TRƯỜG THPT ĐẶG THÚCHỨA GIÁO VIÊ: TrÇn §×nh HiÒn TrÇn §×nh HiÒnTrÇn §×nh HiÒn TrÇn §×nh HiÒn ĐỀ THITHỬ ĐẠI HỌC LẦ 2 - ĂM 2010Môn thi: TOÁ; Khối: A Thời gian làm bài: 180 phút, không kể thời gian phát đề. PHẦ CHUG CHO TẤT CẢ THÍ SIH (7,0 điểm): Câu I (2,0 điểm) Cho hàm số 3 1 x m y x + = + (1) , m là tham số thực. 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 2.2. Tìm các giá trị của m để tiếp tuyến d của đồ thị hàm số (1) tại giao điểm của đồ thị hàm số (1) với trục tung thỏa mãn góc giữa đường thẳng d và đường thẳng d’: x – 3y + 2 = 0 bằng 0 45 . Câu II (2,0 điểm) 1. Giải phương trình ( ) ( ) 2 tan sin 1 2sin sin 22 4 2 x x x x π − = − − 2. Giải hệ phương trình 2222 9 9 8 ( , ) 9 9 8 x x y y x y R x x y y − + − + + = ∈ − − + + + = Câu III (1,0 điểm) Tính tích phân ( ) 4 0 sin 2 .ln tan 1I x x dx π = + ∫ Câu IV (1,0 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh bằng 2a và 0 60 BAD = ; cạnh bên SA = SC, SB = SD. Gọi M, N lần lượt là trung điểm của các cạnh AB và BC. Biết hai mặt phẳng (SDM) và (SDN) vuông góc với nhau. Tính thể tích khối chóp S.ABCD và khoảng cách từ D đến mặt phẳng (SMN) theo a. Câu V (1,0 điểm) Cho a,b,c là các số thực không âm và không có hai số đồng thời bằng 0. Chứng minh rằng: 222 3 222 a b b c c a a c b a c b + + + + + ≥ + + + PHẦ RIÊG (3,0 điểm): Thí sinh chỉ được làm một trong hai phần (phần A hoặc B) A. Theo chương trình Chun Câu VI.a (2,0 điểm) 1. Trong mặt phẳng với hệ toạ độ Oxy, cho đường tròn (C): x 2 + y 2 - 2x + 4y + 1 = 0 có tâm I và đường thẳng d: x – y + 1 = 0. Tìm tọa độ điểm M trên đường thẳng d sao cho qua M kẻ được hai tiếp tuyến MA và MB (A, B là các tiếp điểm) đến đường tròn (C) sao cho tứ giác MAIB có diện tích bằng 4 3 . 2. Trong không gian với hệ toạ độ Oxyz, cho hai điểm B(- 3; 0 ; - 2), C(- 1; - 2; 2) và mặt phẳng ( ) : 2 4 0P x y z+ + − = . Tìm tọa độ điểm A , điểm M trên mặt phẳng (P) sao cho tam giác ABC đều và MA MB MC+ + nhỏ nhất. Câu VII.a (1,0 điểm) Giải bất phương trình : 1 1 1 1 1 1 3 3 3 log 2.2 1 log 2.2 4 log 23.2 4 ,( ) x x x x R − + − ≤ − ∈ B. Theo chương trình âng cao Câu VI.b (2,0 điểm) 1. Trong mặt phẳng với hệ toạ độ Oxy, cho hình vuông ABCD có phương trình đường chéo AC: x + 2y – 3 = 0. Biết điểm D thuộc đường thẳng d: x – y – 2 = 0 và đường thẳng BC đi qua điểm M(7; - 7). Tìm tọa độ tâm I của hình vuông ABCD. 2. Trong không gian với hệ toạ độ Oxyz, cho đường thẳng 1 2 : 4 1 1 x y z+ − ∆ = = − và mặt phẳng ( ) : 2 – – 2 – 6 0P x y z = . Viết phương trình mặt cầu (S) tiếp xúc với đường thẳng ∆ tại điểm ( ) 0; 1; 2A − và tiếp xúc với mặt phẳng (P) tại điểm B(1; 0 ; - 2). Câu VII.b (1,0 điểm) Gọi z 1 , z 2 là hai nghiệm phức của phương trình: 2 ( 4 ) 1 7 0z m i z i− + − + = . Tìm số phức m sao cho 1 22 1 3 2 z z i z z + + = --------------- Hết --------------- . ĐẶG THÚC H A GIÁO VIÊ: TrÇn §×nh HiÒn TrÇn §×nh HiÒnTrÇn §×nh HiÒn TrÇn §×nh HiÒn ĐỀ THI THỬ ĐẠI HỌC LẦ 2 - ĂM 20 10 Môn thi: TOÁ; Khối: A Thời gian. theo a. Câu V (1,0 điểm) Cho a, b,c là các số thực không âm và không có hai số đồng thời bằng 0. Chứng minh rằng: 2 2 2 3 2 2 2 a b b c c a a c b a c b