Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 68 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
68
Dung lượng
503,69 KB
Nội dung
ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN LÊ THỊ MINH THU ĐỘNG HỌC CỦA PHƯƠNG TRÌNH KOLMOGOROV CHỊU NHIỄU MARKOV LUẬN VĂN THẠC SĨ KHOA HỌC Hà Nội - Năm 2012 ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN LÊ THỊ MINH THU ĐỘNG HỌC CỦA PHƯƠNG TRÌNH KOLMOGOROV CHỊU NHIỄU MARKOV Chuyên ngành : Lý thuyết xác suất thống kê toán học Mã số: 60 46 15 LUẬN VĂN THẠC SĨ KHOA HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC: GS.TS Nguyễn Hữu Dư Hà Nội - Năm 2012 Mục lục Kiến thức chuẩn bị 1.1Phương trình Kolmogorov tất định 1.2Toán tử sinh trình Markov thời Tính chất tiệm cận hệ phương trình cạnh tranh Kolmogorov chịu nhiễu điện báo 2.1 2.2 2.3 Tính bền vững hệ Tập w- giới hạn 2.2.1 Trư 2.2.2 Trư 2.2.3 Trư Nửa nhóm tính ổn định phân bố Ứng dụng Kết luận Tài liệu tham khảo i Lời nói đầu Đối với hệ sinh thái sinh học, sinh thái học quần thể học gồm có hai lồi, người ta thường mơ tả chúng mơ hình tốn học dạng hệ phương trình vi phân: x˙ = x f (x;y);y˙ = yg (x;y); x(t) y(t) mật độ quần thể loài thời điểm t f (x;y);g (x;y) tốc độ tăng trưởng bình qn lồi Thơng thường, hệ gọi hệ Kolmogorov Các hệ kiểu Kolmogorov mơ hình thơng dụng để mô tả phát triển quần thể hệ mà tốc độ tăng trưởng bình qn lồi phụ thuộc vào quy mơ quần thể hai lồi Mơ hình kiểu Kolmogorov quan trọng quỹ đạo xuất phát góc phần tư thứ mặt phẳng ln nằm mặt phẳng (tức x (0) > 0;y (0) > 0) x (t) > 0;y (t) > 0) với t > 0) Nói cách khác miền góc phần tư thứ mặt phẳng bất biến hệ (1) Đã có nhiều cơng trình nghiên cứu động lực học quần thể thông qua nghiên cứu nghiệm dương, chẳng hạn tính bền vững đều, diệt vong hay giới nội toàn cục (xem [10, 13, 20, 11]) Cách mơ tả hệ theo phương trình dựa vào giả thiết loài sống mơi trường khơng thay đổi Do đó, tốc độ tăng trưởng f (x;y);g (x;y) hàm tất định Tuy nhiên, rõ ràng điều nói chung khơng phù hợp thực tế phải tính đến biến động mơi trường mà gây tác động mạnh đến tính động lực học phát triển bền vững quần thể Sự biến đổi mơi trường thể yếu tố ngẫu nhiên điều quan trọng phải mô tả chúng dạng phương trình ngẫu nhiên Tuy vậy, hệ Kolmogorov tất định (1) nghiên cứu với lịch sử lâu dài hệ Kolmogorov ngẫu nhiên lại chưa đề cập nhiều tài liệu toán học khơng có cơng trình nghiên cứu phương diện thống kê Ở đây, đề cập đến nỗ lực theo hướng này, báo báo hay Arnold [5], tác giả sử dụng lý thuyết trình chuyển động Brown để nghiên cứu quỹ đạo mẫu phương trình Đối với mơ hình phân nhánh mơi trường biến thiên, tham khảo [2, 3, 18, vv ] Một cách trình bày tương đối hệ thống vấn đề đưa [1] Gần đây, [16] xem xét ảnh MỤC LỤC hưởng hai loại nhiễu trình chuyển đổi Markov ồn trắng tác động lên hệ (1), A Bobrowski [8] sử dụng nửa nhóm Markov để nghiên cứu ổn định phân phối dừng hệ ngẫu nhiên (1); W Shen, Y Wang [19] nghiên cứu hệ Kolmogorov cạnh tranh ngẫu nhiên thơng qua phương pháp tích lệch Trong trường hợp đơn giản nhất, giả sử điều kiện mơi trường chuyển đổi ngẫu nhiên hai trạng thái, ví dụ: trạng thái nóng lạnh, trạng thái khô ướt Như vậy, giả sử có nhiễu điện báo ảnh hưởng đến mơ hình cách chuyển đổi hai trạng thái tập hợp E = f+; g có hai phần tử Với trạng thái khác nhau, động lực học hệ mơ hình khác Sự chuyển đổi ngẫu nhiên điều kiện mơi trường khiến cho mơ hình thay đổi từ hệ trạng thái + với hệ trạng thái ngược lại Trong [7], tác giả nghiên cứu hệ cạnh tranh cổ điển với nhiễu điện báo Các tác giả tập w-giới hạn nghiệm hệ phức tạp thành công việc mô tả số tập hợp tập w- giới hạn Mục đích khái quát kết cách xét hệ tổng quát mô tả đầy đủ tất tập w- giới hạn nghiệm phương trình Chúng tơi chứng minh tập w- giới hạn tất nghiệm dương hấp thụ tất nghiệm dương khác Hơn nữa, muốn xa cách nghiên cứu số tính chất phân phối dừng Chúng tơi phân phối dừng (nếu tồn tại) có mật độ mật độ hút tất phân phối khác Để làm điều đó, chúng tơi đưa tham số l 1;l2 ngưỡng phát triển hệ Mặc dù chưa đưa biểu thức hiển để tìm giá trị l 1;l2, dễ dàng ước lượng chúng phương pháp mô thông qua hệ số Các tham số đóng vai trị quan trọng thực tế cách phân tích hệ số, hiểu dáng điệu động học hệ Luận văn chia làm chương: Chương I: Các kiến thức chuẩn bị Nội dung chương đưa số khái niệm mơ hình cạnh tranh hệ Kolmogorov tất định tính chất quan trọng q trình Markov hữu hạn trạng thái với thời gian liên tục Chương II: Tính chất tiệm cận hệ phương trình cạnh tranh Kolmogorov chịu nhiễu Markov Chương chủ yếu dựa nội dung báo [23] Trong chương này, mô tả quỹ đạo động học nghiệm dương loại hệ cạnh tranh chịu tác động tiếng ồn điện báo Nó cho thấy tập w- giới hạn hấp thụ tất nghiệm dương Chúng xét trường hợp cụ thể dáng điệu nghiệm hệ Kolmogorov chịu nhiễu Markov MỤC LỤC Chương III: Ứng dụng vào mơ hình hệ phương trình cạnh tranh cổ điển Chương đề cập đến dáng điệu nghiệm hệ phương trình cạnh tranh cổ điển Lotka- Volterra tác động nhiễu Markov Các mô hình cổ điển xem thí dụ cụ thể minh họa kết Chương II Lời cảm ơn Bản luận văn hoàn thành hướng dẫn nghiêm khắc bảo tận tình GS TS Nguyễn Hữu Dư Thầy dành nhiều thời gian hướng dẫn giải đáp thắc mắc tơi suốt q trình làm luận văn Tơi muốn bày tỏ lịng biết ơn sâu sắc đến người thầy Qua đây, tơi xin gửi tới thầy Khoa Tốn-Cơ-Tin học, Trường Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội, thầy cô tham gia giảng dạy lớp cao học Tốn khóa 2010- 2012, đặc biệt thầy Nguyễn Hải Đăng, giảng viên khoa toán sinh thái học môi trường, lời cảm ơn sâu sắc cơng lao dạy dỗ, dẫn nhiệt tình suốt khóa học thời gian làm luận văn Tôi xin gửi lời cảm ơn tới anh chị em học viên đồng khóa em sinh viên năm cuối khoa Toán- Cơ- Tin trường giúp đỡ nhiệt tình để tơi hồn thành luận văn Tơi xin cảm ơn gia đình, bạn bè tất người quan tâm, tạo điều kiện, động viên cổ vũ tơi để tơi hồn thành nhiệm vụ Hà nội, tháng 12 năm 2012 Người làm luận văn Lê Thị Minh Thu Chương Kiến thức chuẩn bị 1.1 Phương trình Kolmogorov tất định Xét hệ sinh thái đơn giản gồm có hai lồi sống mơi trường tương đối ổn định Giả sử x(t), y(t) số lượng cá thể loài thời điểm t f (tương ứng g) tỷ lệ tăng trưởng loài thứ (tương ứng loài thứ 2); f ;g hai hàm hai biến x y Như thế, mơ tả phát triển hệ phương trình: dx = x f (x;y); dt Giả thiết phương trình (1.1) tỷ lệ tăng giảm số lượng cá thể quần thể không phụ thuộc vào thời gian số lượng quần thể đủ lớn để ta xem x y số thực không âm không chịu tác động ngẫu nhiên Hệ (1.1) gọi hệ Kolmogorov Trong tồn Luận văn này, chúng tơi ln đưa giả thiết f , g với đạo hàm bậc chúng xác định liên tục với giá trị không âm x y phương trình (1.1) ln tồn nghiệm xác định [0;¥) (do nhất) Nhờ tính nghiệm hệ, dễ dàng thấy góc phần tư thứ R + = f(u;v) : u > 0;v > 0g mặt phẳng R bất biến Tức x(0) > 0;y(0) > x(t) > 0;y(t) > với t > Tương tự phần int R + = f(u;v) : u > 0;v > 0g bất biến Tùy theo toán cụ thể đưa điều kiện bổ sung cụ thể cho hai hàm f g Mối quan hệ lồi có chia làm ba loại chính: a) Lồi thứ gặp khó khăn, lồi thứ hai gặp thuận lợi, có diện yếu tố khác (quan hệ lồi săn mồi với mồi), Chương Kiến thức chuẩn bị b) Cả hai lồi gặp khó khăn diện lồi cịn lại (mơ hình cạnh tranh), c) Cả hai lồi gặp thuận lợi diện lồi khác (mơ hình cộng sinh) Trong tồn Luận văn xét mơ hình cạnh tranh Đó trường hợp mà hai loài sống vùng lãnh thổ cạnh tranh nguồn thức ăn hay mơi trường Mơ hình tốn học nghiên cứu tượng đưa Volterra (1927) đưa nhiều kết luận bổ ích phát triển lồi Ở chúng tơi xét mơ hình cạnh tranh tổng qt (1.1) cố gắng đạt kết luận tương tự Để mô tả mơ hình có tính chất cạnh tranh, đưa giả thiết sau hàm f g : a) Sự gia tăng hai quần thể tạo sụt giảm tốc độ tăng trưởng hai quần thể; ta có ¶f ¶x ¶g < 0; ¶x g (0;0) > c) Mỗi quần thể, nhỏ, tăng thêm đạt đến kích cỡ định, đó, tồn A C cho f (0;A) = g (C;0) = d) Mỗi quần thể khơng thể làm tăng kích thước định số lượng cá thể nhỏ, tồn B D cho f (B;0) = g (0;D) = Nói chung, hai đường cong f = g = có số lượng điểm chung Khi đó, góc phần tư thứ hệ tọa độ (x;y) chia thành khu vực: khu vực I có f > 0;g > 0; khu vực II có f < 0;g < khu vực III có f :g < Những khu vực biểu diễn biểu đồ hình Tất đường cong tích phân xuất phát từ khu vực I II cuối vào khu vực III Khu vực III hình thành đường cong f = , g = 0, điểm bên bị chặn hai đường cong đoạn AD BC Tùy thuộc vào đồ thị hàm f g, điểm khu vực điểm biên Khu vực III chia thành nhiều tập con, tập cộng với điểm biên tạo thành khu vực con; tất đường cong tích phân khu vực kết thúc điểm cân x = maximum;y = minimum, tương ứng x = minimum;y = maximum, tùy thuộc vào Chương Kiến thức chuẩn bị Hình việc điểm khu vực f > 0;g < f < 0;g > Ví dụ, trường hợp hình 1, D điểm cân khu vực R điểm cân khu vực khác Có thể, khơng chắn, vài điểm khu vực III không thuộc vào nhóm khu vực này, điều xảy mà đường cong f = g = có đoạn trùng Trong trường hợp này, đường cong tích phân xuất phát từ khu vực I II đến đoạn trùng dừng lại Một ví dụ minh họa đơn giản cho ta biết nhiều thông tin dáng điệu giới hạn đường cong tích phân Ví dụ đường cong hình chép hình 2, dấu hàm f g biểu diễn véc tơ đơn vị song song với trục Trong khu vực I, có f > g > đó, với thời gian ngày tăng, đường cong tích phân khu vực giới hạn góc phần tư xác định véc tơ đơn vị thể hình Để minh họa cụ thể, ta xét khu vực giới hạn điểm Q R; rõ ràng từ véc tơ ta thấy, Q điểm cân không ổn định R điểm cân ổn định Chú ý rằng, đường cong tích phân qua khu vực hình chữ nhật xq 1Q¥ cuối phải kết thúc điểm R Các đường cong tích phân qua khu vực hình chữ nhật yq 2Q¥ khơng đến R, đến D Dáng điệu đường cong tích phân khu vực cịn lại góc phần tư thứ phải xác định cách phân tích chi tiết Kết luận, đường cong f = g = khơng giao nhau, lồi tồn tại, cụ thể v1 = mini2E Như vậy, cơng thức ta dễ dàng ước tính giá trị l1;l2 Sau đây, ta xét ba trường hợp với giả thiết l > 0;l2 > 3.0.1 Trường hợp 1: Hệ (3.2) (3.3) ổn định tiệm cận toàn cục Giả sử Bây chứng minh tồn (x¯0;y¯0) = pt0 Trong trường hợp này, hệ (3.2) (3.3) ổn định tiệm cận toàn cục với trạng thái Thật vậy, tạo thành đường phương trình (3.3) khơng thể đường conic Do vậy, tồn điểm (x¯0;y¯0) = pt0 x+;y+ ;t0 > cho a( d( 35 ) b ) e ( )x¯ Chương Ứng dụng Vì tập w- giới hạn phương trình (3.1) tập S ¯ mô tả (2.14) Hơn nữa, max ymin Thật vậy, từ hệ thức x˙(t) = x (a (xt ) Suy tồn T > cho x (t) m 0;8t > T y (T ) > e, chọn cho i2E max Khơng tính tổng qt, giả sử thoả mãn x+ (0) = m0;y+ (0) = e Đặt t = inf fs > : d (+) Chúng ta có e > ymin = y+ (t ) > Cho G+ = f(x+ (t);y+ (t)) : t t g g+ (x) hàm xác định [xt ;m0] có đồ thị G Dễ dàng nhận miền [ D = fx < xt ;ymin y Mg fx > xt ;g+ (x) y Mg tập bất biến chung hai hệ (3.2) (3.3), kéo theo y (t) > ymin;8t > T Nói cách khác, b (xs)x (s) c (xs)y (s))ds Z t t (b (xs)x (s))ds; Kéo theo limt!¥ inf t!¥ Kết hợp với y (t) > xmin hệ thức (3.5) ta thấy tồn phân phối dừng cho trình Markov (xt ;x (t);y (t)) intR + (xem [15], Appendix) Theo Mệnh đề 2.3.2 Định lý 2.3.3, q trình dừng có hàm mật độ f với độ đo m E R + với sup p f [0;M] [ymin;M] limt!¥ kP (t) f f k = 0;8 f L ;k f k = Chúng ta có kết tương tự trường hợp này, maxi2E Bây xét trường hợp Trong trường hợp này, giả thiết maxi E n i2E o a(i) c ( i) 36 Chương Ứng dụng d (i ) Trong giả thiết này, giả sử e( i ) nhận giá trị nhỏ i1 E, h a(i) c(i) nhận giá trị nhỏ i i 2 E Với e > 0, đặt A tơ trường hai hệ (3.2) (3.3), thấy Ae tập bất biến chung hai hệ với e đủ nhỏ Theo Định lý 2.2.7, (x ;y ) W(x 0;y0;w) h.c.c Hơn nữa, te < ¥ h.c.c, te = inf ft > : (x (t;x0;y0);y (t;x0;y0)) Ae g Kết hợp với tính bất biến Ae ta lim (x (t;x0;y0);y (t;x0;y0)) = (x ;y ) h.c.c t!¥ Tóm lại ta có định lý sau Định lí n < mini2E maxi2E n d(i) o e(i) xt yt xt (a) Nếu x ( ; (); ()) hàm mật độ dừng tiệm cận ổn định, có nghĩa là, limt!¥ kP (t) f L ;k f k = (b) Nếu x+;y+ giá trị ban đầu (x0;y0) R+ Để minh họa cho trường hợp này, ta lấy ví dụ sau Ví dụ 1: Cho a (+) = 1; b (+) = 1; c (+) = 0:1; d (+) = 7; e (+) = 6; f (+) = 1; a ( ) = 3; b ( ) = 1; c ( ) = 0:1; d ( ) = 7; e ( ) = 2; f ( ) = 1; x (0) = 2; y (0) = 3: Trường hợp A: a = 3; b = 4; l1 1:157; l2 Trường hợp B: a = 0:3; b = 0:4; l1 1:157; l2 0:545: 0:461: (xem Hình.3.) Trong ví dụ này, hai hệ (3.2) (3.3) ổn định tiệm cận Tuy nhiên, trường hợp A thấy limt!¥ y (t) = trường hợp B, limt!¥ supy (t) > 0; xmin > Điều có nghĩa dáng điệu nghiệm khơng phụ thuộc vào hệ số, mà phụ thuộc vào thời gian lại x t trạng thái Hơn nữa, giả thiết l i > 0;i = 1;2 bị xố bỏ, loại bị triệt tiêu ổn định tiệm cận toàn cục hai hệ 37 Chương Ứng dụng Hình n = 1000 3.0.2 Trường hợp 2: Hệ (3.2) ổn định tiệm cận toàn cục (3.3) song ổn định Giả sử Nhưng Trong trường hợp này, hệ (3.2) có nghiệm ổn định dương x +;y+ (3.3) song ổn định Tuy nhiên, điểm (u ;0) (0;v x+;y+ Theo định lý 2.2.7, (2.14) hút tất nghiệm hệ (3.1) với giá 6= x ;y tồn điểm (x¯0; 38 Chương Ứng dụng Ví dụ 2: Cho a (+) = 11; b (+) = 2; c (+) = 1; d (+) = 9; e (+) = 1; f (+) = 3; a ( ) = 10; b ( ) = 4; c ( ) = 3; d ( ) = 8; e ( ) = 2; f ( ) = 4; x (0) = 3; y (0) = 4;a = 3; b = 4: Ta có l1 6:445; l2 3:286 Trong ví dụ này, hệ (3.2) ổn định tiệm cận tất nghiệm dương hệ (3.3) dần tới điểm biên Mô đưa hình Hình n = 300 3.0.3 Trường hợp 3: Hệ (3.2) ổn định tiệm cận toàn cục tất nghiệm dương hệ (3.3) dần tới điểm biên Xét trường hợp 0;l Với giả thiết này, tất nghiệm dương hệ (3.3) dần tới > nghiệm hệ 39 Chương Ứng dụng trường hợp 1, tồn phân phối dừng cho trình Markov (x t ;x (t);y (t)) intR + Theo Mệnh đề 2.3.2 Định lý 2.3.3, phân phối dừng có hàm mật độ f độ đo m E R +;sup p f [xmin;M] [0;M] limt!¥ kP (t) f f k = 0;8 f L ;k f k = 1: Trong trường hợp d f thu kết tương tự Để minh hoạ cho trường hợp này, ta xét ví dụ sau Ví dụ 3: Cho a (+) = 6; b (+) = 5; c (+) = 2; d (+) = 11; e (+) = 3; f (+) = 7; a ( ) = 5; b ( ) = 3; c ( ) = 2; d ( ) = 9; e ( ) = 4; f ( ) = 2; x (0) = 3; y (0) = 4;a = 1; b = 5: Chúng ta có l1 2:484; l2 6:644: Trong ví dụ này, hệ (3.2) ổn định tiệm cận tất nghiệm dương hệ (3.3) dần tới điểm biên Mô đưa hình Hình n = 300 40 Kết luận Trong luận văn này, mô tả dáng điệu nghiệm hệ cạnh tranh Kolmogorov chuyển đổi ngẫu nhiên Đồng thời, việc chứng minh định lý, bổ đề với giả thiết hệ số, tập w- giới hạn mô tả có tồn tập bất biến cho trước hút tất quỹ đạo dương mật độ dừng Điều kiện (2.15) cho biết, đại số Lie véc tơ trường không suy biến điểm Vì vậy, rõ ràng phân phối dừng, tồn tại, có mật độ với độ đo Lebesgue R + Theo (2.7),(2.9) (2.1), giá trị l1;l2 dễ dàng ước tính Do đó, cách phân tích hệ số dự đốn dáng điệu tương lai hệ Nếu li > 0;i E, thấy, limt!¥ sup x (t) > 0;limt!¥ sup y (t) > 0: Theo nghiệm số, nghĩ trường hợp l > 0;l2 > 0, tồn mật độ dừng intR + Tuy nhiên, điều câu hỏi mở cho Hơn nữa, tất trường hợp, giả sử hai hệ (2.2) hệ (2.3) có trạng thái dương ổn định tồn cục Thật khó để mơ tả xác tập w- giới hạn nghiệm dương mà khơng có hệ có trạng thái dương ổn định tồn cục Lưu ý tính dương l i khơng bao hàm tồn trạng thái dương hai hệ tất định (2.2), (2.3) Xét ví dụ sau: Cho a (+) = 6; b (+) = 3; c (+) = 2; d (+) = 12; e (+) = 4; f (+) = 3; a ( ) = 12; b ( ) = 4; c ( ) = 2; d ( ) = 9; e ( ) = 4; f ( ) = 2; x (0) = 3; y (0) = 4;a = 5; b = 5: Trong ví dụ này, nghiệm dương (3.2) dần tới (0;4) nghiệm dương (3.3) dần tới (3;0) l1 0:5 > 0; l2 0:346 > Động học nghiệm minh hoạ hình Luận văn "Động học phương trình Kolmogorov chịu nhiễu Markov" tập trung nghiên cứu vấn đề sau: Nghiên cứu quỹ đạo chuyển động nghiệm dương hệ phương trình cạnh 41 Chương Ứng dụng Hình n = 2000 tranh Kolmogorov chịu tác động nhiễu Markov Ứng dụng vào nghiên cứu quỹ đạo chuyển động nghiệm hệ cạnh tranh cổ điển Mặc dù cố gắng, vấn đề đề cập luận văn tương đối phức tạp thời gian có hạn, luận văn khơng tránh khỏi thiếu sót Tác giả luận văn mong muốn nhận góp ý kiến thầy cô bạn đồng nghiệp để luận văn hồn chỉnh Tơi xin chân thành cảm ơn! Hà nội, tháng 12 năm 2012 Người làm luận văn Lê Thị Minh Thu 42 Tài liệu tham khảo [1] L.J.S Allen,An Introdution to Stochastic Processes with Applications to Biology, Pear-son Education Inc, Upper Saddle River, NJ, 2003 [2] L.J.S Allen, E.J Allen,(2003),A comparison of three differentiable stochastic popula-tion models with regard to persistence time, Theoret Population Biology, 68, pp 439-449 [3] E.J Allen, L.J.S Allen, H Schurz,(2005),A comparison of persistence - time estimation for discrete and continuous population models that include demographic and environ-mental variability, J Math Biosci, 196,pp 14-38 [4] L Arnold,Random Dynamical Systems, Springer- Verlag, Gerlin- Heidelberg- New York, 1998 [5] L Arnold, W Horsthemke, J.W Stucki,(1979),The influence of external real and white noise on the Lotka- Volterra model, Biom.J 21 (5) ,pp 451-471 [6] Z Brzeniak, M Capifiski, F Flandoli,(1993),Pathwise global attractors for stationary random dynamical systems, Probab Theory, Related Fields, 95,pp 87-102 [7] N.H.Du, R Kon, K Sato, Y Takeuchi,(2004),Dynamical behavior of Lotka- Volterra competition systems: Non autonomous bistable case and the effect of telegraph noise, J Comput Appl Math 170 (2),pp 399-422 [8] A Bobrowski, T.Lipniacki, K Pichor, R Rudnicki,(2007),Asymptotic behavior of distri-butions of mRNA and protein levels in a model of stochastic gene expression, J Math, Anal Appl 333,pp 753- 769 [9] H Crauel, F Flandoli,(1994),Attractors for random dynamical systems, Probab Theory Related Fields ,100,pp 365- 393 [10] S.F Ellermeyer, S.S Pilyugin, R Redheffer,(2001),Persistence criteria for a chemostat with variable nutrient input, J Differential Equations ,171 43 TÀI LIỆU THAM KHẢO [11] H.I Freedman, S Ruan,(1995),Uniform persistence in functional differential equations , J Differential Equations ,115,pp 173- 192 [12] I.I Gihman, A.V Skorohod,The Theory of Stochastic Processes, Springer- Verlag, Berlin- Heidelberg- New York, 1979 [13] X Han, Z Teng,(2006),On the average persistence and extinction in nonautonomous predator- prey Kolmogorov systems , Dyn contin Discrete Imputs Syst Ser A Math Anal 13 (3-4),pp 367-385 [14] X Mao,(2001),Attraction, stability and boundednees for stochastic differential delay equations, Nonlinear Anal 47 (7),pp 4795- 4806 [15] L Michael,(1970) ,Conservative Markov processes on a topological space, Israel J Math 8, pp 165-186 [16] Q Luo, X Mao,(2007),Stochastic population dynamics under regime switching, J Math Anal Appl 334, pp 69-84 [17] K Pichor, R Rudnicki,(2000),Continuous Markov semigroups and stability of trans-port equations, J Math Anal Appl 249, pp 668- 685 [18] S.Sathananthan,(2003),Stability analysis of a stochastic logistic model, Math Comput Modelling ,8, pp 585- 593 [19] W Shen, Y Wang,(2008),Carrying simplices in nonautonomous and random competi-tive Kolmogorov systems , J Differential Equations ,245, pp 1-29 [20] Z Teng,(2000),The almost periodic Kolmogorov competitive systems, Nonlinear Anal 42 , pp 1221- 1230 [21] A.D Ventcel,Course of the Theory of the Stochastic Processes, Nauka, Moscow, 1975 (in Russian) [22] C Yuan, X Mao, (2006),Attraction and stochastic asymptotic stability and bound-ednees of stochastic functional differential equations with respect to semimartingales, Stoch Anal Appl 24, pp 1169- 1184 [23] N.H.Du, N.H.Dang, (2011),Dynamics of Kolmogorov systems of competition type under the telegraph noise, J Differential Equations, 250, pp 386- 409 [24] A Rescigno, Irvin W Richardson, (1967),The struggle for life: I Two species, 29, pp 381- 384 44 ...ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN LÊ THỊ MINH THU ĐỘNG HỌC CỦA PHƯƠNG TRÌNH KOLMOGOROV CHỊU NHIỄU MARKOV Chuyên ngành : Lý thuyết xác suất thống kê toán học Mã số: 60 46 15. .. nghiệm phương trình đại số å jf(i) = 0;f( j) > 0; với j J; j2J åf(i) = 0: i2J 1.2.4 Quá trình Markov nghiệm phương trình vi phân Xét phương trình dXt dt = f (Xt ;xt ): Trong xt q trình Markov. .. nhiễu Markov MỤC LỤC Chương III: Ứng dụng vào mơ hình hệ phương trình cạnh tranh cổ điển Chương đề cập đến dáng điệu nghiệm hệ phương trình cạnh tranh cổ điển Lotka- Volterra tác động nhiễu Markov