1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Modulation and coding course- lecture 10

20 300 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 20
Dung lượng 119,91 KB

Nội dung

Digital Communications I: Modulation and Coding Course Period 3 - 2007 Catharina Logothetis Lecture 10 Lecture 10 2 Last time, we talked about:  Channel coding  Linear block codes  The error detection and correction capability  Encoding and decoding  Hamming codes  Cyclic codes Lecture 10 3 Today, we are going to talk about:  Another class of linear codes, known as Convolutional codes.  We study the structure of the encoder.  We study different ways for representing the encoder. Lecture 10 4 Convolutional codes  Convolutional codes offer an approach to error control coding substantially different from that of block codes.  A convolutional encoder:  encodes the entire data stream, into a single codeword.  does not need to segment the data stream into blocks of fixed size ( Convolutional codes are often forced to block structure by periodic truncation ).  is a machine with memory.  This fundamental difference in approach imparts a different nature to the design and evaluation of the code.  Block codes are based on algebraic/combinatorial techniques.  Convolutional codes are based on construction techniques. Lecture 10 5 Convolutional codes-cont’d  A Convolutional code is specified by three parameters or where  is the coding rate, determining the number of data bits per coded bit.  In practice, usually k=1 is chosen and we assume that from now on.  K is the constraint length of the encoder a where the encoder has K-1 memory elements.  There is different definitions in literatures for constraint length. ),,( Kkn ),/( Knk nkR c /= Lecture 10 6 Block diagram of the DCS Information source Rate 1/n Conv. encoder Modulator Information sink Rate 1/n Conv. decoder Demodulator 4434421 sequenceInput 21 , .), .,,( i mmm=m 4434421 444344421 bits) coded ( rdBranch wo 1 sequence Codeword 321 , .), .,,,( n nijiii i , .,u, .,uuU UUUU = = = G(m)U , .) ˆ , ., ˆ , ˆ ( ˆ 21 i mmm=m { 4434421 444344421 dBranch worper outputs 1 dBranch worfor outputsr Demodulato sequence received 321 , .), .,,,( n nijii i i i , .,z, .,zzZ ZZZZ = =Z Channel Lecture 10 7 A Rate ½ Convolutional encoder  Convolutional encoder (rate ½, K=3)  3 shift-registers where the first one takes the incoming data bit and the rest, form the memory of the encoder. Input data bits Output coded bits m 1 u 2 u First coded bit Second coded bit 21 ,uu (Branch word) Lecture 10 8 A Rate ½ Convolutional encoder 1 0 0 1 t 1 u 2 u 11 21 uu 0 1 0 2 t 1 u 2 u 01 21 uu 1 0 1 3 t 1 u 2 u 00 21 uu 0 1 0 4 t 1 u 2 u 01 21 uu )101(=m Time Output OutputTime Message sequence: (Branch word) (Branch word) Lecture 10 9 A Rate ½ Convolutional encoder Encoder )101(=m )1110001011(=U 0 0 1 5 t 1 u 2 u 11 21 uu 0 0 0 6 t 1 u 2 u 00 21 uu Time Output Time Output (Branch word) (Branch word) Lecture 10 10 Effective code rate  Initialize the memory before encoding the first bit (all- zero)  Clear out the memory after encoding the last bit (all- zero)  Hence, a tail of zero-bits is appended to data bits.  Effective code rate :  L is the number of data bits and k=1 is assumed: data Encoder codewordtail ceff R KLn L R < −+ = )1( [...]... 0 00 10 11 0/00 0/00 0/00 Output bits 11 10 0/00 0/00 1/11 1/11 0/11 1/00 1/01 0/11 1/00 0 /10 1/01 0/01 t1 1/11 0/11 1/00 0 /10 1/01 0/01 t 2 1/11 0/11 1/00 0 /10 1/01 0/01 t Lecture 10 0/11 1/00 0 /10 1/01 0/01 t 3 1/11 4 0 /10 0/01 t t 5 19 6 Trellis – cont’d Tail bits Input bits 1 0 1 0 0 00 10 11 0/00 0/00 0/00 0/11 0/11 Output bits 11 10 0/00 0/00 1/11 1/11 1/11 0 /10 0/11 1/00 1/01 1/01 0 /10 0 /10 0/01... 0 /10 1/01 S3 11 S3 11 1 /10 Lecture 10 input 0 1 0 1 0 1 0 1 Next state S0 S2 S0 S2 S1 S3 S1 S3 output 00 11 11 00 10 01 01 10 17 Trellis – cont’d Trellis diagram is an extension of the state diagram that shows the passage of time Example of a section of trellis for the rate ½ code State S 0 = 00 0/00 1/11 S 2 = 10 0/11 S1 = 01 1/01 1/00 0 /10 0/01 S3 = 11 1 /10 ti ti +1 Lecture 10 Time 18 Trellis –cont’d... adder, and “0” otherwise Example: g1 = (111) g 2 = (101 ) u1 m u1 u 2 u2 Lecture 10 11 Encoder representation – cont’d Impulse response representaiton: The response of encoder to a single “one” bit that goes through it Example: Register contents Input sequence : 1 0 0 Output sequence : 11 10 11 Input m Branch word u1 u2 100 010 1 1 1 0 001 1 1 Output 1 11 10 11 0 00 00 00 1 Modulo-2 sum: 11 10 11 11 10. .. states Lecture 10 15 State diagram – cont’d A state diagram is a way to represent the encoder A state diagram contains all the states and all possible transitions between them Only two transitions initiating from a state Only two transitions ending up in a state Lecture 10 16 State diagram – cont’d 0/00 Input Output (Branch word) Current state 0/11 S0 00 S2 S1 10 01 S1 01 0/01 S2 10 1/11 S0 00 1/00 0 /10. .. interlaced with m( X )g 2 ( X ) Lecture 10 13 Encoder representation –cont’d In more details: m( X )g1 ( X ) = (1 + X 2 )(1 + X + X 2 ) = 1 + X + X 3 + X 4 m( X )g 2 ( X ) = (1 + X 2 )(1 + X 2 ) = 1 + X 4 m( X )g1 ( X ) = 1 + X + 0 X 2 + X 3 + X 4 m( X )g 2 ( X ) = 1 + 0 X + 0 X 2 + 0 X 3 + X 4 U( X ) = (1,1) + (1,0) X + (0,0) X 2 + (1,0) X 3 + (1,1) X 4 U = 11 10 00 10 11 Lecture 10 14 State diagram A finite-state... Input m Branch word u1 u2 100 010 1 1 1 0 001 1 1 Output 1 11 10 11 0 00 00 00 1 Modulo-2 sum: 11 10 11 11 10 00 10 11 Lecture 10 12 Encoder representation – cont’d Polynomial representation: We define n generator polynomials, one for each modulo-2 adder Each polynomial is of degree K-1 or less and describes the connection of the shift registers to the corresponding modulo-2 adder Example: ( ( g1 ( X )... 0/01 t t 5 19 6 Trellis – cont’d Tail bits Input bits 1 0 1 0 0 00 10 11 0/00 0/00 0/00 0/11 0/11 Output bits 11 10 0/00 0/00 1/11 1/11 1/11 0 /10 0/11 1/00 1/01 1/01 0 /10 0 /10 0/01 t1 t 2 t 0/01 t 3 Lecture 10 4 t t 5 20 6 . it.  Example: 1100 1 0101 0 1 1100 1 1101 1 :sequenceOutput 001 :sequenceInput 21 uu Branch word Register contents 1 1100 0101 1 1 1101 11 0000000 1 1101 11 OutputInput. Communications I: Modulation and Coding Course Period 3 - 2007 Catharina Logothetis Lecture 10 Lecture 10 2 Last time, we talked about:  Channel coding  Linear

Ngày đăng: 25/10/2013, 06:15

TỪ KHÓA LIÊN QUAN

w