1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Digital Communication I: Modulation and Coding Course-Lecture 10 potx

20 387 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 20
Dung lượng 305 KB

Nội dung

Digital Communications I: Modulation and Coding Course Period 3 - 2007 Catharina Logothetis Lecture 10 Lecture 10 2 Last time, we talked about:  Channel coding  Linear block codes  The error detection and correction capability  Encoding and decoding  Hamming codes  Cyclic codes Lecture 10 3 Today, we are going to talk about:  Another class of linear codes, known as Convolutional codes.  We study the structure of the encoder.  We study different ways for representing the encoder. Lecture 10 4 Convolutional codes  Convolutional codes offer an approach to error control coding substantially different from that of block codes.  A convolutional encoder:  encodes the entire data stream, into a single codeword.  does not need to segment the data stream into blocks of fixed size ( Convolutional codes are often forced to block structure by periodic truncation ).  is a machine with memory.  This fundamental difference in approach imparts a different nature to the design and evaluation of the code.  Block codes are based on algebraic/combinatorial techniques.  Convolutional codes are based on construction techniques. Lecture 10 5 Convolutional codes-cont’d  A Convolutional code is specified by three parameters or where  is the coding rate, determining the number of data bits per coded bit.  In practice, usually k=1 is chosen and we assume that from now on.  K is the constraint length of the encoder a where the encoder has K-1 memory elements.  There is different definitions in literatures for constraint length. ),,( Kkn ),/( Knk nkR c /= Lecture 10 6 Block diagram of the DCS Information source Rate 1/n Conv. encoder Modulator Information sink Rate 1/n Conv. decoder Demodulator    sequenceInput 21 , ), ,,( i mmm=m       bits) coded ( rdBranch wo 1 sequence Codeword 321 , ), ,,,( n nijiii i , ,u, ,uuU UUUU = = = G(m)U , ) ˆ , , ˆ , ˆ ( ˆ 21 i mmm=m        dBranch worper outputs 1 dBranch worfor outputsr Demodulato sequence received 321 , ), ,,,( n nijii i i i , ,z, ,zzZ ZZZZ = =Z C h a n n e l Lecture 10 7 A Rate ½ Convolutional encoder  Convolutional encoder (rate ½, K=3)  3 shift-registers where the first one takes the incoming data bit and the rest, form the memory of the encoder. Input data bits Output coded bits m 1 u 2 u First coded bit Second coded bit 21 ,uu (Branch word) Lecture 10 8 A Rate ½ Convolutional encoder 1 0 0 1 t 1 u 2 u 11 21 uu 0 1 0 2 t 1 u 2 u 01 21 uu 1 0 1 3 t 1 u 2 u 00 21 uu 0 1 0 4 t 1 u 2 u 01 21 uu )101(=m Time Output OutputTime Message sequence: (Branch word) (Branch word) Lecture 10 9 A Rate ½ Convolutional encoder Encoder)101(=m )1110001011(=U 0 0 1 5 t 1 u 2 u 11 21 uu 0 0 0 6 t 1 u 2 u 00 21 uu Time Output Time Output (Branch word) (Branch word) Lecture 10 10 Effective code rate  Initialize the memory before encoding the first bit (all- zero)  Clear out the memory after encoding the last bit (all- zero)  Hence, a tail of zero-bits is appended to data bits.  Effective code rate :  L is the number of data bits and k=1 is assumed: data Encoder codewordtail ceff R KLn L R < −+ = )1( [...]... 1 0 0 00 10 11 0/00 0/00 0/00 Output bits 11 10 0/00 0/00 1/11 1/11 0/11 1/00 1/01 0/11 1/00 0 /10 0/01 t1 1/11 1/01 0/11 1/00 0 /10 0/01 t2 1/11 1/01 0/11 1/00 0 /10 0/01 t3 1/11 1/01 0/11 1/00 0 /10 1/01 0/01 t4 Lecture 10 0 /10 0/01 t5 t6 19 Trellis – cont’d Tail bits Input bits 1 0 1 0 0 00 10 11 0/00 0/00 0/00 0/11 0/11 Output bits 11 10 0/00 0/00 1/11 1/11 1/11 0/11 1/00 0 /10 1/01 1/01 0 /10 0/01 t1... contents Input sequence : 1 0 0 Output sequence : 11 10 11 Input m 100 010 001 Branch word u1 u2 1 1 1 0 1 1 Output 1 11 10 11 0 00 00 00 1 Modulo-2 sum: 11 10 11 11 10 00 10 11 Lecture 10 12 Encoder representation – cont’d  Polynomial representation:  We define n generator polynomials, one for each modulo-2 adder Each polynomial is of degree K-1 or less and describes the connection of the shift registers... Current state S3 11 1 /10 S3 11 Lecture 10 input Next state output 0 1 0 1 0 1 0 1 S0 S2 S0 S2 00 11 11 00 10 01 01 10 S1 S3 S1 S3 17 Trellis – cont’d  Trellis diagram is an extension of the state diagram that shows the passage of time  Example of a section of trellis for the rate ½ code State 0/00 S 0 = 00 1/11 S 2 = 10 0/11 S1 = 01 1/01 S3 = 11 1/00 0 /10 0/01 1 /10 ti ti +1 Lecture 10 Time 18 Trellis... −1 Lecture 10 15 State diagram – cont’d  A state diagram is a way to represent the encoder  A state diagram contains all the states and all possible transitions between them  Only two transitions initiating from a state  Only two transitions ending up in a state Lecture 10 16 State diagram – cont’d 0/00 1/11 S2 S0 00 Input Output (Branch word) 0/11 S0 00 01 1/00 10 S1 01 0/01 S2 10 S1 0 /10 1/01 Current... representation:  We define n binary vector with K elements (one vector for each modulo-2 adder) The i:th element in each vector, is “1” if the i:th stage in the shift register is connected to the corresponding modulo2 adder, and “0” otherwise  Example: g1 = (111) g 2 = (101 ) u1 m u1 u2 u2 Lecture 10 11 Encoder representation – cont’d  Impulse response representaiton:  The response of encoder to... with m( X )g 2 ( X ) Lecture 10 13 Encoder representation –cont’d In more details: m( X )g1 ( X ) = (1 + X 2 )(1 + X + X 2 ) = 1 + X + X 3 + X 4 m( X )g 2 ( X ) = (1 + X 2 )(1 + X 2 ) = 1 + X 4 m( X )g1 ( X ) = 1 + X + 0 X 2 + X 3 + X 4 m( X )g 2 ( X ) = 1 + 0 X + 0 X 2 + 0 X 3 + X 4 U( X ) = (1,1) + (1,0) X + (0,0) X 2 + (1,0) X 3 + (1,1) X 4 U = 11 10 00 10 11 Lecture 10 14 State diagram     A... 10 0 /10 0/01 t5 t6 19 Trellis – cont’d Tail bits Input bits 1 0 1 0 0 00 10 11 0/00 0/00 0/00 0/11 0/11 Output bits 11 10 0/00 0/00 1/11 1/11 1/11 0/11 1/00 0 /10 1/01 1/01 0 /10 0/01 t1 t2 t3 0 /10 0/01 t4 Lecture 10 t5 t6 20 . Digital Communications I: Modulation and Coding Course Period 3 - 2007 Catharina Logothetis Lecture 10 Lecture 10 2 Last time, we talked about:  Channel coding  Linear block. two transitions ending up in a state Lecture 10 17 State diagram – cont’d 10 01 00 11 outputNext state inputCurrent state 101 010 11 011 100 10 001 110 01 111 000 00 0 S 1 S 2 S 3 S 0 S 2 S 0 S 2 S 1 S 3 S 3 S 1 S 0 S 1 S 2 S 3 S 1/11 1/00 1/01 1 /10 0/11 0/00 0/01 0 /10 Input Output (Branch. otherwise.  Example: m 1 u 2 u 21 uu )101 ( )111( 2 1 = = g g Lecture 10 12 Encoder representation – cont’d  Impulse response representaiton:  The response of encoder to a single “one” bit that goes through it.  Example: 1100 1 0101 0 1 1100 1 1101 1 :sequenceOutput

Ngày đăng: 30/03/2014, 10:20

TỪ KHÓA LIÊN QUAN

w