a) SO ( ABCD )
b) AC ( SBD ) vµ BD ( SAC )
I
A
B
C
D H
O
C A
B
(87)Hoạt động học sinh Hoạt động giáo viên a) Do SA = SC, SB = SD tam giác SAC SBD cân
t¹i A Lại OA = OC, OB = OD nên: SO AC
SO BD
SO ( ABCD ) ( ®pcm )
b) Do ABCD hình thoi nên AC BD Mặt khác SO ( ABCD ) AC SO VËy suy ra: AC ( SBD ) Chøng minh t¬ng tù, ta cịng cã: BD ( SAC )
- Gäi häc sinh lªn bảng thực giả toán
- Củng cố:
+ Điều kiện để đờng thẳng vng góc với mặt phẳng
+ Phơng pháp chứng minh đờng thẳng vng góc với mặt phẳng
II - VÐct¬ pháp tuyến mặt phẳng - Định nghĩa: ( SGK )
2 - TÝnh chÊt: ( SGK )
3 - Sự liên quan quan hệ vng góc quan hệ song song: ( SGK ) Hoạt động 3: ( Dẫn dắt khái niệm )
Đọc nghiên cứu thảo luận phần định nghĩa véctơ pháp tuyến mặt phẳng, tính chất liên quan quan hệ vng góc quam hệ song song
Hoạt động học sinh Hoạt động giáo viên
- Đọc, nghiên cứu phần định nghĩa, tính chất theo nhóm đợc phân cơng
- VÏ hình biểu diễn liên quan quan hệ vuông góc quam hệ song song
- Trả lời câu hỏi giáo viên
- T chc cho học sinh đọc, thảo luận theo nhóm đợc phân cơng
- Phát vấn, kiểm tra đọc hiểu học sinh
- Phát biểu định lí nhận xét phần định lí
Hoạt động 3: ( Cng c khỏi nim )
Cho hình vuông ABCD Dùng SA ( ABCD )
a) H·y kÓ tên số cặp VTCP mặt phẳng ( ABCD ) b) AB vuông góc với mặt phẳng ?
c) BD có vuông góc với mặt phẳng ( SAC ) không ? Tại ?
Hoạt động học sinh Hoạt động giáo viên
a) Kể đợc số cặp VTCP ( ABCD ) b) AB ( SAD ) AB AC, AB SA c) BD ( SAC ) BD AC, BD SA
- Gọi học sinh lên bảng thực giả toán
- Cñng cè:
O
C
A D
(88)+ CỈp VTCP cđa mỈt ph¼ng
+ Điều kiện để đờng thẳng vng góc với mặt phẳng
+ Phơng pháp chứng minh đờng thẳng vng góc với mặt phẳng
4 - Sự xác định đờng thẳng vng góc với đờng thẳng đờng thẳng vng góc với mặt phẳng. a) Định lí 3: ( SGK )
b) HƯ qu¶: ( SGK )
c) Mặt phẳng trung trực đoạn thẳng: ( SGK ) Hoạt động 4: ( dẫn dắt khái niệm )
Đọc nghiên cứu thảo luận phần định lí 3, hệ định lí khái niệm mặt phẳng trung trực đoạn thẳng Trang 126 - 127 - SGK
Hoạt động học sinh Hoạt động giáo viên
- Đọc, nghiên cứu phần tính chất theo nhóm đợc phân cơng
- Vẽ hình biểu diễn
- Trả lời câu hỏi giáo viên
- T chc cho học sinh đọc, thảo luận theo nhóm đợc phân cơng
- Phát biểu định lí hệ ca nh lớ
d) Định lí 4: ( SGK )
Đọc nghiên cứu thảo luận phần định lí trang 127 - SGK
Hoạt động học sinh Hoạt động giáo viên
- Đọc, nghiên cứu phần định lí theo nhóm đợc phân cụng
- Vẽ hình biểu diễn trả lời c©u hái cđa g.v
- Tổ chức cho học sinh đọc, thảo luận theo nhóm đợc phân cơng
- Phát biểu định lí Bài tập nhà: Bài 6, trang 131 - SGK.
TuÇn 30
Tiết 39 Đờng thẳng vuông góc với mặt phẳng ( Tiết ) A - Mục tiêu:
- Nắm đợc định nghĩa phép chiếu vuông góc - áp dụng đợc vào tập
B - Nội dung mức độ :
- Định nghĩa, định lí đờng vng góc, góc đờng thẳng mặt phẳng - Bài tập chọn trang 130 - 131 ( SGK )
C - Chuẩn bị thầy trò : Sách giáo khoa, mô hình hình học D - Tiến trình tổ chức học :
n nh lớp : - Sỹ số lớp :
- Nắm tình hình sách giáo khoa häc sinh Bµi míi
Hoạt động 1: ( Kiểm tra cũ ) Chữa tập trang 130 - SGK
(89)
O
Hoạt động học sinh Hoạt động giáo viên
- LÊy ®iĨm M tháa m·n: MA = MB = MC
Vẽ MO ( ) từ tam giác vuông MOA, MOB, MOC OA = OB = OC hay O tâm đờng tròn nộ tiếp tam giác ABC
- Gọi đờng thẳng vng góc với ( ) O chứng minh đợc M ta có:
MA = MB = MC
- Hớng dẫn học sinh chứng minh hai chiu thun, o
- Củng cố: Đờng thẳng vuông góc với mặt phẳng
- ĐVĐ: O hình chiếu điểm M theo phơng l ( ) trªn ( )
phÐp chiÕu vu«ng gãc III - PhÐp chiÕu vu«ng gãc:
1 - Định nghĩa:
Hot ng 2: ( dn dt khái niệm )
Đọc, nghiên cứu định nghĩa phép chiếu vng góc phần nhận xét ( trang 128 )
Hoạt động học sinh Hoạt động giáo viên
- Đọc, nghiên cứu phần định nghĩa theo nhóm đợc phân cơng
- VÏ h×nh biểu diễn
- Trả lời câu hỏi giáo viªn
- Tổ chức cho học sinh đọc, thảo luận theo nhóm đợc phân cơng
- Phát vấn, kiểm tra đọc hiểu học sinh
- Phát biểu định nghĩa nhận xét phần định nghĩa
2 - Định lí đờng vng góc: Hoạt động 3: ( dẫn dắt khái niệm )
Cho mặt phẳng ( ) đờng thẳng a khơng vng góc với ( ) a) Vẽ hình chiếu vng góc a’ a lên ( )
b) Gọi b đờng thẳng tùy ý thuộc ( ) Chứng ming b a’ b a c) Chứng minh b a b a’
d
a'
b
a
B' A
B
(90)Hoạt động học sinh Hoạt động giáo viên a) Vẽ hình biểu diễn
b) b a’ vµ b AA’ b ( a’, AA’ ) suy ra: b a
c) b a vµ b AA’ b ( a, AA’ ) suy ra: b a’
- Gọi học sinh thực tập - Củng cố: Chứng minh đờng thẳng vng góc với đơng thẳng
- Phát biểu định lí đờng vng góc 3 - Góc đờng thẳng mặt phẳng:
Định nghĩa:
Hot ng 4: ( dn dt khái niệm )
Đọc, nghiên cứu định nghĩa khái niệm góc đờng thẳng mặt phẳng phần ý - trang 129 - SGK
Hoạt động học sinh Hoạt động giáo viên
- Đọc, nghiên cứu phần tính định nghĩa theo nhóm đợc phân cơng
- VÏ h×nh biĨu diễn
- Trả lời câu hỏi giáo viên
- Tổ chức cho học sinh đọc, thảo luận theo nhóm đợc phân cơng
- Phát vấn, kiểm tra đọc hiểu học sinh
- Phát biểu định nghĩa ý phần định nghĩa
Hoạt động 5: ( củng cố khái niệm ) ABC
Cho tứ diện ABCD có DA ( ABC ) Gọi AH đờng cao ( H BC ). Chứng minh BC ( ADH )
Hoạt động học sinh Hoạt động giáo viên
Do DA ( ABC ) nªn DA BC
Mặt khác BC AH ( gt ) Suy BC ( ADH ) - Có thể dùng định lí đờng vng góc để chứng minh BC ( ADH )
Ph¸t vÊn:
- Chứng minh phơng pháp dùng điều kiện để đờng thẳng vng góc với mặt phẳng ?
- Dùng định lí đờng vng góc? Bài tập nhà: Bài 8, trang 131 - SGK.
D
B
C
A
(91)TiÕt 40 Bµi kiĨm tra viÕt A - Mơc tiªu:
Kiểm tra đợc kiến thức giải tốn chứng minh vng góc B - Nội dung mức độ :
Bài tốn đờng thẳng vng góc với mặt phẳng, đờng thẳng vng góc với đờng thẳng Đề bài:
Bài 1: ( 5,0 điểm )
Cho hỡnh lập phơng ABCD.A’B’C’D’cạnh a Gọi G hình chiếu vng góc đỉnh A’ C mặt phẳng ( AB1D1)
a) Dùng ®iĨm G
b) Tính độ dài đoạn thẳng CG theo a Bài 2: ( 5,0 điểm )
ABC
MBCCho tam giác ABC cạnh a Trên đờng thẳng d ( ABC ) A lấy điểm M khác A Gọi O tâm đờng tròn ngoại tiếp H trực tâm Đờng thẳng qua OH cắt d N Chứng minh rằng:
a) OH ( MBC )
b) Tứ diện BCMN có cặp cạnh đối đơi vng góc với Đáp ỏn:
Bài 1: ( 5,0 điểm )
Đáp án Thang điểm
a) 3,0
Tìm đợc phơng chiếu vng góc với mặt phẳng ( AB’D’) phơng A’C 2,0 Dựng đợc điểm G = A’C AO’ ( O’ tâm A’B’C’D’) 1,0
b) 2.0
Chứng minh đợc G trọng tâm AB’D’ 1,0
2 2a 3
AC '
3 3 Tính đợc CG =
1,0
Bài 2: ( 5,0 điểm )
G
O'
C'
B' A'
D
A B
C
D'
d
N
H O
I A
B
(92)Đáp án Thang điểm
a) 2,0
Gọi I trung điểm BC AI BC MA ( ABC ) nên suy ra: MI BC (
định lí đờng vng góc ).Suy ra: BC ( MAI ) 0,5
Do AB = AC nªn MB = MC MI BC nên trực tâm H MI
Vì BC ( MAI ) nên BC OH 0,5
MBC
Vì H trực tâm nên BH MC tam giác ABC nên BO
AC 0,5
Mặ khác BO MA nên BO ( MAC ) BO MC Suy đợc: MC ( BOH )
MC OH OH ( MBC ) 0,5
b) 2,0
Theo gt MN BC Và theo chứng minh MC ( BOH ) BN thuộc mặt
phẳng ( BOH ), nªn MC BN 1,0
Tơng tự CO AB CO AM CO ( MAB ) CO MB mặt khác H trực tâm tam giác MBC nên CH MB, suy đợc MB ( COH ) MB CN ( CN thuộc (C O H ) )
1,0
TuÇn 31 Tiết 41
Đ4-Hai mặt phẳng vuông góc ( Tiết ) A - Mục tiêu:
- Nắm đợc k/n góc hai mặt phẳng, hai mặt phẳng vng góc - áp dụng đợc vào tập
B - Nội dung mức độ :
- Góc hai mặt phẳng, hai mặt phẳng vng góc - Định nghĩa, định lí, hệ
- Bµi tËp chän ë trang 138, 139, 140 ( SGK )
(93)D - Tiến trình tổ chức học :
ổn định lớp : - Sỹ số lp :
- Nắm tình hình sách giáo khoa học sinh Bài mới
Hot ng 1:
Chữa tập trang 131 - SGK SI SK
SB SDCho đoạn thẳng SA vuông góc với mặt phẳng chứa hình thoi ABCD Gọi I K hai điểm lần lợt lấy hai đoạn SB SD cho Chứng minh:
a) BD SC b) IK ( SAC )
Hoạt động học sinh Hoạt động giáo viên
a) Do tứ giác ABCD hình thoi nên AC BD Mặt khác BD SA nên BD ( SAC ) suy đợc BD SC
SI SK
SB SDb) Vì nên IK // BD Mà BD ( SAC ) nªn IK ( SAC )
- Gọi học sinh lên bảng trình bày giải chuẩn bị nhà
- Củng cố: Chứng minh vuông góc - Uốn nắn cách biểu đạt học sinh
I - Góc hai mặt phẳng: - §Þnh nghÜa:
Hoạt động 2: ( dẫn dắt khái nim )
Đọc, nghiên cứu phần góc hai mặt phẳng trang 132 - SGK
Hot ng ca học sinh Hoạt động giáo viên
- Đọc thảo luận theo nhóm đợc phân cơng - Trả lời câu hỏi giáo viên
- Tổ chức cho học sinh đọc, thảo luận theo nhóm đợc phân công
- Phát vấn, kiểm tra đọc hiểu học sinh
Hoạt động 3: ( củng cố khái niệm )
Trong tập trang 131, tính góc hai mặt phẳng ( SAB ) ( SAD ) biết tam giác ABC
Hoạt động học sinh Hoạt động giáo viên
BAD- Xác định đợc góc hai mặt phẳng ( SAB ) ( SAD ) góc
BAD- Do tam giác ABC nên suy = 1200 Suy ra
- Gäi häc sinh thùc hiÖn giải toán - Củng cố khái niệm góc mặt phẳng
- Chú ý tính chất:
I
D A
B C
S
(94)góc mặt phẳng ( SAB ) vµ ( SAD ) lµ 600. S’ = S.cos
II - Hai mặt phẳng vuông góc: 1 - Định nghĩa:
Hot ng 4: ( dn dắt khái niệm )
Đọc, nghiên cứu phần định nghĩa mặt phẳng vng góc - trang 133 ( SGK )
Hoạt động học sinh Hoạt động giáo viên
- Đọc thảo luận theo nhóm đợc phân cơng - Trả lời câu hỏi giáo viên
- Tổ chức cho học sinh đọc, thảo luận theo nhóm đợc phân cơng
- Phát vấn, kiểm tra đọc hiểu học sinh
2 - Các định lí 1:
a) Định lí 1: ( P ) ( Q ) a ( P ) a ( Q ) Hoạt động 5: ( dẫn dắt khái niệm )
Đọc, nghiên cứu phần định lí trang 133 - SGK
Hoạt động học sinh Hoạt động giáo viên
- Đọc thảo luận theo nhóm đợc phân cơng - Trả lời câu hỏi giáo viên
- Tổ chức cho học sinh đọc, thảo luận theo nhóm đợc phân cơng
- Phát vấn, kiểm tra đọc hiểu học sinh
Hoạt động 6: ( củng cố khái niệm )
Trong bµi tËp trang 131 chøng minh hai mặt phẳng ( SAB ) ( SAD ) vuông góc với mặt phảng ( ABCD )
Hot động học sinh Hoạt động giáo viên
Sử dụng định lí 1, chứng minh ( SAB ), ( SAD ) vng góc với ( ABCD )
- Gọi học sinh thực giải toán - Cng c nh lớ
b) Các hệ quả:
Viết giả thiết kết luận hệ phát biểu trang 134 - SGK
Hot động học sinh Hoạt động giáo viên
n
v
- ( P ) cã VTPT lµ vµ ( Q ) cã VTPT lµ n
v
( P ) ( Q ) =
- ( P ) ( Q ), ( P ) ( Q ) = a, b ( P ) vµ b a b ( Q )
- ( P ) ( Q ), b qua A ( P ) vµ b ( Q ) b ( P )
- Gäi häc sinh viÕt gt vµ kÕt ln cđa hệ phát biểu trang 134 -SGK
- Củng cố hệ
- Nờu hng chứng minh hệ để học sinh thực nh tập làm nhà
c) Định lí 2: ( P ) ( R ), ( Q ) ( R ) ( P ) ( Q ) = a a ( R ) Hoạt động 7: ( dẫn dắt khái niệm )
Đọc, nghiên cứu phần định lí trang 134 - 135 - SGK
Hoạt động học sinh Hoạt động giáo viên
- Đọc thảo luận theo nhóm đợc phân cơng - Trả lời câu hỏi giáo viên
- Tổ chức cho học sinh đọc, thảo luận theo nhóm đợc phân công
(95)Hoạt động 8: ( củng cố khái niệm )
Cho tứ diện ABCD có cạnh AB, AC, AD đơi vng góc Chứng minh mặt phẳng ( ABC ), ( ACD ), ( ABD ) đơi vng góc
Hoạt động học sinh Hoạt động giáo viên
- Do AD AB AD AC nên AD ( ABC ) Suy mặt phẳng chứa AD : (ABD), (ACD) vng góc với (ABC)
- Chứng minh tơng tự cho trờng hợp lại
- Gọi học sinh thực phép chøng minh
- Củng cố định lí
- Phơng pháp chứng minh hai đờng thẳng vng góc
Bµi tËp vỊ nhµ:2, 3, 4, 5, trang 139 - SGK.
A B
(96)Tiết 42
Hai mặt phẳng vuông gãc ( TiÕt ) A - Mơc tiªu:
- Nắm đợc định nghĩa tính chất hình lăng trụ đứng, hình chóp đều, hình chóp cụt - áp dụng đợc vào tập
B - Nội dung mức độ : - Các định nghĩa tính chất - Bài tập có chứng minh vng góc
- Bµi tËp chän ë trang 138, 139, 140 ( SGK )
C - ChuÈn bị thầy trò : Sách giáo khoa, mô h×nh h×nh häc D - TiÕn tr×nh tỉ chøc bµi häc :
ổn định lớp : - Sỹ số lớp :
- Nắm tình hình sách giáo khoa học sinh Bµi míi
Hoạt động 1:( kiểm tra cũ ) Chữa tập trang 139 - SGK
Trong mặt phẳng cho tam giác ABC vuông B Kẻ đoạn thẳng AD vuông góc với A Chứng minh rằng:
ABDa) Góc góc hai mặt phẳng ( ABC ) ( DBC ) b) Mặt phẳng ( ABD ) ( BCD )
c) Mặt phẳng ( P ) qua A vuông góc với DB lần lợt cắt DB DC H K Chứng minh HK // BC
Hoạt động học sinh Hoạt động giáo viên
ABDa) AD ( ABC ) AD BC Theo gt AB BC
- Gọi học sinh lên bảng trình bày giải chuẩn bị nhà
K
H A
B
(97)nªn BC ( ABD ) BC BD Suy góc hai mặt phẳng ( ABC ) ( DBC )
b) V× BC ( ABD ) ( ABD ) ( BCD ) c) ( AHK ) DB nên DB AH DB HK
Trong mặt phẳng ( BCD ) có HK BC vuông goác với DB nên HK // BC
- Uốn nắn cách biểu đạt học sinh qua phần lời giải
- Cđng cè vỊ:
+ Góc hai mặt phẳng
+ iu kin để hai mặt phẳng vng góc
III - Hình lăng trụ đứng: 1 - Định nghĩa: ( SGK ) 2 - Tính chất ( SGK )
Hoạt động 2:( Dẫn dắt khái niệm )
Đọc nghiên cứu phần hình lăng trụ ( định nghĩa tính chất ) trng 135 - 136 - SGK
Hoạt động học sinh Hoạt động giáo viên
- Đọc thảo luận theo nhóm đợc phân cơng - Trả lời câu hỏi giáo viên
- Tổ chức cho học sinh đọc, thảo luận theo nhóm đợc phân công
- Phát vấn, kiểm tra đọc hiểu học sinh
+ Dùng mơ hình hình học để mơ tả IV - Hình chóp v hỡnh chúp ct u:
1 - Định nghĩa: ( SGK ) 2 - TÝnh chÊt ( SGK )
Hoạt động 3:( Dẫn dắt khái niệm )
Đọc nghiên cứu phần hình chóp hình chóp cụt
Hoạt động học sinh Hoạt động giáo viên
- Đọc thảo luận theo nhóm đợc phân cơng - Trả lời câu hỏi giáo viên
- Tổ chức cho học sinh đọc, thảo luận theo nhóm đợc phân cơng
- Phát vấn, kiểm tra đọc hiểu học sinh
+ Dùng mơ hình hình học để mơ tả Hoạt động 4:( Củng cố khái niệm )
Cho hình chóp S.ABC Chứng minh rằng: a) SA = SB = SC
b) Các mặt bên SAB, SAC, SBC làm với đáy ABC góc
Hoạt động học sinh Hoạt động giáo viên
a) Xét tam giác SAB, SBC, SAC suy đợc SA = SB = SC
b) Gọi E, F, I lần lợt trung điểm AB, BC, CA Do tam giác SAB, SBC, SAC cân tam giác ABC nên:
- Gọi học sinh thực giải tốn - Củng cố tính chất hình chóp
H
E F
A
B
C S
(98)SE AB, SF BC, SI AC Vµ: H E AB, HF SC, HI AC
SEH, SFH, SIHSuy c¸c gãc góc mặt
bờn v đáy ABC Từ tam giác vuông SHE, SHF, SHI suy đpcm
Bµi tËp vỊ nhµ: 7, 9, 10, 11 trang 139, 140 - SGK.
Tuần 32 Tiết 43
Đ5 - Khoảng cách ( Tiết ) A - Mục tiªu:
- Hiểu đợc khái niệm khoảng cách - áp dụng đợc vào tập
B - Nội dung mức độ :
- Khoảng cách từ điểm đến đờng thẳng, đến mặt phẳng, khoảng cách đờng thẳng mặt phẳng song song, hai mặt phẳng song song
(99)- Bµi tËp chän ë trang 147, 148 - SGK
C - Chuẩn bị thầy trò : Sách giáo khoa, mô hình hình học D - Tiến trình tổ chức học :
ổn định lớp : - Sỹ s lp :
- Nắm tình hình sách giáo khoa học sinh Bài mới
Hoạt động 1:( kiểm tra cũ ) Chữa tập số 10 trang 140 - SGK
Cho hình chóp tứ giác S.ABCD có cạnh bên cạnh đáy a Gọi O tâm hình vng đáy ABCD
a) Tính độ dài đoạn thẳng SO
b) Gọi M trung điểm đoạn SC Chứng minh mặt phẳng ( MBD ) ( SAC ) vng góc với c) Tính độ dài đoạn OM tính góc hai mặt phẳng ( MBD ) ( ABCD )
Hoạt động học sinh Hoạt động giáo viên
2
2 a 2
a
2
a) Do SO ( ABCD ) ABCD hình vuông cạnh a nên: SO2 = SA2 - OA2 =
2 1
a 2
a 2
2 Hay SO2 = SO =
b) Tam giác SBD cạnh a nên BM SC Tơng tự DM SC suy SC ( BDM )
Do đó: ( SAC ) ( BDM )
c) Vì tam giác OMC vuông M nên:
2 2
1 1 1
a a a
2 4 4 a
2 MOC a
2 CMC 900OM2 =
OC2 - MC2 OM2 = Suy ra: OM = Vì OM BD OC
BD nên góc hai mặt phẳng (MBD),(ABCD) Mặt khác OM = = MC mà nên suy góc hai mặt phẳng (MBD) (ABCD) 450.
- Gọi học sinh học sinh thực hiƯn mét phÇn
- Uốn nắn cách biểu đạt học sinh qua phần trình bày lời giải
- Củng cố tính chất hình chóp
I - Khoảng cách từ điểm đến đờng thẳng: 1) Định nghĩa: ( SGK )
2) TÝnh chÊt: ( SGK )
M
O
D A
B
(100)Hoạt động 2: ( Dẫn dắt khái niệm )
Đọc nghiên cứu phần định nghĩa tính chất phần khoảng cách từ điểm đến đờng thẳng
Hoạt động học sinh Hoạt động giáo viên
- Đọc thảo luận theo nhóm đợc phân cơng - Trả lời câu hỏi giáo viên
- Tổ chức cho học sinh đọc, thảo luận theo nhóm đợc phân công
- Phát vấn, kiểm tra đọc hiểu học sinh
+ Dùng mơ hình hình học để mơ tả Hoạt động 3: ( củng cố khái niệm )
Trong tập 10 trang 140 - SGK tính khoảng cách từ đỉnh O đến cạnh hình vng ABCD
Hoạt động học sinh Hoạt động giáo viên
- Khoảng cách từ S đến AB, BC, CD, DA lần lợt đờng cao tam giác mặt bên hình chóp Cả đờng cao d
2 1
a
2 - Tính đợc: d2 = SO2 + = a2 Hay d = a.
- Trả lời câu hỏi giáo viên
- Hớng dẫn học sinh:
+ Xác định khoảng cách caanf tính + Dựa vào hệ thức lợng tam giác để tính độ dài đoạn thẳng
- Củng cố khái niệm khoảng cách từ điểm đến đờng thẳng Cách xác định chân đờng vng góc hạ từ điểm
II - Khoảng cách từ điểm đến đờng thẳng. 1 - Định nghĩa: ( SGK )
2 - TÝnh chÊt: ( SGK )
Hoạt động 4: ( Dẫn dắt khái niệm )
Đọc nghiên cứu phần định nghĩa tính chất phần khoảng cách từ điểm đến mặt phẳng
Hoạt động học sinh Hoạt động giáo viên
- Đọc thảo luận theo nhóm đợc phân cơng - Trả lời câu hỏi giáo viên
- VÏ h×nh biĨu diƠn
- Tổ chức cho học sinh đọc, thảo luận theo nhóm đợc phân cơng
- Phát vấn, kiểm tra đọc hiểu học sinh
- Dùng mơ hình hình học để mơ tả Hoạt động 5: ( củng cố khái niệm )
Cho mặt phẳng điểm O không thuộc với OH khoảng cách từ O đến a) Hãy so sánh d( O, ) với độ dài OA A điểm thuộc A H b) Cho điểm A, B thuộc khác H Chứng minh: OA > OB HA > HB
a) OA = OB HA = HB b) OA > OH c) OA > OB HA > HB
Hoạt động học sinh Hoạt động giáo viên
a) So sánh đợc: OH < OA với điểm A H A thuộc ( OH = OA A H )
- Gọi học sinh thực giải toán - Củng cố: Khoảng cách từ điểm
A H
B
H A H
O O O
(101)b) Đa đoạn OA, OB, HA, HB mặt phẳng ( OHA ) để so sánh
®Ðn mặt phẳng
Quan hệ đoạn xiên hình chiếu đoạn xiên
III - Khong cỏch đờng thẳng mặt phẳng song song Hoạt động 6: ( Dẫn dắt khái niệm )
Cho đờng thẳng a // mặt phẳng Lấy hai điểm A, B thuộc đờng thẳng a gọi A’, B’ lần lợt hình chiếu A, B Chứng minh AA’ = BB’
Hoạt động học sinh Hoạt động giáo viên
- Qua phép chiếu vuông góc với mặt phẳng ( P ):
A A’, B B’ a a’ // a Suy đợc tứ giác AA’B’B hình chữ nhật AA’ = BB’
- Gọi học sinh chứng minh toán - ĐVĐ: Khoảng cách từ a đến 1 - Định nghĩa: ( SGK )
2 - TÝnh chÊt ( SGK )
Hoạt động 7: ( Dẫn dắt khái niệm )
Đọc nghiên cứu phần định nghĩa tính chất phần khoảng cách từ đờng thẳng đến mặt phẳng song song ( Trang 143 - 144 - SGK )
Hoạt động học sinh Hoạt động giáo viên
- Đọc thảo luận theo nhóm đợc phân cơng - Trả lời câu hỏi giáo viên
- VÏ h×nh biĨu diƠn
- Tổ chức cho học sinh đọc, thảo luận theo nhóm đợc phân cơng
- Phát vấn, kiểm tra đọc hiểu học sinh
- Dùng mơ hình hình học để mơ tả IV - Khoảng cách hai mặt phẳng song song.
1 - §Þnh nghÜa: ( SGK ) 2 - TÝnh chÊt: ( SGK )
Hoạt động 8: ( Dẫn dắt khái niệm )
Đọc nghiên cứu phần định nghĩa tính chất phần khoảng hai mặt phẳng song song ( Trang 144 - SGK )
Hoạt động học sinh Hoạt động giáo viên
- Đọc thảo luận theo nhóm đợc phân cơng - Trả lời câu hỏi giáo viên
- VÏ h×nh biĨu diƠn
- Tổ chức cho học sinh đọc, thảo luận theo nhóm đợc phân cơng
- Phát vấn, kiểm tra đọc hiểu học sinh
- Dùng mơ hình hình học để mơ tả Bài tập nhà: Bài - trang 148 - SGK.
a' a
B'
A B
(102)TiÕt 44
Khoảng cách ( Tiết ) A - Mơc tiªu:
- Hiểu đợc khái niệm đờng vng góc chung tính đợc khoảng cách hai đờng thẳng chéo - áp dụng đợc vào tập
B - Nội dung mức độ :
- Đờng vng góc chung, khoảng cách hai đờng thẳng chéo ( định nghĩa, tính chất ) - Các ví dụ
- Bµi tËp chän ë trang 147, 148 ( SGK )
C - Chuẩn bị thầy trò : Sách giáo khoa, mô hình hình học D - Tiến trình tỉ chøc bµi häc :
ổn định lớp : - Sỹ số lớp :
- Nắm tình hình sách giáo khoa học sinh
Bµi míi
Hoạt động 1:( kiểm tra cũ ) Chữa tập trang 148 - SGK
Cho hình chóp tam giác S.ABC có cạnh đáy 3a, cạnh bên 2a Tính khoảng cách từ S đến mặt đáy ( ABC ) theo a
Hoạt động học sinh Hoạt động giáo viên
2 2 3a 3
AA' a 3
3 3 2 Vẽ SH ( ABC ) H tâm tam giác ABC Do ú AH =
Xét tam giác vuông SHA:
SH2 = SA2- AH2 = 4a2 - 3a2 = a2 SH = a.
- Gọi học sinh trình bày giải chuẩn bị nhà
- Củng cố t/c hình chóp đều, khoảng cách từ điểm đến mặt phẳng Xác định chân đờng vng góc Tính độ dài đoạn thẳng khơng gian V - Đờng vng góc chung hai ng thng chộo nhau.
1- Định lí: ( SGK ) 2- Định nghĩa:
Hot ng 2:( dn dt khái niệm )
Đọc nghiên cứu phần định lí định nghĩa phần đờng vng góc chung hai đờng thẳng chéo ( trang 144 - 145 )
Hoạt động học sinh Hoạt động giáo viên
H
A' B'
B
C
(103)- Đọc thảo luận theo nhóm đợc phân cơng - Trả lời câu hỏi giáo viên
- VÏ h×nh biĨu diƠn
- Tổ chức cho học sinh đọc, thảo luận theo nhóm đợc phân cơng
- Phát vấn, kiểm tra đọc hiểu học sinh
- Dùng mơ hình hình học để mơ tả Hoạt động 3:( củng cố khái niệm )
Cho tứ diện S.ABC Xác định đờng vng góc chung SA BC
Hoạt động học sinh Hoạt động giỏo viờn
Gọi I, J lần lợt trung điểm SA BC
Do IBC, SJA tam giác cân nên ta có: IJ BC, IJ SA
Vậy IJ đờng vng góc chung SA BC
- Tổ chức cho học sinh thảo luận theo nhóm : xác định đờng vng góc chung SA BC
- Gọi học sinh trình bày cách xác định - Củng cố khái niệm đờng vuông góc chung
VI - Khoảng cách hai đờng thẳng chéo nhau: 1 - Định nghĩa: ( SGK )
2 - TÝnh chÊt: ( SGK )
Đọc nghiên cứu phần định nghĩa tính chất phần khoảng hai đơng thẳng chéo trang 145 - 146 SGK
Hoạt động học sinh Hoạt động giáo viên
- Đọc thảo luận theo nhóm đợc phân cơng - Trả lời câu hỏi giáo viên
- VÏ h×nh biĨu diƠn
- Tổ chức cho học sinh đọc, thảo luận theo nhóm đợc phân cơng
- Phát vấn, kiểm tra đọc hiểu học sinh
- Dùng mơ hình hình học để mơ tả Hoạt động 4:( củng cố khái niệm )
Cho hai đờng thẳng chéo a b Hãy nêu cách ( ) để tính khoảng cách đờng a b ?
Hoạt động học sinh Hoạt động giáo viên
Nêu đợc cách: (vẽ hình minh họa)
- Tính trực tiếp: Dựng đờng vng góc chung tính độ dài đờng vng góc chung
- TÝnh gi¸n tiÕp:
- Tổ chức cho học sinh đọc, thảo luận theo nhóm đợc phân cơng
- Gäi häc sinh trình bày quan điểm
I
J B
C
(104)+ Khoảng cách hai mặt phẳng song song lần lợt chứa hai đờng thẳng
+ Khoảng cách từ hai đờng đến mặt phẳng chứa đờng cịn lại song song với đờng cịn lại
- Cđng cè:
Tính khoảng cách đờng thẳng chéo trờng hợp a chéo b a b
Hoạt động 5:( củng cố khái niệm )
Cho hình chóp S.ABCD có đáy hình vng ABCD cạnh a SA = a vng góc với mặt phẳng ( ABCD ) Tính khoảng cách hai đơng thẳng SC BD ( ví dụ trang 146 )
Hoạt động học sinh Hoạt động giáo viên
- Đọc thảo luận theo nhóm đợc phân công - Trả lời câu hỏi giáo viên
- VÏ h×nh biĨu diƠn
- Tổ chức cho học sinh đọc, thảo luận theo nhóm đợc phân công
- Phát vấn, kiểm tra đọc hiểu học sinh
- Dùng mơ hình hình học để mô tả Hoạt động 6:( củng cố khái niệm )
Tính khoảng cách SA BC hoạt động với AB = a
Hoạt động học sinh Hoạt động giáo viên
Do SAC, SAB tam giác cân nªn: a 3
2 IB = IC = Từ tam giác vuông IBJ có:
2 2
3a a 2a 4 4 4
a 2
2 IJ2 = IC2 - JC2 = IJ =
Gäi häc sinh thùc hiƯn tÝnh to¸n theo c¸c bíc:
+ Xác định độ dài cần tính
+ áp dụng hệ thức lợng tam giác để tính tốn
Bµi tËp vỊ nhµ: 3, 4, 5, 6, trang 148 - SGK. TuÇn 33
TiÕt 45 Câu hỏi tập ôn tập chơng ( TiÕt ) A - Mơc tiªu:
- Giải thành thạo tập vuông góc không gian - Kĩ vẽ hình biểu diễn tốt
B - Nội dung mức độ : - Bài tập chứng minh vng góc - Bài tập chọn trang 150, 151 ( SGK)
C - Chuẩn bị thầy trò : Sách giáo khoa, mô hình hình học D - Tiến trình tổ chức học :
n định lớp : - Sỹ số lớp :
- Nắm tình hình sách giáo khoa cđa häc sinh
Bµi míi
I - Véctơ khơng gian: Hoạt động 1:
Tr¶ lêi c©u hái:
a, b, c 01 - Trong không gian cho véctơ khác Khi ba véctơ đồng phẳng. AA ', AB, AC
AD
AC a, ABb
AA 'c
2 - Cho hình lăng trụ tam giác ABC.A’B’C’ Bộ véctơ có đồng phẳng không ? Tại ? Gọi D = B’C BC’ Hãy biểu diễn theo véctơ
D
B'
C'
A B
(105)
Hoạt động học sinh Hoạt động giáo viên
a, b, c cm.an.b1- Hoặc véctơ thuộc mặt phẳng giá chúng // với mặt phẳng Hoặc m, n R để
1
AD AC ' AB 2
1 1
c a b
4 2
2 -
- Gọi học sinh trả lời câu hỏi
- Cng cố ôn tập k/n véc tơ đồng phẳng Biểu diễn véctơ theo véctơ không đồng phẳng
Hoạt động 2: Trả lời câu hỏi:
uv1 - Trong không gian hai đờng thẳng không cắt vng góc với khơng ? Giả sử hai đ-ờng thẳng a, b lần lợt có hai véctơ phơng kết luận a b vng góc với ? - Muốn chứng minh đờng thẳng a vng góc với mặt phẳng ( P ) ngời ta có cần chứng minh a vng góc với đờng thẳng mặt phẳng ( P ) hay không ? Tại ?
3 - Nêu nội dung định lí đờng vng góc ?
Hoạt động học sinh Hot ng ca giỏo viờn
- Trả lời câu hỏi giáo viên
- Nờu c phng phỏp chứng minh đờng thẳng vng góc với đờng thẳng đờng thẳng vng góc với mặt phẳng
- Gäi học sinh trả lời câu hỏi
- Un nn cách biểu đạt học sinh - Củng cố đờng thẳng vng góc với đờng thẳng, vng góc với mặt phẳng Hoạt động 3: ( luyện tập, củng cố )
Chữa tập trang 150 - SGK
Cho hình chóp S.ABCD có đáy hình vng ABCD cạnh a, cạnh SA = a vng góc với mặt phẳng ( ABCD )
a) Chøng minh r»ng mặt bên hình chóp tam giác vuông
b) Mặt phẳng qua A vuông góc với cạnh SC lần lợt cắt SB, SC SD B, C D Chứng minh BD // BD vµ AB’ SB
C'
O D'
D A
B C
S
(106)Hoạt động học sinh Hoạt động giáo viên a) Vì SA ( ABCD ) SA AD SA AB Theo
định lí đờng vng góc, CD AD nên CD SD BC AB nên BC SB Vậy mặt hình chóp tam giác vuông
b) BD AC BD SA nên BD ( SAC ) vµ suy BD SC
Mặt khác SC nên B’D’ SC Hai đờng thẳng BD, B’D’ nằm ( SBD ) vng góc với SC SC khơng vng góc với (SBD) nên hình chiếu SC (SBD) vng góc với BD B’D’ Suy : B’D’ // BD có:
BC ( SAB ) BC AB’, SC SC AB’ Do AB’ (SBC) AB’ SB
- Gäi häc sinh thùc hiƯn gi¶i toán ( gọi làm phần a song gọi làm phần b )
- Un nn cỏch biểu đạt học sinh qua cách trình bày lời giải
- Cñng cè:
Phơng pháp chứng minh đờng thẳng vng góc với đờng thẳng, đờng thẳng vng góc với mặt phẳng
Hoạt động 3: ( luyện tập, củng cố ) Trả lời câu hỏi:
Trong mệnh đề sau, mệnh đề ?
a) Hai đờng thẳng phân biệt vng góc với mặt phẳng song song với b) Hai mặt phẳng phân biệt vng góc với đờng thẳng song song với
c) Một mặt phẳng vng góc với đờng thẳng b mà b vng góc với đờng thẳng a a song song với d) Hai mặt phẳng vng góc với mặt phẳng song song với
e) Hai đờng thẳng vng góc với đờng thẳng song song với
Hoạt động học sinh Hoạt động giáo viên
- Trả lời câu hỏi giáo viên - Câu đúng: a, b
- Câu c không trờng hợp a
- Câu d không trờng hợp hai mặt phẳng trùng
- Câu e không trờng hợp hai đờng thẳng chéo
- Gọi học sinh trả lời câu hỏi
- Uốn nắn cách biểu đạt học sinh - Củng cố đờng thẳng vng góc với đờng thẳng, vng góc với mặt phẳng Sự liên hệ quan hệ song song vng góc
(107)Tiết 46 Câu hỏi tập ôn tập chơng ( Tiết ) A - Mục tiêu:
- Giải thành thạo tập vuông góc không gian - Kĩ vẽ hình biểu diễn tèt
B - Nội dung mức độ :
- Bài tập chứng minh vuông góc, có tính toán - Bài tập chọn trang 150, 151 ( SGK)
C - Chn bÞ cđa thầy trò : Sách giáo khoa, mô hình hình học D - Tiến trình tổ chức häc :
ổn định lớp : - Sỹ số lớp :
- N¾m tình hình sách giáo khoa học sinh
Bµi míi
Hoạt động 1: Trả lời câu hỏi:
1 - Nhắc lại định nghĩa:
a) Góc đờng thẳng mặt phẳng b) Góc hai mt phng
2 - Muốn chứng minh mặt phẳng vuông góc với mặt phẳng ngời ta thờng làm nh ? - HÃy nêu cách tính khoảng cách:
a) T mt im n mt đờng thẳng
b) Từ đờng thẳng a đến mặt phẳng song song với a c) Giữa hai mặt phẳng song song
d) Giữa hai đờng thẳng chéo a b
Hoạt động học sinh Hoạt động giáo viên
- Tr¶ lời câu hỏi giáo viên
- Nờu c phơng pháp chứng minh mặt phẳng vng góc với mặt phẳng
- Nêu đợc cách tính khoảng cách đối tợngđiểm, đờng thẳng, mặt phẳng
- Gäi học sinh trả lời câu hỏi
- Un nn cách biểu đạt học sinh - Củng cố:
+ Phơng pháp chứng minh mặt phẳng vuông góc với mặt phẳng
+ Phng phỏp tớnh khong cỏch Hot ng 2:
Trả lời câu hỏi:
Trong cỏc khẳng định sau khẳng định đúng, khẳng định sai ?
a) Đoạn vng góc chung hai đờng thẳng chéo đoạn ngắn đoạn thẳng nối điểm nằm hai đờng thẳng ngợc lại
b) Qua mét điểm có mặt phẳng vuông góc với mặt phẳng cho trớc
c) Qua mt ng thẳng có mặt phẳng vng góc với mặt phẳng khác cho trớc d) Đờng thẳng vuông góc với hai đờng thẳng chéo cho trớc đờng vng
góc chung hai đờng thẳng
Hoạt động học sinh Hoạt động giáo viên
Trả lời đợc:
+ Câu c sai trờng hợp đờng thẳng vng góc với
- Gọi học sinh trả lời câu hỏi
(108)mặt phẳng cho
+ Câu b, d sai Nêu đợc phản ví dụ + Câu a
- Cđng cè:
+ Quan hƯ vu«ng gãc
+ Khái nịêm đờng vng góc chung Hoạt động 3: ( luyện tập, củng cố )
Chữa tập trang 151 - SGK
Cho tứ diện ABCD có mặt ABC ADC nằm mặt phẳng vuông góc với Tam giác ABC vuông A có AB = a, AC = b Tam giác ADC vuông D có CD = a
a) Chứng minh tam giác ABD BCD tam giác vuông
b) Gọi I K lần lợt trung điểm AD BC Chứng minh IK đoạn vuông góc chung hai đờng thẳng AD BC
Hoạt động học sinh Hoạt động giáo viên
a) Theo gt (ABC) (ACD) BA AC nên ta có AB (ACD) ABD vng A Theo định lí đờng vng góc ta có AB (ACD), AD CD nên BD DC hay BCD vuông D
1 2
1
2 b) Ta cã AK = BC, KD = BC KA = KD. Tam gi¸c AKD cân K nên IK AD (1)
Từ tam giác vuông ABD DCA cho IB = IC
T õ tam gi¸c c©n IBC cho IK BC (2)
Tõ (1), (2) suy ra: IK đoạn vuông góc chung AD vµ BC
- Gọi học sinh thực tập - Uốn nắn cách biểu đạt học sinh thông qua giải
- Củng cố khái nịêm đoạn vng góc chung đờng thẳng chéo
Hoạt động 4: ( luyện tập, củng cố ) Chữa tập trang 151 - SGK
Cho hình lập phơng ABCD.ABCD cạnh a
a) Xác định đờng vng góc chung đờng chéo BD’ hình lập phơng đờng chéo B’C mặt bên BCC’B’
b)Tính độ dài đoạn vng góc chung hai đờng thẳng BD’ B’C
a b
a K
I
A B
C D
O I
C'
B' A'
D
D'
A
B C
(109)Hoạt động học sinh Hoạt động giáo viên a) Mặt phẳng (BC’D’) chứa BD’ vng góc với B’C
BC’ B’C vµ C’D’ (BB’C’C) nªn ta cã C’D’ ( BC’D’)
Gäi I tâm hình vuông BCCB, (BCD) vẽ IK BD’ ta cã IK B’C th× IK đoạn vuông góc chung BC BD
a 2
2 3 b) Ta có IB = BD’ = a Từ tam giác vuông đồng dạng BIK BC’D’ suy ra:
IK C ' D' IB.C ' D ' IK
IB BD' BD'
a 6 6 =
- Gäi häc sinh thùc hiƯn bµi tËp
- Uốn nắn cách biểu đạt học sinh thông qua bi gii
- Luyện kĩ vẽ hình
- Củng cố khái nịêm đoạn vng góc chung đờng thẳng chéo
Bµi tËp nhà: 7, trang 151 phần tập trắc nghiệm chơng 3.
Tuần 34
Tiết 47 Câu hỏi tập ôn tập cuối năm ( Tiết ) A - Mục tiêu:
- Trả lời đợc câu hỏi lí thuyết chơng trình tốn 11 - Làm thành thạo dạng toán học
B - Nội dung mức độ :
- Néi dung c©u hái lÊy ë trang 152, 153 ( SGK ) - Bµi tËp chän ë trang 156, 157, 158 ( SGK )
C - Chuẩn bị thầy trò : Sách giáo khoa, mô hình hình học D - Tiến trình tổ chức học :
ổn định lớp : - Sỹ số lp :
- Nắm tình hình sách giáo khoa học sinh
Bài mới
Hoạt động 1:
(110)v0 v T v T
Trong mặt phẳng cho trớc điểm O, véctơ điểm M Thực liên tiếp hai phép dời hình Đ0 ta đợc: Đ0(M) = M1, (M1) = M
Tìm điểm M cho M’ M
Hoạt động học sinh Hoạt động giỏo viờn
Giả sử có điểm M thỏa mÃn ®iỊu kiƯn:
v T
M ' Mv
OM 1v 2
§0(M) = M’, (M’) = M O
phải trung điểm MM’ vµ Suy chØ cã nhÊt mét ®iÓm M cho tháa m·n
- Gäi học sinh thực giải toán - Vẽ hình biểu diễn
- Ôn tập phép dời hình:
Các phép đối xứng, tịnh tiến, quay
Hoạt động 2:
Chữa tập trang 156 - SGK
Cho tam giác ABC Tìm điểm M cạnh AB điểmt N cạnh AC cho MN // BC vµ AM = CN
Hoạt động học sinh Hoạt động giáo viên
vNM
Giả sử tìm đợc điểm M,N lần lợt nằm cạnh AB, AC cho MA = NC Gọi , lúc đó:
v T
CAPMPA BAP A: N M, C P với P BC BC // MN Suy NC = MP = MA MAP cân M Ta có MP // AC nên hay AP đờng phân giác
Suy c¸ch dùng:
A+ Dựng phân giác cắt BC P + Từ P kẻ đờng song song với AC cắt AB M + Từ M kẻ song song với BC cắt AC N
- Ph¸t vÊn: v
T
+ Tìm ảnh N,C qua phép ? BAC+ Chứng minh AP đờng phân giác ?
- Tæ chức cho học sinh thảo luận, nghiên cứu toán theo nhãm
- Gäi häc sinh ph¸t biĨu quan điểm giải toán
- Củng cố:
Dựng ảnh điểm qua phép dời hình áp dụng phép dời vào toán dựng hình
Hot động 3: Trả lời câu hỏi:
Trong mệnh đề sau mệnh đề ? AB 3AC
BA3CA
a) Tõ ta suy AB3AC
CB2AC
b) Tõ ta suy
v M1 O M M' N M A
(111)AB2AC5AD
c) Vì nên điểm A, B, C, D không thuộc mặt phẳng 1
AB BC
2
d) NÕu th× B trung điểm AC
Hot ng ca học sinh Hoạt động giáo viên
Trả lời đợc: BA3CA
AB3AC
a) Đúng AB3AC
ACCB3AC
b) Đúng
c) Sai mâu thuẫn với định lí điều kiện đồng phẳng véctơ học
1
AB BC
2
2AB BC
d) Sai v× tõ hay:
2AB CA AB ABCA A lµ trung ®iĨm cđa BC
- Tỉ chøc cho häc sinh thảo luận, nghiên cứu toán theo nhóm
- Gọi học sinh phát biểu đa câu trả lời
- Củng cố:
Véctơ không gian
Hoạt động 3: Trả lời câu hỏi:
Trong kết sau kết ?
Cho hình lập phơng ABCD.EFGH ( với AE // BF // CG // DH ) cã t©m O có cạnh a Ta có:
AB.EG a
2
AB.AGa 2
a) b)
2
BC.DE a 3
AB.AO a2 2
2
c) d)
Hoạt động học sinh Hoạt động giáo viên
0
AB.EGAB.ACa.a cos 45 a
a) nên a)
AB
AB.AG a.a cos GAB a 2. AG b)
2 a
a 2 ' a
a 2 = nªn b) sai.
- Tổ chức cho học sinh thảo luận, nghiên cứu toán theo nhóm
- Gọi học sinh phát biểu đa câu trả lời
- Củng cố:
Tích vô hớng hai véctơ
(112)BC.DEBC.CF
CB.CF
a 2c) = - = - a cos450
= - a2 nªn c) sai.
1
AB.AO AB.AG 2
2 1
a
2 d) = nên d) sai Bài tập nhµ: 6, 7, 8, trang 157 - SGK.
Tiết 48 Câu hỏi tập ôn tập cuối năm ( Tiết ) A - Mục tiêu:
- Trả lời đợc câu hỏi lí thuyết chơng trình tốn 11 - Làm thành thạo dạng toán học
B - Nội dung mức độ :
- Néi dung c©u hái lÊy ë trang 152, 153 ( SGK ) - Bµi tËp chän ë trang 156, 157, 158 ( SGK )
C - Chuẩn bị thầy trò : Sách giáo khoa, mô hình hình học D - Tiến trình tổ chức học :
ổn định lớp : - Sỹ s lp :
- Nắm tình hình sách giáo khoa học sinh
Bài mới
Hoạt động 1: Trả lời câu hỏi:
Trong kết sau kết sai ?
a) Hai mặt phẳng có điểm chung chúng có vô số điểm chung khác
b) Hai mặt phẳng phân biệt có điểm chung chúng có đờng thẳng chung c) Nếu điểm M, N, P thuộc mặt phẳng phân biệt điểm thẳng hàng
d) Hai mặt phẳng có điểm chung chúng có đờng thẳng chung
Hoạt động học sinh Hoạt động giáo viên
Trả lời đợc câu d sai trờng hợp mặt phẳng cho trùng
(113)- Gọi học sinh phát biểu đa câu trả lời
- Cñng cè:
Tơng giao đờng thẳng mặt phẳng, mặt phẳng mặt phẳng
Hot ng 2:
Chữa tập trang 157 - SGK
Cho tứ diện ABCD Gọi () mặt phẳng thay đổi qua điểm I K lần lợt trung điểm cạnh DA DB Giả sử mặt phẳng () cắt cạnh CA CB lần lợt M N
a) Tứ giác MNKI có tính chất ? Với vị trí () tứ giác hình bình hành ? b) Gọi O = MI NK Chứng tỏ điểm O luôn nằm đờng thẳng cố định
c) Gọi d = () (OAB) Chứng minh () thay đổi đờng thẳng d ln nằm mặt phẳng cố định
Hoạt động học sinh Hoạt động giáo viên
a) Do IK // AB nªn MN // AB MNKI hình thang Để MNKI hình bình hành ta phải có thêm IM // NK M, N lần lợt trung điểm AC vµ BC
b) O = MI NK O = (ACD) (BCD) nên O thuộc CD cố định
c) Do MN // AB MN (), AB (OAD) nªn:
d = () (OAB) d // AB d ln thuộc mặt phẳng () qua CD song song với AB () mặt phẳng cố định chứa d
- Tổ chức cho học sinh thảo luận, nghiên cứu toán theo nhóm
- Gọi học sinh phát biểu đa câu trả lời
- Củng cố:
+ Tính chất giao tuyến song song + Dựng giao tuyến mặt phẳng, giao điểm đờng thẳng mặt phẳng Hoạt động 3:
Ch÷a tập trang 157 - SGK
Cho hình hộp ABCD.ABCD Gọi M N lần lợt trung điểm hai cạnh bên AA CC Một điểm P nằm cạnh bên DD
a) Xỏc nh giao tuyến đờng thẳng BB’ với mặt phẳng (MNP)
b) Mặt phẳng (MNP) cắt hình hộp theo thiết diện Thiết diện có tính chất ? c) Tìm giao tuyến mặt phẳng (MNP) với mặt phẳng (ABCD) hình hộp
d
N K
I A
B
D
C
M
O
d
L
Q
O' O
N M
A' D'
C' B
A D
C
B'
(114)Hoạt động học sinh Hoạt động giáo viên a) Gọi Q = BB’ (MNP)
Có nhiều cách dựng Q, chẳng hạn:
Gọi I = MN OO’ ( O O’ lần lợt tâm đáy ABCD A’B’C’D’) Trong mặt phẳng (BB’D’D) có PI BB’ = Q l im cn dng
b) (MNP) cắt mặt hình hộp treo giao tuyến song song: MP // NQ, MQ // NP nên thiết diện MNPQ hình bình hành
c) Trờng hợp P trung điểm DD MP // AD (MNP) ( ABCD ) giao tuyến
Trờng hợp P không trung điểm DD mặt phẳng cắt theo giao tuyến d qua điểm L = AD MP Hơn d // MN // AC
- Tæ chøc cho häc sinh thảo luận, nghiên cứu toán theo nhóm
- Gọi học sinh phát biểu đa câu trả lời
- Cđng cè:
+ Tính chất giao tuyến song song + Dựng giao tuyến mặt phẳng, giao điểm đờng thẳng mặt phẳng
Bµi tËp vỊ nhµ: 10, 11, 12, 13, 14.
(115)TuÇn 35
TiÕt 49 Câu hỏi tập ôn tập cuối năm ( TiÕt ) A - Mơc tiªu:
- Trả lời đợc câu hỏi lí thuyết chơng trình tốn 11 - Làm thành thạo dạng tốn học
B - Nội dung mức độ :
- Néi dung c©u hái lÊy ë trang 152, 153 ( SGK ) - Bµi tËp chän ë trang 156, 157, 158 ( SGK )
C - Chuẩn bị thầy trò : Sách giáo khoa, mô hình hình học D - Tiến trình tổ chức học :
n định lớp : - Sỹ số lớp :
- Nắm tình hình sách giáo khoa cđa häc sinh
Bµi míi
Hoạt động 1:
Chữa tập 11 trang 158 - SGK
Trong không gian cho hai hình vuông ABCD, ABCD có chung cạnh AB, nằm hai mặt phẳng khác lần lợt có tâm O, O Chứng minh r»ng:
a) OO’ AB
DAD'b) Tứ giác CDD’C’ hình chữ nhật tìm điều kiện góc để hình chữ nhật hình vuông
Hoạt động học sinh Hoạt động giáo viên
a) Do AB BC AB BC’ nên AB (BCC’) suy AB CC’ Mà OO’ // CC’( t/c đờng trung bình ) nờn AB OO
b) Tứ giác CDDC hình bình hành Mặt khác DC // AB mà AB (BCC) nên DC CC tứ giác CDDC hình chữ nhật
DAD'Gi s hỡnh vuụng ABCD có cạnh a Muốn CDD’C’ hình vng ta cần có DD’ = CC’ = a tức tam giác ADD’ = 600.
- Gọi học sinh trình bày giải - Uốn nắn cách biểu đạt học sinh thơng qua trình bày lời giải
- Cđng cè:
+ Chøng minh vu«ng gãc + VÏ h×nh biĨu diƠn
O O' D'
C
A B
D
(116)Hot ng 2:
Chữa tập 12 trang 158 - SGK
Cho hai tam giác ABD CBD nằm hai mặt phẳng khác có chung cạnh BD = a Gọi M N lần lợt trung điểm BD AC
a) Chøng minh MN AC, MN BD
AMC 120 b) Cho , tính độ dài đoạn AC MN theo a.
c) Gọi P, Q, R lần lợt trung điểm AB, BC, CD Chøng minh r»ng MN (PQR)
Hoạt động học sinh Hoạt động giáo viên
a) ABD CBD tam giác nên AM = MC Do MN AC Mặt khác ta có ABC = ADC (c.c.c) nên NB = ND, ta có MN BD
AMC120 AMN600
1 a 3
AM
2 4
AM 3 2
3a 4
3a
2 b) Theo gt AMC cân M nên MN = Ta lại có AC = 2AN = = ta đợc: AC =
c) MN AC MN PQ ( PQ // AC ) MN BD MN QR ( QR // BD ) Do MN (PQR) - đpcm
- Tỉ chức cho học sinh thảo luận, nghiên cứu toán theo nhãm
- Gọi học sinh trình bày giải - Uốn nắn cách biểu đạt học sinh thơng qua trình bày lời giải
- Cđng cè:
+ Chøng minh vu«ng gãc
+ Tính tốn đại lợng hình học khơng gian
Hoạt ng 3:
Chữa tập 14 trang 158 - SGK
Cho hình chóp S.ABCD có đáy ABCD hình vng cạnh a, cạnh SA (ABCD) SA = a Xác định tính độ dài đoạn vng góc chung cặp đờng thẳng sau:
a) SB vµ CD b) SC vµ BD c) SB vµ AD
600
N
P
I R
Q M
D
B
C A
O A
B C
D S
H
(117)Hoạt động học sinh Hoạt động giáo viên a) Ta có CB SB BC CD nên BC đoạn vng góc
chung cđa SB vµ CD BC = a
b) Gọi O tâm hình vng ABCD Trong (SAC) dựng OK SC OK đoạn vng góc chung SC BD Từ tam giác đồng dạng COK CSA, ta có:
a 2 a.
AS.CO 2 a 6
CS a 3 6 OK =
c) Trong (SAB) dùng AH SB th× AH đoạn vuông góc chung SB AD Ta cã:
1 a 2
SB
2 2 AH =
- Củng cố khái niệm đoạn vng góc chung hai đờng thẳng chéo nhau: Cỏch dng v cỏch tớnh
- Ôn tập tính khoảng cách hai đ-ờng thẳng chéo
Bài tập nhà: Ôn tập chuẩn bị kiểm tra hết năm học.
Tiết 50 Bài kiểm tra viết cuối năm A - Mục tiêu:
Theo yêu cầu Bộ Giáo dục Đào tạo B - Nội dung mức độ :