1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Chuyên đề ôn thi ĐH số 7: Parabol

5 490 2
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 100,13 KB

Nội dung

CHUYÊN ĐỀ 7 PARABOL Các bài toán về parabol thường qui về việc xác đònh các yếu tố của parabol (tiêu điểm, đường chuẩn), lập phương trình của parabol và các vấn đề về tiếp tuyến của parabol. Do đó ta cần nắm vững các kiến thức cơ bản sau đây : Parabol (P) = { M∈ (Oxy) / MF = () M d Δ } F là tiêu điểm và ( là đường chuẩn. ) Δ Các dạng phương trình chính tắc : (P) : y 2 = 2px () Δ : x = 2 p − F 0 2 p , ⎛⎞ ⎜⎟ ⎝⎠ M ∈ (P) ⇒ x M 0 ≥ và r = MF = x M + 2 p (d) : Ax + By + C = 0 tiếp xúc với (P) ⇔ pB 2 = 2AC Tiếp tuyến với (P) tại tiếp điểm (P) : y 2 = –2px y x (P) F y ( ) Δ : x = 2 p F 0 2 p , ⎛⎞ − ⎜⎟ ⎝⎠ M ∈ (P) x M 0 ⇒ ≤ và r = MF = –x M + 2 p (d) : Ax + By + C = 0 tiếp xúc với (P) ⇔ pB 2 = –2AC Tiếp tuyến với (P) tại tiếp điểm x (P) F( P 2 , 0) P 2 − O () Δ P 2 O () Δ 1 M 0 (x 0 , y 0 ) có phương trình y 0 y = p(x 0 + x) (P) : x 2 = 2py () Δ : y = 2 p − F 0 2 p , ⎛⎞ ⎜⎟ ⎝⎠ M ∈ (P) ⇒ y M 0 ≥ và r = MF = y M + 2 p (d) : Ax + By + C = 0 tiếp xúc với (P) ⇔ pA 2 = 2BC Tiếp tuyến với (P) tại tiếp điểm M 0 (x 0 , y 0 ) có phương trình x 0 x = p(y 0 + y) M 0 (x 0 , y 0 ) có phương trình y 0 y = –p(x 0 + x) (P) : x 2 = –2py ( ) Δ : y = 2 p F 0 2 p , ⎛⎞ − ⎜⎟ ⎝⎠ M ∈ (P) y M 0 ⇒ ≤ và r = MF = –y M + 2 p (d) : Ax + By + C = 0 tiếp xúc với (P) ⇔ pA 2 = –2BC Tiếp tuyến với (P) tại tiếp điểm M 0 (x 0 , y 0 ) có phương trình x 0 x = –p(y 0 + y) Ví dụ1 : Cho parabol (P) : y 2 – 8x = 0 1) Xác đònh tiêu điểm F và đường chuẩn ()Δ của (P) 2) Viết phương trình tiếp tuyến với (P) tại điểm M(2; –4) y x (P) F P 2 O () Δ y x (P) F − P 2 O ( ) P 2 Δ 2 3) Viết phương trình tiếp tuyến với (P) biết nó song song với đường thẳng (D) : 2x – y + 5 = 0. Suy ra tọa độ tiếp điểm. 4) Viết phương trình tiếp tuyến với (P) biết nó xuất phát từ điểm I(–3, 0), suy ra tọa độ tiếp điểm. Giải 1) Tiêu điểm và đường chuẩn (P) : y 2 – 8x = 0 y 2 = 8x có dạng y 2 = 2px với p = 4 ⇔ Tiêu điểm F(2, 0) và đường chuẩn ⇒ ()Δ : x = –2. 2) Phương trình tiếp tuyến với (P) tại M(2; –4) Tiếp tuyến với (P) : y 2 = 8x tại tiếp điểm M(2, –4) có phương trình cho bởi công thức phân đôi tọa độ : –4(y) = 4(2 + x) ⇔ x + y + 2 = 0 3) Phương trình tiếp tuyến với (P) và song song với (D) Đường thẳng (d) // (D) với (D) : 2x – y + 5 = 0 (d) : 2x – y + C = 0 ⇒ (d) tiếp xúc với (P) : y 2 = 8x 4 = 2 . 2C = 4C ⇔ ⇔ C = 1 Vậy tiếp tuyến với (P) phải tìm có phương trình 2x – y + 1 = 0 Tiếp tuyến (d) với (P) : y 2 = 8x tại tiếp điểm M 0 (x 0 , y 0 ) còn có phương trình y 0 y = 4(x 0 + x) ⇔ 4x – y 0 y + 4x 0 = 0 mà (d) : 2x – y + 1 = 0, do đó : 4 2 = 0 1 y = 0 4 1 x ⇒ 0 0 1 2 2 x y ⎧ = ⎪ ⎨ ⎪ = ⎩ hay M 0 1 2 2 , ⎛⎞ ⎜⎟ ⎝⎠ 4) Phương trình tiếp tuyến với (P) xuất phát từ I(–3, 0). Tiếp tuyến với (P) và cùng phương với 0y là x = 0. Vậy pt tiếp tuyến ( ) qua d ′ I(–3, 0) có dạng: ( d ) : y – 0 = k(x + 3) ′ ⇔ kx – y + 3k = 0 3 ( ) tiếp xúc với (P) : y 2 = 8x d ′ 4 = 2k(3k) = 6k 2 k = ⇔ ⇔ ± 2 6 = ± 6 3 Vậy từ điểm I(–3, 0) có 2 tiếp tuyến với parabol (P) là: 6 3 x – y + 6 = 0 hay – 6 3 x – y – 6 = 0 6 3 ⇔ x – y + 6 = 0 hay 6 x +3 y +3 6 = 0 Tiếp tuyến ( d ) với (P) tại tiếp điểm M 0 (x 0 , y 0 ) có phương trình ′ 4x – y 0 y + 4x 0 = 0 Do đó với ( d ) : ′ 6 3 x – y + 6 = 0 ⇒ 4 6 3 = 0 1 y = 0 4 6 x ⇒ 0 0 3 12 26 6 x y = ⎧ ⎪ ⎨ == ⎪ ⎩ Với ( ) : d ′ 6 x + 3y + 3 6 = 0 ⇒ 4 6 = 0 3 y − = 0 4 36 x ⇒ 0 0 3 12 26 6 x y = ⎧ ⎪ ⎨ =− =− ⎪ ⎩ Vậy 2 tiếp điểm phải tìm là (3; 2 6 ) và (3; –2 6 ). Ví du2( ĐỀ DỰ TRỮKHỐI A –2003) : Trong mặt phẳng với hệ tọa độ Đềcac vuông góc Oxy, cho parabol (P) có phương trình y 2 = x và điểm I (0; 2). Tìm tọa độ hai điểm M, N thuộc (P) sao cho IN4IM = . Giải Gọi M(m 2 ; m) ∈ (P), N(n 2 ; n) ∈ (P) IM ⎯→ = (m 2 ; m – 2) IN ⎯→ = (n 2 ; n – 2) IN ⎯→ = (4n 2 ; 4n – 8) ⇒ 4 4 Vì IM ⎯→ = 4 IN ⎯→ ⇔ 22 m4n m24n8 ⎧ = ⎪ ⎨ −= − ⎪ ⎩ ⇔ ⇒ ⎢ 2 m4n6 n4n3 =− ⎧ ⎪ ⎨ −+= ⎪ ⎩ 0 = ⎣ 1 2 n1 n3 = ⎡ 1 2 m2 m6 ⇒=− ⇒= ⇒ M 1 (4; − 2), N 1 (1; 1), M 2 (36; 6), N 2 (9; 3) Ví du 3 ( ĐỀ DỰ TRỮKHỐI A –2003) : Trong mặt phẳng với hệ tọa độ Đềcac vuông góc Oxy cho elip (E): 1 1 y 4 x 22 =+ . M( − 2; 3); N(5; n). Viết phương trình các đường thẳng d 1 , d 2 qua M và tiếp xúc với (E). Tìm n để trong số các tiếp tuyến của (E) đi qua N có một tiếp tuyến song song với d 1 hoặc d 2 . Giải 1) Viết phương trình các đường thẳng qua M tiếp xúc với E. x = 2 là 2 tiếp tuyến thẳng đứng của (E) ± Vậy d 1 : x = − 2 là 1 tiếp tuyến của (E) qua M. Phương trình tiếp tuyến d qua M( − 2; 3) khác dường thẳng x = − 2 có dạng : y – 3 = k(x + 2) O 3 x y − 2 M ⇔ kx – y + 3 + 2k d tiếp xúc với (E) ⇔ 4k 2 + 1 = (3 + 2k) 2 ⇔ 4k 2 + 1 = 9 + 4k 2 + 12k 82 12 3 − =− ⇔ k = d 2 : 2x + 3y – 5 = 0 2) dễ thấy tiếp tuyến d của (E) qua N(5; n) không song song với : x = − 2. Do đó d song song với d 2 : 2x + 3y – 5 = 0 và qua N(5; n) có hệ số góc : k = − 2 3 =− − + 2 y(x5) 3 n . Vậy d : hay d : 2 −− + n = 0 ⇔ − 2x – 3y + 10 + 3n = 0 10 xy 33 + d tiếp xúc với E ⇔ 4( − 2) 2 + 1.( − 3) 2 = (10 + 3n) 2 − 5 3 ⇔ 3n 2 + 20n + 25 = 0 ⇔ n = – 5 hay n= − 5 3 : loại vì khi đó d trùng với d 1 . n = Vậy N(5; − 5). * * * 5 . CHUYÊN ĐỀ 7 PARABOL Các bài toán về parabol thường qui về việc xác đònh các yếu tố của parabol (tiêu điểm, đường chuẩn), lập phương trình của parabol. là (3; 2 6 ) và (3; –2 6 ). Ví du2( ĐỀ DỰ TRỮKHỐI A –2003) : Trong mặt phẳng với hệ tọa độ Đềcac vuông góc Oxy, cho parabol (P) có phương trình y 2 = x

Ngày đăng: 23/10/2013, 23:15

TỪ KHÓA LIÊN QUAN

w