1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Bất đẳng thức_02

13 200 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 13
Dung lượng 2,57 MB

Nội dung

WWW.VNMATH.COM Chương 2 Bất đẳng thức 2.1 Phương pháp sử dụng bất đẳng thức Cauchy 2.1.1 Bất đẳng thức Cauchy - So sánh giữa tổng và tích Cho ba số không âm a,b, c, ta có : 1. a + b 2 ≥ √ ab, dấu bằng xảy ra khi a = b ; 2. a + b + c 3 ≥ 3 √ abc, dấu bằng xảy ra khi a = b = c. 2.1.2 Một số hệ quả trực tiếp Hệ quả 1 : So sánh giữa tổng nghịch đảo và tổng. Cho ba số dương a,b, c có : 1. 1 a + 1 b ≥ 4 a + b ; 2. 1 a + 1 b + 1 c ≥ 9 a + b + c . Hệ quả 2 : So sánh giữa tổng bình phương và tồng. Cho ba số thực a,b, c có : 1. 2(a 2 + b 2 ) ≥ (a + b) 2 ; 2. 3(a 2 + b 2 + c 2 ) ≥ (a + b + c). Hệ quả 3 : So sánh giữa tổng, tổng bình phương và tích. Cho ba số thực a,b, c có : 1. (a + b + c) 2 ≥ 3(ab + bc + ca) ; 2. a 2 + b 2 + c 2 ≥ ab + bc + ca. 2.1.3 Bài tập đề nghị Bài 2.1 : Cho a, b, > 0. Chứng minh rằng : ab(a + b) 2 ≤  a + b 2  3 ≤ (a + b)(a 2 + ab + b 2 ) 6 ≤ a 3 + b 3 2 ≤ (a 2 + b 2 ) 3 (a + b) 3 . Bài 2.2 : Cho a, b > 0 và a + b ≤ 1. Chứng minh rằng : 37 WWW.VNMATH.COM CHUYÊN ĐỀ LUYỆN THI ĐẠI HỌC 1. 1 a + 1 b ≥ 4 ; 2. 1 a + 1 b + a + b ≥ 5. Bài 2.3 : Cho các số không âm a, b, c có a + b + c ≤ 3. Chứng minh rằng : 1. a + b + c ≥ ab + bc + ca ; 2. √ a + √ b + √ c ≥ ab + bc + ca. Bài 2.4 : Cho x, y > 0. Chứng minh rằng : (1 + x)(1 + y) ≥ (1 + √ xy) 2 . Bài 2.5 : Cho x, y > 0. Chứng minh rằng : x 2 + y 2 + 1 x + 1 y ≥ 2( √ x + √ y). Bài 2.6 : Cho x, y > 0 và x + y = 1. Tìm giá trị nhỏ nhất của P = 1 x 2 + y 2 + 1 xy . Bài 2.7 : Cho x, y, z > 0 và x + y + z = 1. Tìm giá trị lớn nhất của P = x x + 1 + y y + 1 + z z + 1 . Bài 2.8 : Cho a,b > 0 và a + b = 1. Chứng minh rằng : a 2 a + 1 + b 2 b + 1 ≥ 1 3 . Bài 2.9 : Cho các số thực dương a, b, c. Chứng minh rằng : 1 a + 3b + 1 b + 3c + 1 c + 3a ≥ 1 2a + b + c + 1 2b + c + a + 1 2c + a + b . Bài 2.10 : Chứng minh rằng với mọi a, b, c > 0 đều có : 1. 1 a(b + c) + 1 b(c + a) + 1 c(a + b) ≥ 27 2(a + b + c) 2 ; 2. 1 a(a + b) + 1 b(b + c) + 1 c(c + a) ≥ 27 2(a + b + c) 2 . Bài 2.11 : Cho a,b > 0 và a + b ≤ 1. Tìm giá trị nhỏ nhất của S = ab + 1 ab . Bài 2.12 : Cho a,b > 0. Tìm giá trị nhỏ nhất của biểu thức S = a + b √ ab + √ ab a + b . Bài 2.13 : Cho a,b, c > 0 và a + b + c ≤ 3 2 . Tìm giá trị nhỏ nhất của biểu thức S = a + b + c + 1 a + 1 b + 1 c . Bài 2.14 : Chứng minh rằng với mọi số dương x, y, z đều có : x 2 + y 2 + z 2 ≥ √ 2(xy + yz). Bài 2.15 : Cho a,b, c > 0 và a + b + c = 4. Chứng minh rằng : ab a + b + 2c + bc b + c + 2a + ca c + a + 2b ≤ 1. Bài 2.16 : Cho a,b, c > 0. Chứng minh rằng : ab a + 3b + 2c + bc b + 3c + 2a + ca c + 3a + 2b ≤ a + b + c 6 . Bài 2.17 : Cho a,b, c > 0. Chứng minh rằng : 1. a + b c + b + c a + c + a b ≥ 6 ; 2. a b + c + b c + a + c a + b ≥ 3 2 ; 3. a 2 b + c + b 2 c + a + c 2 a + b ≥ a + b + c 2 ; 4. a 3 b + c + b 3 c + a + c 3 a + b ≥ a 2 + b 2 + c 2 2 . Bài 2.18 : Cho a,b, c > 0 và abc = 1. Tìm giá trị nhỏ nhất của các biểu thức sau : 1. P = a 2 b + c + b 2 c + a + c 2 a + b ; 2. Q = a 3 b + c + b 3 c + a + c 3 a + b ; 3. R = a 2 √ a b + c + b 2 √ b c + a + c 2 √ c a + b ; 4. S = bc a 2 b + a 2 c + ca b 2 c + b 2 a + ab c 2 a + c 2 b ; TRẦN ANH TUẤN - 0974 396 391 - (04) 66 515 343 Trang 38 www.VNMATH.com www.VNMATH.com WWW.VNMATH.COM CHUYÊN ĐỀ LUYỆN THI ĐẠI HỌC Bài 2.19 : Cho x,y, z, t > 0 và xyzt = 1. Tìm giá trị nhỏ nhất của biểu thức : P = 1 x 3 (yz + zt + ty) + 1 y 3 (zt + tx + xz) + 1 z 3 (tx + xy + yt) + 1 t 3 (xy + yz + zx) . Bài 2.20 : Cho a, b, c > 0. Tìm giá trị nhỏ nhất của biểu thức sau : 1. P = a b + 2c + b c + 2a + c a + 2b . 2. Q = a b + mc + b c + ma + c a + mb , m ∈ N, m > 2. 1 Bài 2.21 : Cho a, b, c > 0. Chứng minh rằng : 1. (a + b)(b + c)(c + a) ≥ 8abc ; 2. bc a + ca b + ba c ≥ a + b + c. Bài 2.22 : Cho a, b, c là độ dài ba cạnh của một tam giác. Chứng minh rằng : 1. a b + c − a + b c + a − b + c a + b − c ≥ 3 ; 2. a 2 b + c − a + b 2 c + a − b + c 2 a + b − c ≥ a + b + c. Bài 2.23 : 1. Cho a,b, c là độ dài ba cạnh của một tam giác, p là nửa chu vi của tam giác. Chứng minh rằng : (p − a)(p − b)(p − c) ≤ abc 8 . 2. Cho tam giác ABC có chu vi bằng 3 và độ dài ba cạnh của tam giác là a,b, c. Chứng minh rằng : 4(a 3 + b 3 + c 3 ) + 15abc ≥ 27. Bài 2.24 : Cho a, b, c, d > 0 và a + b + c + d = 1. Chứng minh rằng :  1 a − 1   1 b − 1   1 c − 1   1 d − 1  ≥ 81. Bài 2.25 : Cho a, b ≥ 1. Chứng minh rằng : a √ b − 1 + b √ a − 1 ≤ ab. Bài 2.26 : Cho a, b, c ≥ 0 và a + b + c = 1. Chứng minh rằng : ab + bc + ca + abc ≤ 10 27 . Bài 2.27 : Cho a, b, c > 0. Chứng minh rằng : 2 a 2 + bc ≤ 1 2  1 ab + 1 ac  . Bài 2.28 : Cho a, b > 0 và a + b = 1. Chứng minh rằng : 3 ab + 2 a 2 + b 2 ≥ 16. Bài 2.29 : Cho a, b, c > 0 và 1 1 + a + 1 1 + b + 1 1 + c ≥ 2. Chứng minh rằng : abc ≤ 1 8 . Bài 2.30 : Cho a > b > 0 và ab = 1. Chứng minh rằng : a 2 + b 2 a − b ≥ 2 √ 2. Bài 2.31 : Tìm giá trị nhỏ nhất của A = (1 + x)  1 + 1 y  + (1 + y)  1 + 1 x  với x,y > 0 thỏa mãn x 2 + y 2 = 1. Bài 2.32 : Cho x,y, z > 1 thỏa mãn x + y + z = xyz. Tìm giá trị nhỏ nhất của : P = y − 2 x 2 + z − 2 y 2 + x − 2 z 2 . Bài 2.33 : Cho a, b, c > 1. Chứng minh rằng : a log b c + b log c a + c log a b ≥ 3 3 √ abc. 1 Một cách tổng quát, tìm giá trị nhỏ nhất của R = a xb + yc + b xc + ya + c xa + yb với a, b, c, x, y là những số dương TRẦN ANH TUẤN - 0974 396 391 - (04) 66 515 343 Trang 39 www.VNMATH.com www.VNMATH.com WWW.VNMATH.COM CHUYÊN ĐỀ LUYỆN THI ĐẠI HỌC Bài 2.34 : Cho a,b, c > 0 và a + b + c = 1. Chứng minh rằng :  1 + 1 a   1 + 1 b   1 + 1 c  ≥ 64. Bài 2.35 : Cho a,b > 0. Chứng minh rằng : (a + b) 2 +  1 a + 1 b  2 ≥ 8. Bài 2.36 : Cho a,b, c > 0. Chứng minh rằng : bc a 2 b + a 2 c + ca b 2 c + b 2 a + ab c 2 a + c 2 b ≥ 1 2  1 a + 1 b + 1 c  . Bài 2.37 : Cho a,b, c > 0. Chứng minh rằng : ab a + b + bc b + c + ca c + a ≤ a + b + c 2 . Bài 2.38 : Cho a ≥ 3. Tìm giá trị nhỏ nhất của biểu thức S = a + 1 a . Bài 2.39 : Cho a ≥ 2. Tìm giá trị nhỏ nhất của biểu thức S = a + 1 a 2 . Bài 2.40 : Cho a,b, c ≥ 0 thỏa mãn a 2 + b 2 + c 2 = 1. Tìm giá trị nhỏ nhất của biểu thức S = a + b + c + 1 abc . Bài 2.41 : Cho x, y > 0 và x + y = 1. Tìm giá trị nhỏ nhất của biểu thức S = x √ 1 − x + y √ 1 − y . Bài 2.42 : Cho a,b, c ≥ 0 và a + b + c = 1. Tìm giá trị lớn nhất của biểu thức S = 3 √ a + b + 3 √ b + c + 3 √ c + a. Bài 2.43 : Cho a,b, c > 0 và a + b + c = 3. Tìm giá trị lớn nhất của biểu thức S = 3  a(b + 2c) + 3  b(c + 2a) + 3  c(a + 2b). Bài 2.44 : Cho a ≥ 2; b ≥ 6; c ≥ 12. Tìm giá trị lớn nhất của biểu thức S = bc √ a − 2 + ca 3 √ b − 6 + ab 4 √ c − 12 abc . Bài 2.45 : Chứng minh rằng :  a b + b c + c a  2 ≥ 3 2  a + b c + b + c a + c + a b  với mọi a, b, c > 0. Bài 2.46 : Cho a,b, c > 0 và a + b + c = 3. Chứng minh rằng : a 3 (a + b)(a + c) + b 3 (b + c)(b + a) + c 3 (c + a)(c + b) ≥ 3 4 . Bài 2.47 : Cho a,b, c > 0 và a + b + c = 3. Chứng minh rằng : a 3 b(2c + a) + b 3 c(2a + b) + c 3 c(2b + c) ≥ 1. Bài 2.48 : Cho a,b, c > 0 và a 2 + b 2 + c 2 = 1. Chứng minh rằng : a 3 b + 2c + b 3 c + 2a + c 3 a + 2b ≥ 1 3 . Bài 2.49 : Cho a,b, c > 0 và a 2 + b 2 + c 2 = 1. Chứng minh rằng : a 3 a + b + b 3 b + c + c 3 c + a ≥ 1 2 . TRẦN ANH TUẤN - 0974 396 391 - (04) 66 515 343 Trang 40 www.VNMATH.com www.VNMATH.com WWW.VNMATH.COM CHUYÊN ĐỀ LUYỆN THI ĐẠI HỌC Bài 2.50 : Cho a, b, c > 0 và ab + bc + ca = 1. Chứng minh rằng : a √ 1 + a 2 + b √ 1 + b 2 + c √ 1 + c 2 ≤ 3 2 . Bài 2.51 : Cho a, b, c > 0 và ab + bc + ca = 1. Chứng minh rằng : 1 a(a + b) + 1 b(b + c) + 1 c(c + a) ≥ 9 2 . Bài 2.52 : Cho a, b, c > 0 và a + b + c = 1. Chứng minh rằng : a (b + c) 2 + b (c + a) 2 + c (a + b) 2 ≥ 9 4 . Bài 2.53 : Cho a, b, c > 0 và a 2 + b 2 + c 2 = 3. Chứng minh rằng : ab c + bc a + ca b ≥ 3. Bài 2.54 : Cho a, b, c > 0 và a + b + c = 1. Chứng minh rằng : bc √ a + bc + ca √ b + ca + ab √ c + ab ≤ 1 2 . Bài 2.55 : Cho a, b, c > 0 và a + b + c = 2. Chứng minh rằng : bc √ 2a + bc + ca √ 2b + ca + ab √ 2c + ab ≤ 1. Bài 2.56 : Cho a, b, c > 0 và abc = 1. Chứng minh rằng : a 3 (1 + b)(1 + c) + b 3 (1 + c)(1 + a) + c 3 (1 + a)(1 + b) ≥ 3 4 . Bài 2.57 : Cho a, b, c > 0 và abc = 1. Chứng minh rằng : 1 a 3 (b + c) + 1 b 3 (c + a) + 1 c 3 (a + b) ≥ 3 2 . Bài 2.58 : Cho a, b, c > 0. Chứng minh rằng : 1 a + 1 b + 1 c ≥ 2  1 a + b + 1 b + c + 1 c + a  . Bài 2.59 : Cho a, b, c > 0 và a + b + c ≤ 1. Chứng minh rằng : 1 a 2 + 2bc + 1 b 2 + 2ca + 1 c 2 + 2ab ≥ 9. Bài 2.60 : Cho a, b > 0 và a + b ≤ 1. Chứng minh rằng : 1 a 2 + b 2 + 1 ab ≥ 6. Bài 2.61 : Cho a, b > 0 và a + b ≤ 1. Chứng minh rằng : 1 a 2 + b 2 + 1 ab + 4ab ≥ 7. Bài 2.62 : Cho a, b, c > 0 và ab + bc + ca = abc. Chứng minh rằng : 1 a + 2b + 3c + 1 b + 2c + 3a + 1 c + 2a + 3b < 3 16 . Bài 2.63 : Tìm giá trị nhỏ nhất của : A = a 1 + b − a + b 1 + c − b + c 1 + a − c với a, b, c > 0 và a + b + c = 1. Bài 2.64 : Cho x,y, z > 0 và x 2 + y 2 + z 2 = 1. Tìm giá trị nhỏ nhất của biểu thức : P = x y 2 + z 2 + y z 2 + x 2 + z x 2 + y 2 . Bài 2.65 : Cho x, y là hai số thực thay đổi. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức : P = (x + y)(1 − xy) (1 + x 2 ) 2 (1 + y 2 ) 2 . TRẦN ANH TUẤN - 0974 396 391 - (04) 66 515 343 Trang 41 www.VNMATH.com www.VNMATH.com WWW.VNMATH.COM CHUYÊN ĐỀ LUYỆN THI ĐẠI HỌC Bài 2.66 : Cho x, y, z là ba số thực thỏa mãn x + y + z = 0. Tìm giá trị nhỏ nhất của P = √ 2 x + 3 + √ 2 y + 3 + √ 2 z + 3. Bài 2.67 : Cho các số thực x, y, z thỏa mãn x + y + z = 6. Chứng minh rằng : 8 x + 8 y + 8 z ≥ 4 x+1 + 4 y+1 + 4 z+1 . Bài 2.68 : Cho 0 < a ≤ b ≤ c ≤ d ≤ e và a + b + c + d + e = 1. Chứng minh rằng : a(bc + be + cd + de) + cd(b + e − a) ≤ 1 25 . Bài 2.69 : Cho a,b, c là ba số dương thỏa mãn điều kiện ab + bc + ca = abc. Chứng minh rằng : a 2 a + bc + b 2 b + ca + c 2 c + ab ≥ a + b + c 4 . Bài 2.70 : Cho a,b, c là các số thực dương, chứng minh rằng : b + c a + 3  4(b 3 + c 3 ) + c + a b + 3  4(c 3 + a 3 ) + a + b c + 3  4(a 3 + b 3 ) ≤ 2. Bài 2.71 : Cho a,b, c là các số thực dương, chứng minh rằng : 1 a 3 + b 3 + abc + 1 b 3 + c 3 + abc + 1 c 3 + a 3 + abc ≤ 1 abc . Bài 2.72 : Cho a,b, c là các số thực dương thỏa mãn abc = 1. Chứng minh rằng : a 3 + b 3 a 2 + ab + b 2 + b 3 + c 3 b 2 + bc + c 2 + c 3 + a 3 c 2 + ca + a 2 ≥ 2. Bài 2.73 : Cho ba số thực dương a, b, c. Chứng minh rằng : 2 √ a a 3 + b 2 + 2 √ b b 3 + c 2 + 2 √ c c 3 + a 2 ≤ 1 a 2 + 1 b 2 + 1 c 2 . Bài 2.74 : Cho a,b, c > 0. Chứng minh rằng : 1 a 2 + bc + 1 b 2 + ca + 1 c 2 + ab ≤ a + b + c 2abc . Bài 2.75 : Cho a,b, c là ba số dương sao cho ab + bc + ca ≥ 1. Chứng minh rằng : a 3 b 2 + 1 + b 3 c 2 + 1 + c 3 a 2 + 1 ≥ √ 3 4 . 2.2 Bất đẳng thức hình học Bài 2.76 : Cho a,b, c ∈ R. Chứng minh rằng : √ a 2 + b 2 + 4c 2 + 4ac + √ a 2 + b 2 + 4c 2 − 4ac ≥ 2 √ a 2 + b 2 . Bài 2.77 : Với mọi a,b, c, d ∈ R. Chứng minh rằng : √ a 2 + b 2 + c 2 + d 2 + 2ac + 2bd ≤ √ a 2 + b 2 + √ c 2 + d 2 . Bài 2.78 : Cho x, y, z > 0. Chứng minh rằng : √ x + 2 √ y + 3 √ z ≤  14(x + y + z). TRẦN ANH TUẤN - 0974 396 391 - (04) 66 515 343 Trang 42 www.VNMATH.com www.VNMATH.com WWW.VNMATH.COM CHUYÊN ĐỀ LUYỆN THI ĐẠI HỌC Bài 2.79 : Cho bốn số a, b, c, d ∈ R thỏa mãn a 2 + b 2 = 1 và c + d = 3. Chứng minh rằng : ac + bd + cd ≤ 9 + 6 √ 2 4 . Bài 2.80 : Với mọi a, b, c ∈ R. Chứng minh rằng : √ a 2 + ab + b 2 + √ a 2 + ac + c 2 ≥ √ b 2 + bc + c 2 . Bài 2.81 : Với mọi x,y ∈ R. Chứng minh rằng :  4cos 2 x cos 2 y + sin 2 (x − y) +  4sin 2 x sin 2 y + sin 2 (x − y) ≥ 2. Bài 2.82 : Với mọi x,y ∈ R. Chứng minh rằng :  4x 2 + y 2 + 12x + 9 +  4x 2 + y 2 − 4x − 6y + 10 ≥ 5. Bài 2.83 : Cho a + b + c = 1, ax + by + cz = 4 với a,b, c  0. Chứng minh rằng : √ 9a 2 + a 2 x 2 +  9b 2 + b 2 y 2 +  9c 2 + c 2 z 2 ≥ 5. Bài 2.84 : Cho a, b, c > 0. Chứng minh rằng :  a 2 − ab √ 2 + b 2 +  b 2 − bc √ 3 + c 2 ≥ Õ a 2 − ac  2 − √ 3 + c 2 . Bài 2.85 : Cho a, b, c > 0 và abc + bc + ca = abc. Chứng minh rằng : √ b 2 + 2a 2 ab + √ c 2 + 2b 2 bc + √ a 2 + 2c 2 ac ≥ √ 3. Bài 2.86 : Cho x 2 + y 2 = 1. Chứng minh rằng : x 2 √ 5 + 2xy − y 2 √ 5 ≤ √ 6. Bài 2.87 : Cho    x 2 + xy + y 2 = 3 y 2 + yz + z 2 = 16 và x, y, z là các số thực dương. Chứng minh rằng : xy + yz + zx ≤ 8. Bài 2.88 : Cho x,y, z là những số dương. Chứng minh rằng :  x 2 + xy + y 2 +  y 2 + yz + z 2 +  z 2 + zx + x 2 ≥ √ 3(x + y + z). Bài 2.89 : Cho a + b + c = 12. Chứng minh rằng :  3a + 2 √ a + 1 +  3b + 2 √ b + 1 +  3c + 2 √ c + 1 ≥ 3 √ 17. Bài 2.90 : Cho các số dương x,y, z và x + y + z ≤ 2. Chứng minh rằng :  4x 2 + 1 x 2 +  4y 2 + 1 y 2 +  4z 2 + 1 z 2 ≥ √ 145 2 . Bài 2.91 : Giả sử x, y, u, v ∈ R thỏa mãn : x 2 + y 2 = 1;u 2 + v 2 + 16 = 8u + 4v. Tìm giá trị lớn nhất của biểu thức P = 8u + 4v − 2(ux + vy). Bài 2.92 : Cho x,y, z là các số dương thỏa mãn xy + yz + zx = 5. Tìm giá trị nhỏ nhất của P = 3x 2 + 3y 2 + z 2 . TRẦN ANH TUẤN - 0974 396 391 - (04) 66 515 343 Trang 43 www.VNMATH.com www.VNMATH.com WWW.VNMATH.COM CHUYÊN ĐỀ LUYỆN THI ĐẠI HỌC 2.3 Phương pháp sử dụng điều kiện có nghiệm của phương trình hoặc hệ phương trình - phương pháp miền giá trị Bài 2.93 : Tìm giá trị lớn nhất và nhỏ nhất của hàm số : f(x) = 2x 2 + 7x + 23 x 2 + 2x + 10 . Bài 2.94 : Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = x 2 − (x − 4y) 2 x 2 + 4y 2 , với x 2 + y 2 > 0. Bài 2.95 : Cho x là số dương, y là số thực tùy ý. Tìm giá trị lớn nhất, giá trị nhỏ nhất (nếu có) của biểu thức : P = xy 2 (x 2 + 3y 2 )  x +  x 2 + 12y 2  . Bài 2.96 : Tìm giá trị nhỏ nhất của biểu thức P = x 2 + y 2 , với 2x 2 + y 2 + xy ≥ 1. Bài 2.97 : Cho các số thực x,y thỏa mãn điều kiện : 3 √ x( 3 √ x − 1) + 3 √ y( 3 √ y − 1) = 3 √ xy. Tìm giá trị lớn nhất, nhỏ nhất của biểu thức : P = 3 √ x + 3 √ y + 3 √ xy. Bài 2.98 : Cho x, y thỏa mãn điều kiện : x 2 − xy +y 2 = 3. Tìm giá trị lớn nhất và nhỏ nhất của biểu thức : P = x 2 + xy−2y 2 . Bài 2.99 : Cho hai số thực x, y thỏa mãn điều kiện : x − 3 √ x + 1 = 3 √ y + 2 − y. Tìm giá trị lớn nhất, nhỏ nhất của biểu thức P = x + y. Bài 2.100 : Cho hai số thực x,y thỏa mãn : x 2 + y 2 = 2(x + y) + 7. Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức P = 3 √ x(x − 2) + 3 √ y(y − 2). Bài 2.101 : Cho các số thực x, y thỏa mãn : 4x 2 − 3xy + 3y 2 = 6. Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức P = x 2 + xy − 2y 2 . Bài 2.102 : Cho các số thực x, y thỏa mãn : √ x + √ y = 4. Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức P = √ x + 1 + √ y + 9. Bài 2.103 : Cho các số thực x, y thỏa mãn : xy + x + y = 3. Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức P = 3x y + 1 + 3y x + 1 − x 2 − y 2 . Bài 2.104 : Cho a, b ≥ 0 và a 2 + b 2 + ab = 3. Tìm giá trị nhỏ nhất và giá trị lớn nhất của biểu thức P = a 4 + b 4 + 2ab − a 5 b 5 . Bài 2.105 : Cho các số thực x,y thỏa mãn x + y = 2. Tìm giá trị lớn nhất của P = (x 3 + 2)(y 3 + 2). 2.4 Bất đẳng thức trong các kì thi tuyển sinh ĐH Bài 2.106 (CĐ08) : Cho hai số thực x, y thay đổi và thoả mãn x 2 + y 2 = 2. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức: P = 2(x 3 + y 3 ) − 3xy. Bài 2.107 (CĐ10) : Cho hai số thực dương thay đổi x,y thỏa mãn điều kiện 3x + y ≤ 1. Tìm giá trị nhỏ nhất của biểu thức A = 1 x + 1 √ xy . Bài 2.108 (A03) : Cho x, y, z là ba số dương và x + y + z ≤ 1. Chứng minh rằng :  x 2 + 1 x 2 +  y 2 + 1 y 2 +  z 2 + 1 z 2 ≥ √ 82. TRẦN ANH TUẤN - 0974 396 391 - (04) 66 515 343 Trang 44 www.VNMATH.com www.VNMATH.com WWW.VNMATH.COM CHUYÊN ĐỀ LUYỆN THI ĐẠI HỌC Bài 2.109 (A05) : Cho x, y,z là các số dương thoả mãn : 1 x + 1 y + 1 z = 4. Chứng minh rằng : 1 2x + y + z + 1 x + 2y + z + 1 x + y + 2z ≤ 1. Bài 2.110 (A06) : Cho hai số thực x  0, y  0 thay đổi và thoả mãn điều kiện : (x + y)xy = x 2 + y 2 − xy. Tim giá trị lớn nhất của biểu thức A = 1 x 3 + 1 y 3 . Bài 2.111 (A07) : Cho x, y, z là các số thực dương thay đổi và thoả mãn điều kiện xyz = 1. Tìm giá trị nhỏ nhất của biểu thức : P = x 2 (y + z) y √ y + 2z √ z + y 2 (z + x) z √ z + 2x √ x + z 2 (x + y) x √ x + 2y √ y . Bài 2.112 (A09) : Chứng minh rằng với mọi số thực dương x, y, z thỏa mãn x(x + y + z) = 3yz ta có : (x + y) 3 + (x + z) 3 + 3(x + y)(y + z)(z + x) ≤ 5(y + z) 3 . Bài 2.113 (B05) : Chứng minh rằng với mọi x ∈ R, ta có :  12 5  x +  15 4  x +  20 3  x ≥ 3 3 + 4 x + 5 x . Khi nào đẳng thức xảy ra. Bài 2.114 (B06) : Cho x, y là các số thực thay đổi. Tìm giá trị nhỏ nhất của biểu thức : A =  (x − 1) 2 + y 2 +  (x + 1) 2 + y 2 + |y − 2|. Bài 2.115 (B07) : Cho x, y,z là ba số thực dương thay đổi. Tìm giá trị nhỏ nhất của biểu thức : P = x  x 2 + 1 yz  + y  y 2 + 1 xz  + z  z 2 + 1 xy  . Bài 2.116 (B08) : Cho hai số thực x, y thay đổi và thoả mãn hệ thức x 2 + y 2 = 1. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = 2(x 2 + 6xy) 1 + 2xy + 2y 2 . Bài 2.117 (B09) : Cho các số thực x, y thay đổi thỏa mãn (x + y) 3 + 4xy ≥ 2. Tìm giá trị nhỏ nhất của biểu thức : A = 3(x 4 + y 4 + x 2 + y 2 ) − 2(x 2 + y 2 ) + 1. Bài 2.118 (B10) : Cho các số thực không âm a, b, c thỏa mãn a + b + c = 1. Tìm giá trị nhỏ nhất của biểu thức M = 3(a 2 b 2 + b 2 c 2 + c 2 a 2 ) + 3(ab + bc + ca) + 2 √ a 2 + b 2 + c 2 . Bài 2.119 (D05) : Cho các số dương x,y, z thoả mãn xyz = 1. Chứng minh rằng :  1 + x 3 + y 3 xy +  1 + y 3 + z 3 yz + √ 1 + z 3 + x 3 zx ≥ 3 √ 3. Bài 2.120 (D07) : Cho a ≥ b > 0. Chứng minh rằng :  2 a + 1 2 a  b ≤  2 b + 1 2 b  a . Bài 2.121 (D08) : Cho x, y là hai số thực không âm thay đổi. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức : P = (x − y)(1 − xy) (1 + x) 2 (1 + y) 2 . Bài 2.122 (D09) : Cho các số thực không âm x, y thay đổi và thỏa mãn x + y = 1. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức : S = (4x 2 + 3y)(4y 2 + 3x) + 25xy. Bài 2.123 (D10) : Tìm giá trị nhỏ nhất của hàm số y = √ −x 2 + 4x + 21 − √ −x 2 + 3x + 10. TRẦN ANH TUẤN - 0974 396 391 - (04) 66 515 343 Trang 45 www.VNMATH.com www.VNMATH.com WWW.VNMATH.COM CHUYÊN ĐỀ LUYỆN THI ĐẠI HỌC 2.5 Bài tập tổng hợp Bài 2.124 : Giả sử x, y là hai số dương thay đổi thoả mãn điều kiện x + y = 5 4 . Tìm giá trị nhỏ nhất của biểu thức : S = 4 x + 1 4y . Bài 2.125 : Giả sử a, b, c, d là bốn số nguyên thay đổi thoả mãn 1 ≤ a < b < c < d ≤ 50. Chứng minh a b + c d ≥ b 2 + b + 50 50b và tìm giá trị nhỏ nhất của biểu thức : S = a b + c d . Bài 2.126 : Cho x, y, z là ba số thoả mãn x + y + z = 0. Chứng minh rằng : √ 3 + 4 x + √ 3 + 4 y + √ 3 + 4 z ≥ 6. Bài 2.127 : Chứng minh rằng với mọi x,y > 0 ta có : (1 + x)  1 + y x   1 + 9 √ y  2 ≥ 256. Đẳng thức xảy ra khi nào. Bài 2.128 : Cho a, b, c là ba số dương thoả mãn a + b + c = 3 4 . Chứng minh rằng : 3 √ a + 3b + 3 √ b + 3c + 3 √ c + 3a ≤ 3. Khi nào đẳng thức xảy ra? Bài 2.129 : Chứng minh rằng 0 ≤ y ≤ x ≤ 1 thì x √ y − y √ x ≤ 1 4 . Đẳng thức xảy ra khi nào ? Bài 2.130 : Cho x, y, z là ba số dương và xyz = 1. Chứng minh rằng : x 2 1 + y + y 2 1 + z + z 2 1 + x ≥ 3 2 . Bài 2.131 : Cho x, y là các số thực thoả mãn điều kiện x 2 + xy + y 2 ≤ 3. Chứng minh rằng : −4 √ 3 − 3 ≤ x 2 − xy − 3y 2 ≤ 4 √ 3 − 3. Bài 2.132 : Cho các số thực x,y, z thoả mãn điều kiện 3 −x + 3 −y + 3 −z = 1. Chứng minh rằng : 9 x 3 x + 3 y+z + 9 y 3 y + 3 z+x + 9 z 3 z + 3 x+y ≥ 3 x + 3 y + 3 z 4 . Bài 2.133 : Cho hai số dương x, y thay đổi và thoả mãn điều kiện x + y ≥ 4. Tìm giá trị nhỏ nhất của biểu thức A = 3x 2 + 4 4x + 2 + y 3 y 2 . Bài 2.134 : Tìm giá trị nhỏ nhất của hàm số : y = x + 11 2x + Ö 4  1 + 7 x 2  , x > 0. Bài 2.135 : Cho x, y, z là các số thực dương. Tìm giá trị nhỏ nhất của biểu thức : P = 3  4(x 3 + y 3 ) + 3  4(y 3 + z 3 ) + 3  4(z 3 + x 3 ) + 2  x y 2 + y z 2 + z x 2  . Bài 2.136 : Cho a, b là các số dương thoả mãn ab + a + b = 3. Chứng minh rằng : 3a b + 1 + 3b a + 1 + ab a + b ≤ a 2 + b 2 + 3 2 . Bài 2.137 : Cho x, y > 0 và xy = 100. Hãy xác định giá trị nhỏ nhất của biểu thức P = x 2 + y 2 x − y . TRẦN ANH TUẤN - 0974 396 391 - (04) 66 515 343 Trang 46 www.VNMATH.com www.VNMATH.com [...]... (a − b)(2a − c) nhất, giá trị lớn nhất, trong đó P = a(a − b + c) 1 1 y2 + 2 Bài 2.139 : Cho x, y > 0 thỏa mãn x + y = 1 Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2 y x Bài 2.140 : Chứng minh các bất đẳng thức sau với a, b, c là các số nguyên không âm : √ √ √ 1+ a 1+ b 1+ c √ + √ + √ ≤ 3 + a + b + c 3≤ 1+ b 1+ c 1+ a Bài 2.141 (*) : Cho 6 số thực x1 , x2 , , x6 ∈ [0; 1] Chứng minh rằng : (x1 −... = 0 Chứng minh rằng √ √ √ √ x2 − y2 + 2 3xy − 2(1 + 2 3)x + (4 − 2 3)y ≤ 5 − 4 3 Bài 2.156 : Giả sử x, y, z là các số thực thỏa mãn x + y + z = 6 Chứng minh rằng 8x + 8y + 8z ≥ 4x+1 + 4y+1 + 4z+1 Dấu đẳng thức xảy ra khi nào ? Bài 2.157 : Cho các số thực dương x, y, z thỏa mãn x + y + z = 1 Tìm giá trị nhỏ nhất của biểu thức : P= x2 (y + z) y2 (z + x) z2 (x + y) + + yz zx xy Bài 2.158 : Cho a, b,... số thực x, y thỏa mãn 0 ≤ x ≤ và 0 ≤ y ≤ Chứng minh rằng cos x + cos y ≤ 1 + cos(xy) 3 3 √ Bài 2.179 : Cho số nguyên n (n > 2) và hai số thực không âm x, y Chứng minh rằng n xn + yn ≥ n+1 xn+1 + yn+1 Đẳng thức xảy ra khi nào? WWW.VNMATH.COM TRẦN ANH TUẤN - 0974 396 391 - (04) 66 515 343 WWW.VNMATH.COM Trang 49 . WWW.VNMATH.COM Chương 2 Bất đẳng thức 2.1 Phương pháp sử dụng bất đẳng thức Cauchy 2.1.1 Bất đẳng thức Cauchy - So sánh giữa tổng và tích. + 3c + 3 √ c + 3a ≤ 3. Khi nào đẳng thức xảy ra? Bài 2.129 : Chứng minh rằng 0 ≤ y ≤ x ≤ 1 thì x √ y − y √ x ≤ 1 4 . Đẳng thức xảy ra khi nào ? Bài 2.130

Ngày đăng: 19/10/2013, 18:20

HÌNH ẢNH LIÊN QUAN

2.2 Bất đẳng thức hình học - Bất đẳng thức_02
2.2 Bất đẳng thức hình học (Trang 6)

TỪ KHÓA LIÊN QUAN

w