Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 110 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
110
Dung lượng
12,15 MB
Nội dung
DAI HOC QUOC GIA HA NOI TRI/ONG DAI HOC KHOA HOC TLTNHIEN I TAI (Ca^p Dai hoc Quoc gia) CAC MO HiNH TOAN OANH GIA SLTTHier HAI VE KINH • • • TE DO TAC DONG COA MOI TRLfCING CAC KHU • CONG NGHIEP Ma sd: QT - 01 - 27 Chu tri: PGS.TS.Chu Dure Khoa Toan Ca Tin hoc GS.TS Tran Van Nhung TS Dang Dinh Chau TS Le Dinh Dinh Ths Nguyen Xuan Trieu PGS.TS Nguyen Huu Ngu PGS.TS Trdn Khdc Hidp DT/eeij-4 Hanoi 12-2002 NOIDUNG PHAN A : BAO CAO TOM T A T * Tieng viet * Tieng Anh * Xac nhan PHAN B : BAO CAO CHINH PHAN C : PHU LUC PHAN A BAG CAO TOM TA.T Bao cao torn tat bann tieim viet CAC MO HiNH T O A N OANH GlA'SL/THIET HAI VE KINH TE DO TAC DONG COA MOI TRl/dNG CAC KHU CONG NGHIEP Ma so: QT - 01 - 27 ' 1) Chu tri: POSTS Chu Diic Khoa Toan Ca Tin hoc 2) Cac can bo phoi hop : GS.TS Tran Van Nhung TS Dang Dinh Chau TS Le Dinh Dinh Ths Nguyen Xuan Trieu PGS.TS Nguyen Huu Ngir PGS.TS Tran Khac Hiep 3) Muc tieu va noi dung : Bai toan danh gia sir thiet hai ve kinh te tcic dong den moi truong cua cac qua trinh cong nghiep hoa, thi hoa Viet Nam da duoc de cap den , le te cac de tai, cac bo, cac nganh va cac dia phuang Tuy nhien dang b muc sa sai tiiy dieu kien cu the cua tiing nai tijtig liic ma cac nha khoa hoc xay dung de cuang dif an cho phii hap vai hoan canh Vf du ve o nhiem thi cb bao nhieu loai b nhiem, moi nhiem co pham vi anh huang nhu the nao, cac yeu to nhiem chfnh, phu v.v van chua duac xet mot each day dii Ve thiet hai kinh.te , den bii ton that, thue moi tmong, dong gop xa hoi dang a giai doan tiiy cac nha lam chinh sach quyet dinh Han nua cac so lieu de xu ly nhieu nai khong dong bo, khap kliicmg Chinh vi vay nhung ket luan khoa hoc se dan den ket qua a muc tin cay khong cao Vai de tai nay, chiing toi chi muon de cap den mot khfa canh nho £^o la sir anh hucVng tai moi truong cac khu cong nghiep san sinh Til dan den thiet hai ve kinh te nhu the nao Chiing ta phai trai qua cac buac thuc hanh nhu sau, tam goi la "ky thuat danh gia thiet hai kinh te," tien t6i se xay dung mot ''Quy trinh danh gia thiet hai kinh te tac dong ciia moi trutmg" (xem [10]) Ve noi dung co cac phan sau : - Xay dung bang dieu tra mSu lay so lieu Thiet lap mo hinh tinh toan - Lap chuang trinh vi tinh - Ap dung cu the cho viing gang thep Thai nguyen - Phu luc phan loai nhiem va tinh toan thiet hai - Phu luc cac bai bao da dang 4) Cac ket qua dat duac : - Da xay dung duac bang dieu tra mau - Phan loai duac cac nhom nhiem khf, nuac,dat ciia viing khu gang thep Thai nguyen - Lap duac chuang tnnh tfnh toan thiet hai kinh te - Hai bai bao duac cong bo tren tap chf va hoi nghj quoc te 5) Tmh hinh kinh phf ciia de tai; Vai kinh phf trieu qiia eo hep Cho nen chiing toi phai ket hap vai cac de tai khac de hoan nhiem vu Bao cao tdm tat bang tieng Anh MATHEMATICAL MODELS FOR THE ASSESSMENT OF ECONOMICAL DAMAGES UNDER THE IMPACTS OF ENVIRONMENT IN INDUSTRLAL REGIONS CODE (QT - 01 - 27) Coordinator : Prof Dr Chu Due Faculty of Mathematics - Mechanics - IntoiTnatics MUC LUC II Bao cao tieng Anh I Participants II Background III Activities IV Results V Conclusion I Participants Prof Dr Chu Due Dr Dang Dinh Chau Prof Dr Tran Van Nhung(Bd GD &DT) Dr Le Dinh Dinh Ms Nguyen XuSn Trieu Prof Dr Nguyen Huu Ngu (Tin hoc) PGS.TS TRan khac Hiep (Khoa MT) Time : from 12/2001 to 12/2002 II Background In recently years many factories has been established in Vietnam Behind the great benefit of economy apeared a lot of environmental damages which has great insluences But how to calculate thouse intluences In this project we give some mathematical methods to solve this problem III Acctivities - Cooperation with economics University of Hanoi - Coperation with the centre for regional research and Development-Red river Delta - Copperation with Ministry of Agriculture and Rural Development - Weekly seminar for Participants - Attending the conference of foresteconomics in Germany, October, 2002 IV Results - Step 1: Set up the inoestigational table for collection of data - Step : Collection the data at Metal Center Thai Nguyen fit)ml995to - 2001 Step : Modelling : + Analysis Methods + Statistical Method and system Analysis Step : Designing the program for computer We have some publication in following : + On the asymptotic equivalence of linear differential equations in Hilbert spaces, -h A methematical method for assessing of quality of plantation forestry in Vietnam V Conclusion - Up to now there is the following methods + Method of Tables + Method of mape join + Method of lenear models + Method of unlenear models + Mothed of energy balance - Hier we use the lenear models to calculate the economical damages And then we apply the modeling for the Thai Nguyen metal center - Finaly we give a computer progam for calculation Phan xac nhan XAC NHAN CUA BAN CHU NHIEM KHOA (Ky va ghi ro ho ten) CHU TRI DE TAI (Ky va ghi ro ho ten) t^ P^S, f ^^ ^^ ^y^^-^ ^"^ ^^^ "^ CUA TRUONG (TYu -^^ t-i t tungkhu Khu 3, lan 1.5 376.5 499.795 593.23 556.988 t=l t=2 t=3 t=4 Chi phi khu tu t=l 2391.8 2.45 14.7 4.035 1.825 7.15 2.93 1.4 t=2 553.015 t=3 1.35 9.65 3.54 1.275 2010 21.72 16.078 25 2391.8 553.015 619.813 586.4881 t=4 619.813 586.4881 3000 t=1 t=2 t=4 Page cavung Cac tong Q(t) ung voi chi phi ca vung la: t=l t=2 t=3 t=4 1386 1453.524 1428.846 3075.05 3500 t=1 t=2 t=3 Eaee t=4 Sheet iOLIEU KHU GANG THEP THAI N G U \T N iskhuh= |slans= ! sbenh schat n : tg nuv= 3iu thich :Xi Vi(tr) Zi Nil P i l l T C i l l 1Mil2 Pil2 TCil Ni21 30 0.21 0.5 • 1140 38 0.081 0 0 01 10' 0 :) 40 0.025 0 0! 1chu2 hm 1an khu2 "1^29 17 0.01 1140 200 0.02 0.2 0.5 25 ' Nuoc t= 17 120 1600 0.02 0.02 1800 0.5 0.3 40 3' 130 0.03 18 0.02 '" Tsoo 0.7 1300 0.27 20 ! 150 0.02 1550 0.03 19 1200 0.5 0.1 28 IJ 0 0 0 0.4 0.2 30 :Dat t= '} "^0 0 0 0.6i 0.27 30 0 n 0 0.45 0.08 30 ' •.') 0 0 0' 0.4i 0.03 20 '1 0 0 0 1.2 30 0.025 Khi t=l 0 0 1.5 ' "o 0.27 50 -^ 1 0 0 0 1.2 50 0.081 J •J 0 0 0 1.2 25 0.025 (1 0 0 0 0.1 30 0.025 Mui t= 0 0 0 0.2 0.27 50 0 0 0 0.3 40 0.081 0 0 0 0.25 35 0.025 0 0 (J 0 7.3 30 0.025 On t=l 0: 0 0 8.5 0.27 n 45 f) 0 0 0 38 0.081 LI 0 0^ 0 0 10 50 0.025 —•_ ; 1 » — ,* •~1 Khu3 lan 1 Page bheetl Nuoc t=i; 31 — 4! ^ Dat u t= ! 3] Khi Mui On 41 t=l t= t=l 301 0.21 351 0.025 f 25 0.27 28 0.081 40 0.025 25 0.27 30 L 0.081 40 0.025 50 0.025 50 0.27 35 0.081 25 0.025 50 0.025 0.27 35 40 0.081 35 0.025 80 0,25 0.27 36 38 0.081 40 0.25 0.5 i 0.5 0.61 0.71 0.5 0.4 0.5 0.4 1.2 1.2 1.2 1.2 0.1 0.2 0.3 0.4 10 12 13 15 1140 1200 1300 1350! Oi 0' 01 0( OI 01 0: OI Oi Oi 0' OI 01 0.01 0.02 0.03 0.03 0! 0: 0: 0! Oi 01 Oi 01 Oi 01 Oi Oi 0 Oi Page 17 19 18 19 0 0 0! 0 Oi Oi 0! 0: 0: 0 100 120 130 150 0 0 0.02 0.02 0.02, 0.02 0' 0' Oi Oi Oi Oi 01 OI OI 01 Oi Oi 0- 50 150 200 150 0 0 0 0 0 0' 01 OI Oi 0^ Oi 0' Oi 0! Oi OI OI 1429 1450 1500 1550 0 0 0 0 0 0 0 0 Sheet 1 "^ • i — t r_o 0.01 0.01 0.01 0.01 0! 0 0 0 0 0i 01 0 01 • 219 230 250 270 i 01 01 01 0 0i 0 0 01 ni • i i TCi21 Ni22 Pi21 ^ooiT 219 230 "m' 250! 0.01 270 0.01 o" 0 Oi 01 ' oi 0 0 ol 0 0 0 0 0 0 0 0 — • i 1 Pi22 ; TCi22 Ni31 0 0 0 0 0 0 0 0 01 0! 0! ! 0.1 0.1 0.1 0.1 0 0 0 0 0 0i 0i 01 01 01 Oi 0' 0' Oi Oi 01 01 01 Oi Oi 0 Oi 0 0' 0' 01 01 0i 0i 01 0.1 0.1 0.1 ' 0.1 0! 0 0 0 0 0 0 0' 0^ 0 0, 0 Oi Oi 0; Oi Ol 0! c cI c c)i c)! c)< c) c)! c)! c)1 c)\ c)i c c C C) c)' c), c)i lPi31 TCi3 Ni32 861 0.05 90 0.05 95! 0.05 90! 0.051 Oi 0, o: 0! Ol 01 01 Ol Ol 0' 0! 0! 0! Ol 01 Oi Ol 01 0 o! 0 0 0 0! 0 0' 01 0' 0 0' 01 0: 0 Oi Oi 86 90^ 100' 90^ 0' 0, 0 0' 0 0 Oi 0: 0: 01 0.05 0.05 0.05 0.05 0 0 0 0 0 Ol Oi ' _ _ ^ Page 0 7 7 0 0 0 0 0 0 0: 01 0! Pi32 TCi32 Ni41 0.01 3( 0.01 4( 0.01 4^ 0.01 3' 0 0 0 0 Oi 0 Ol 0 Ol 0^ 0 0 0 0 0 0 Ol 0 0' 0 0 0 0 0 0, 0 T 0 0 0 0 0 1) 0 0 0.01 0.01 0.01 0.01 0 0 0 0 0 Oi 0' 0 0 0 0 0 0 0 0 0 0 0 Sheet 219 230 250 270 Ol Oi 0 0 Oi Oi Ol 01 01 Oi 0 0 0 0 0! 0.01 0.01 0.01 o| 01 Oi 01 Ol Oi 0 0 0 0 0.1 0.1 0.1 0.1 0' 0 Ol 01 Oi O! Oi 0! 01 01 21 _0^ OT _0^ 0 0 0! 0' 0! Oi 0! 01 0! 01 01 0! 86 901 951 90' 0.05 0.05 0.05 0.05 0' 0' Oi 0! Ol 0 0 0 0! Ol 01 Oi 01 01 0' 01 Oi 01 Oi 0I_ 01 —h 0; Oi Oi Page 0 0 0 0 0 0 0 0 0 Oi 0 0 0' 0.01 0.01 0.01 0.01 0 0 0 0 0 c ( Oi ( Oi 0 0, 0' ( ( ( ( Oi ( 0 ( ( 0 01 Oi 01 Sheet ^41 TCi41 Ni42 27 0.05 0.05 0.05 0.05 0 0 0 0 0! 0' 0: 0 0 0 0 0 0 0 iICi42 0.1 0.1 0.1 0.1 01 0 01 Oi 0 0! Oi 0' 0 0' 0 0 01 Oi 0! 01 0.05 0.05 0.05 0.051 21 3i Oi 27 27 27' 27 0 0 0 Oi Ol Oi Oi 0 0 0 0 Oi 0! 0^ Ol Oi 01 0! Oi ! ; : Oi 01 Oi 0' _ 27 27 27 Oi 0 0 0 0 0! Pi42 01 4i 5' Oi 0! 01 Ol 01 0! 0.1 0.1 0.1 0.1 0 Oi 0 0 0 0 0 Ni5l 0 0 0 0, Pi5l 694 700 750 800 0! 0 0 0 0 0 0 0! 0 0 0 0 0 0: 0 0 0 0 0 0 0 0 0 Ol TCi5l Ni52 0.1 0.1 0.1 0.1 106 106 106 106 0 0 0 0 0 0 0 0! c 0 0 0 Pi52 Ol 0 Ol 0 0 0 0 0 0 01 0 694 700 750 600 0 0' 0 0.1 0.1: 0.1 0.1 0 Oi 106 106 106 106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Page Oi 0