Bài Toán Biên Thứ Nhất Đối Với Phương Trình Đạo Hàm Riêng Cấp Hai Tuyến Tính Với Dạng Đặc Trưng

54 17 0
Bài Toán Biên Thứ Nhất Đối Với Phương Trình Đạo Hàm Riêng Cấp Hai Tuyến Tính Với Dạng Đặc Trưng

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

✣❸■ ❍➴❈ ❚❍⑩■ ◆●❯❨➊◆ ❚❘×❮◆● ✣❸■ ❍➴❈ ❙× P❍❸▼ ▼❊❯◆●❑❍❆▼ ❑❊❖P❍❖❯❱❖◆● ❇⑨■ ❚❖⑩◆ ❇■➊◆ ❚❍Ù ◆❍❻❚ ✣➮■ ❱❰■ P❍×❒◆● ❚❘➐◆❍ ✣❸❖ ❍⑨▼ ❘■➊◆● ❈❻P ❍❆■ ❚❯❨➌◆ ❚➑◆❍ ❱❰■ ❉❸◆● ✣➄❈ ❚❘×◆● ❑❍➷◆● ❹▼ ▲❯❾◆ ❱❿◆ ❚❍❸❈ ❙➒ ❚❖⑩◆ ❍➴❈ ❚❤→✐ ◆❣✉②➯♥ ✲ ◆➠♠ ✷✵✶✼ ✣❸■ ❍➴❈ ❚❍⑩■ ◆●❯❨➊◆ ❚❘×❮◆● ✣❸■ ❍➴❈ ❙×P❍❸▼ ▼❊❯◆●❑❍❆▼ ❑❊❖P❍❖❯❱❖◆● ❇⑨■ ❚❖⑩◆ ❇■➊◆ ❚❍Ù ◆❍❻❚ ✣➮■ ❱❰■ P❍×❒◆● ❚❘➐◆❍ ✣❸❖ ❍⑨▼ ❘■➊◆● ❈❻P ❍❆■ ❚❯❨➌◆ ❚➑◆❍ ❱❰■ ❉❸◆● ✣➄❈ ❚❘×◆● ❑❍➷◆● ❹▼ ❈❤✉②➯♥ ♥❣➔♥❤✿ ❚❖⑩◆ ●■❷■ ❚➑❈❍ ▼➣ sè✿ ✻✵✳✹✻✳✵✶✳✵✷ ▲❯❾◆ ❱❿◆ ❚❍❸❈ ❙➒ ❚❖⑩◆ ❍➴❈ ữớ ữợ ◆❣✉②➯♥ ✲ ◆➠♠ ✷✵✶✼ ▲❮■ ❈❆▼ ✣❖❆◆ ❚æ✐ ①✐♥ ❝❛♠ ✤♦❛♥ r➡♥❣ ♥ë✐ ❞✉♥❣ tr➻♥❤ ❜➔② tr♦♥❣ ❧✉➟♥ ✈➠♥ ♥➔② ❧➔ tr✉♥❣ t❤ü❝ ✈➔ ❦❤ỉ♥❣ trị♥❣ ❧➦♣ ✈ỵ✐ ✤➲ t➔✐ ❦❤→❝✳ ❚ỉ✐ ❝ơ♥❣ ①✐♥ ❝❛♠ ✤♦❛♥ r➡♥❣ ♠å✐ sü ❣✐ó♣ ✤ï ❝❤♦ ✈✐➺❝ t❤ü❝ ❤✐➺♥ ❧✉➟♥ ✈➠♥ ♥➔② ✤➣ ✤÷đ❝ ❝↔♠ ì♥ ✈➔ ❝→❝ t❤ỉ♥❣ t✐♥ tr➼❝❤ ❞➝♥ tr♦♥❣ ❧✉➟♥ ữủ ró ỗ ố t ✹ ♥➠♠ ✷✵✶✼ ◆❣÷í✐ ✈✐➳t ❧✉➟♥ ✈➠♥ ▼❡✉♥❣❦❤❛♠ ❑❊❖P❍❖❯❱❖◆● ✐ ữủ t ữợ sỹ ữợ t t sỹ ❦❤➢❝ ❝õ❛ ❚❙✳ ◆❣✉②➵♥ ❚❤à ◆❣➙♥ ❡♠ ①✐♥ ❣û✐ ❧í✐ ❝↔♠ ì♥ ❝❤➙♥ t❤➔♥❤ ✈➔ s➙✉ s➢❝ ✤➳♥ ❝ỉ✳ ❚ỉ✐ ❝ơ♥❣ ①✐♥ ❦➼♥❤ ❣û✐ ❧í✐ ❝↔♠ ì♥ ❝❤➙♥ t❤➔♥❤ ✤➳♥ ❝→❝ t❤➛② ❣✐→♦✱ ❝ỉ ❣✐→♦ tr♦♥❣ tr÷í♥❣ ✣↕✐ ❤å❝ ❙÷ P❤↕♠ ✕ ✣↕✐ ❤å❝ ❚❤→✐ ◆❣✉②➯♥ ❝ơ♥❣ ♥❤÷ ❝→❝ t❤➛② ❝æ ❣✐→♦ t❤❛♠ ❣✐❛ ❣✐↔♥❣ ❞↕② ❦❤â❛ ❤å❝ ✷✵✶✺✲✷✵✶✼ ♥❤ú♥❣ ♥❣÷í✐ ✤➣ ✤❡♠ ❤➳t t➙♠ ❤✉②➳t ✈➔ sü ♥❤✐➺t t➻♥❤ ✤➸ ❣✐↔♥❣ ❞↕② ✈➔ tr❛♥❣ ❜à ❝❤♦ ❝❤ó♥❣ tỉ✐ ♥❤✐➲✉ ❦✐➳♥ t❤ù❝ ✈➔ ❦✐♥❤ ♥❣❤✐➺♠✳ ❱➔ ❝✉è✐ ❝ò♥❣✱ ①✐♥ ❣û✐ ❧í✐ ❜✐➳t ì♥ ❜è ♠➭✱ ❝↔♠ ì♥ ❣✐❛ ✤➻♥❤✱ ❝↔♠ ỡ ỗ ổ ỗ ❣✐ó♣ ✤ï tỉ✐ tr♦♥❣ s✉èt q✉→ tr➻♥❤ ❤å❝ t➟♣ ♥❣❤✐➯♥ ❝ù✉ ❝ơ♥❣ ♥❤÷ tr♦♥❣ q✉→ tr➻♥❤ t❤ü❝ ❤✐➺♥ ❧✉➟♥ ✈➠♥ ♥➔②✳ ❚❤→✐ ◆❣✉②➯♥✱ t❤→♥❣ ✹ ♥➠♠ ✷✵✶✼ ◆❣÷í✐ ✈✐➳t ❧✉➟♥ ✈➠♥ ▼❡✉♥❣❦❤❛♠ ❑❊❖P❍❖❯❱❖◆● ✐✐ ▼ư❝ ❧ư❝ ▲í✐ ❝❛♠ ✤♦❛♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ▲í✐ ❝↔♠ ì♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ▼ö❝ ❧ö❝ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ▼ð ✤➛✉ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ❈❤÷ì♥❣ ✶✳ ❑✐➳♥ t❤ù❝ ❝❤✉➞♥ ❜à ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✐ ✐✐ ✐✐✐ ✶ ✸ ✶✳✶✳ P❤÷ì♥❣ tr➻♥❤ ✤↕♦ ❤➔♠ r✐➯♥❣ t✉②➳♥ t➼♥❤ ❝➜♣ ❤❛✐ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸ ✶✳✷✳ ❑❤æ♥❣ ❣✐❛♥ H (Ω) ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺ (Ω) ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✳✸✳ ❑❤æ♥❣ ❣✐❛♥ Hloc ✽ ✶✳✹✳ ❑❤æ♥❣ ❣✐❛♥ H (Ω) ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✽ ✶✳✺✳ ❑❤æ♥❣ ❣✐❛♥ H 1,0 (QT ) ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✵ 1,0 ✶✳✻✳ ❑❤æ♥❣ ❣✐❛♥ H (QT ) ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✶ ✶✳✼✳ ❇➔✐ t♦→♥ ❜✐➯♥ t❤ù ♥❤➜t ✤è✐ ✈ỵ✐ ♣❤÷ì♥❣ tr➻♥❤ ❡❧❧✐♣t✐❝ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✶ ✶✳✼✳✶✳ ❇➔✐ t♦→♥ ❜✐➯♥ t❤ù ♥❤➜t ✤è✐ ợ ữỡ tr t tờ qt ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✶ ✶✳✼✳✷✳ ❇➔✐ t♦→♥ ❜✐➯♥ tự t ố ợ ữỡ tr ✳ ✳ ✷✵ ✶✳✽✳ ❇➔✐ t♦→♥ ❜✐➯♥ ❤é♥ ❤ñ♣ t❤ù t ố ợ ữỡ tr r ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✹ ✶✳✽✳✶✳ ❇➔✐ t♦→♥ ❜✐➯♥ ❤é♥ ❤ñ♣ t❤ù ♥❤➜t ✈➔ ♥❣❤✐➺♠ s✉② rë♥❣✳ ✳ ✳ ✳ ✳ ✳ ✷✺ ✶✳✽✳✷✳ ❇➔✐ t♦→♥ ❜✐➯♥ ❤é♥ ❤ñ♣ t❤ù ♥❤➜t ✤è✐ ợ ữỡ tr tr t t t ợ số ❧➔ ❤➡♥❣ sè ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✐✐✐ ữỡ t tự t ố ợ ữỡ tr r t t ợ ❞↕♥❣ ✤➦❝ tr÷♥❣ ❦❤ỉ♥❣ ➙♠ ✳ ✳ ✳ ✳ ✸✵ ✷✳✶✳ P❤÷ì♥❣ tr➻♥❤ ✤↕♦ ❤➔♠ r✐➯♥❣ ❝➜♣ ❤❛✐ t✉②➳♥ t➼♥❤ ợ trữ ổ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✵ ✷✳✷✳ ❇➔✐ t♦→♥ ❜✐➯♥ t❤ù ♥❤➜t ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✶ ✷✳✷✳✶✳ P❤➙♥ ❧♦↕✐ ❝→❝ ✤✐➸♠ tr➯♥ ❜✐➯♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✶ ✷✳✷✳✷✳ P❤→t ❜✐➸✉ ❜➔✐ t♦→♥ ❜✐➯♥ t❤ù ♥❤➜t ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✶ ✷✳✸✳ ❈→❝ ♠➺♥❤ ✤➲ ❜ê trñ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✷ ✷✳✹✳ ❈æ♥❣ t❤ù❝ ●r❡❡♥ ❝❤♦ t♦→♥ tû ✸✹ ▲✭✉✮ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ỹ tỗ t s rở t♦→♥ ❜✐➯♥ t❤ù ♥❤➜t ✳ ✳ ✳ ✳ ✳ ✳ ✸✻ ✷✳✺✳✶✳ ✣→♥❤ ❣✐→ t✐➯♥ ♥❣❤✐➺♠ tr♦♥❣ Lp (Ω) ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ỹ tỗ t s rở ❝õ❛ ❜➔✐ t♦→♥ ❜✐➯♥ t❤ù ♥❤➜t tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ Lp (Ω) ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✶ ❑➳t ❧✉➟♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✼ ❚➔✐ ❧✐➺✉ t❤❛♠ ❦❤↔♦ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✽ ✐✈ ▼Ð ✣❺❯ ❇ë ♠ỉ♥ ♣❤÷ì♥❣ tr r ữỡ tr t ỵ t ❧➔ ♠ët ❜ë ♠ỉ♥ t♦→♥ ❤å❝ ❝ì ❜↔♥ ✈ø❛ ♠❛♥❣ t ỵ tt ứ t ự rở t õ ỹ ỵ t❤✉②➳t ❝❤✉♥❣ ❝❤♦ ❝→❝ ♥❣➔♥❤ t♦→♥ ❤å❝ ✈➔ ❝→❝ ❦❤♦❛ ❤å❝ ❦❤→❝✳ P❤÷ì♥❣ tr➻♥❤ ❡❧❧✐♣t✐❝ ①✉➜t ❤✐➺♥ ❦❤✐ ♥❣❤✐➯♥ ❝ù✉ ❝→❝ q✉→ tr➻♥❤ ❦❤ỉ♥❣ t❤❛② ✤ê✐ ✈➲ t❤í✐ ❣✐❛♥ ✭q✉→ tr➻♥❤ ❞ø♥❣✮✱ ♣❤÷ì♥❣ tr➻♥❤ ❤②♣❡r❜♦❧✐❝ ✈➔ ♣❛r❛❜♦❧✐❝ ①✉➜t ❤✐➺♥ ❦❤✐ ♥❣❤✐➯♥ ❝ù✉ ❝→❝ q✉→ tr➻♥❤ ❝â t❤❛② ✤ê✐ ✈➲ t❤í✐ ❣✐❛♥ ✭q✉→ tr➻♥❤ ❦❤æ♥❣ ❞ø♥❣✮✳ ✣➸ ①→❝ ✤à♥❤ ♥❣❤✐➺♠ ❝õ❛ ❝→❝ ❧♦↕✐ ♣❤÷ì♥❣ tr➻♥❤ ♥➔② ♥❣÷í✐ t❛ ♣❤↔✐ ①➙② ❞ü♥❣ ❝→❝ ✤✐➲✉ ❦✐➺♥ ❜❛♥ ✤➛✉✱ ✤✐➲✉ ❦✐➺♥ ❜✐➯♥✳ ✣✐➲✉ ❦✐➺♥ ❜❛♥ ✤➛✉ ❝❤♦ ❜✐➳t tr↕♥❣ t❤→✐ t↕✐ t❤í✐ ✤✐➸♠ t = 0, ✤✐➲✉ ❦✐➺♥ ❜✐➯♥ ❝❤♦ ❜✐➳t q✉→ tr➻♥❤ ①↔② r❛ ð ❝→❝ ❜✐➳♥ ❦❤æ♥❣ ❣✐❛♥✳ ❇➔✐ t♦→♥ t➻♠ ♥❣❤✐➺♠ ữỡ tr ố ợ ✤÷đ❝ ❣å✐ ❧➔ ❜➔✐ t♦→♥ ❜✐➯♥✳ ❚ø ❝❤é t❤➜② ✤÷đ❝ trỏ rt q trồ tt ỵ t❤✉②➳t ♣❤÷ì♥❣ tr➻♥❤ ✤↕♦ ❤➔♠ r✐➯♥❣ ✈➔ ♠♦♥❣ ♠✉è♥ ✤÷đ❝ ❤✐➸✉ s➙✉✱ ❤✐➸✉ ❦ÿ ✈➲ ♣❤÷ì♥❣ tr➻♥❤ ✤↕♦ ❤➔♠ r✐➯♥❣ ✤➦❝ ❜✐➺t ❧➔ ♣❤÷ì♥❣ tr➻♥❤ ✤↕♦ ❤➔♠ r✐➯♥❣ ❝➜♣ ❤❛✐ t✉②➳♥ t➼♥❤ ♥➯♥ ❡♠ ❝❤å♥ ✤➲ t ➔✐ ✧❇➔✐ t♦→♥ tự t ố ợ ữỡ tr r t t ợ trữ ổ ✤➸ ♥❤➡♠ ♠ö❝ ✤➼❝❤ ♥❣❤✐➯♥ ❝ù✉ ✈➲ ❦❤→✐ ♥✐➺♠ ♠ët sè t➼♥❤ ❝❤➜t ❝ì ❜↔♥ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ✤↕♦ ❤➔♠ r tr tờ q ỵ tt t tự t ố ợ ữỡ tr➻♥❤ ✤↕♦ ❤➔♠ r✐➯♥❣ ❝➜♣ ❤❛✐ t✉②➳♥ t➼♥❤ ✈ỵ✐ ❞↕♥❣ trữ ổ ỗ õ ữỡ ợ t ữ s ữỡ r ♠ët sè ❦✐➳♥ t❤ù❝ ❝ì ❜↔♥ ❝→❝ ❦❤ỉ♥❣ ❣✐❛♥ ❙♦❜♦❧❡✈ ♥❤÷ H (Ω) , 0 1,0 H (Ω) , H (QT ) , H (QT ) , ❜➔✐ t♦→♥ tự t ố ợ ữỡ tr t t ộ ủ tự t ố ợ ữỡ tr ♣❛r❛❜♦❧✐❝✳ ❈❤÷ì♥❣ ✷✿ ❚r➻♥❤ ❜➔② ✈➲ ❜➔✐ t♦→♥ ❜✐➯♥ t❤ù t ố ợ ữỡ tr r t t ợ trữ ổ sỹ tỗ t↕✐ ♥❣❤✐➺♠ s✉② rë♥❣ ❝õ❛ ❜➔✐ t♦→♥ ❜✐➯♥ ♥➔②✳ ❇➔✐ t♦→♥ ❜✐➯♥ t❤ù ♥❤➜t ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ✤↕♦ ❤➔♠ r✐➯♥❣ t t ợ trữ ổ ❝❤ù❛ ❜➔✐ t♦→♥ ❜✐➯♥ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ❡❧❧✐♣t✐❝ ✈➔ ♣❛r❛❜♦❧✐❝ ♥❤÷ ♥❤ú♥❣ 1 Hloc (Ω) , 1,0 ✶ tr÷í♥❣ ❤đ♣ ✤➦❝ ❜✐➺t✳ ✷ ❈❤÷ì♥❣ ✶ ❑✐➳♥ t❤ù❝ ❝❤✉➞♥ ❜à ❚r♦♥❣ ❝❤÷ì♥❣ ♥➔② tr➻♥❤ ❜➔② ♠ët sè ❦✐➳♥ t❤ù❝ ❝ì ❜↔♥ ✈➲ ❦❤ỉ♥❣ ❣✐❛♥ ❙♦❜♦❧❡✈✱ ❜➔✐ t♦→♥ ❜✐➯♥ t❤ù t ố ợ ữỡ tr t t ộ ủ tự t ố ợ ữỡ tr r ❞✉♥❣ ❝❤õ ②➳✉ ❝õ❛ ❝❤÷ì♥❣ ♥➔② ✤÷đ❝ t❤❛♠ ❦❤↔♦ tø ❝→❝ t➔✐ ❧✐➺✉ [2] , [3] , [4] ✶✳✶✳ P❤÷ì♥❣ tr➻♥❤ ✤↕♦ ❤➔♠ r✐➯♥❣ t✉②➳♥ t➼♥❤ ❝➜♣ ❤❛✐ ❚❛ ❦➼ ❤✐➺✉ Ω ❧➔ ♠ët ♠✐➲♥ ❜à ❝❤➦♥ tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ ❊✉❝❧✐❞ ♥ ❝❤✐➲✉ Rn ✈ỵ✐ ∂Ω ❧➔ ❜✐➯♥ ❝õ❛ ♠✐➲♥ ♥➔②✳ x = (x1 , x2 , , xn ) ❧➔ ♠ët ✤✐➸♠ ❝õ❛ ❦❤æ♥❣ ❣✐❛♥ Rn ∂ Dxi = ❧➔ t♦→♥ tû ❧➜② ✤↕♦ ❤➔♠ r✐➯♥❣ t❤❡♦ ❜✐➳♥ xi ∂xi ●✐↔ sû α = (α1 , α2 , , αn ) ❧➔ t➟♣ ❤ñ♣ ❝→❝ ❝❤➾ sè✱ tr♦♥❣ ✤â αi ❧➔ ❝→❝ sè ♥❣✉②➯♥ ❦❤æ♥❣ ➙♠ ✈➔ |α| = n αi ❑❤✐ ✤â i=1 Dα = Dxα11 Dxα22 Dxαnn = ❦➼ ❤✐➺✉✿ uxi xj ∂ |α| ✣➸ ❝❤♦ ✤ì♥ ❣✐↔♥✱ ✤ỉ✐ ❦❤✐ t❛ ❞ị♥❣ ∂xα11 ∂xα22 ∂xαnn ∂ 2u ✤➸ ❝❤➾ ✤↕♦ ❤➔♠ r✐➯♥❣ ❝➜♣ ❤❛✐ ❝õ❛ ❤➔♠ ✉✳ = ∂xi ∂xj ✣à♥❤ ♥❣❤➽❛ ✶✳✶✳ P❤÷ì♥❣ tr➻♥❤ ✤↕♦ ❤➔♠ r✐➯♥❣ t✉②➳♥ t➼♥❤ ❝➜♣ ❤❛✐ ❧➔ ♣❤÷ì♥❣ tr➻♥❤ ❝â ❞↕♥❣✿ n ∂ 2u L (u) ≡ a✐❥ (x) + ∂x ∂x i j i,j=1 n (x) i=1 ✸ ∂u + a (x) u = f (x) , ∂xi ✭✶✳✶✮ tr♦♥❣ ✤â ❢ ❧➔ ♠ët ❤➔♠ ✭❤♦➦❝ ♠ët ✈➨❝tì ❤➔♠✮ ✤➣ ❜✐➳t tr♦♥❣ ♠✐➲♥ Ω ⊂ Rn , u ▲ ❧➔ ♠ët t♦→♥ tû ✈✐ ♣❤➙♥ t✉②➳♥ t➼♥❤ tr♦♥❣ Ω, [aij (x)] ❧➔ ♠❛ tr➟♥ ỗ số t♦→♥ tû ▲ t❤ä❛ ♠➣♥✿ ❧➔ ❤➔♠ ➞♥✱ a✐❥ (x) = aji (x) , i, j = 1, n P❤➙♥ ❧♦↕✐ ♣❤÷ì♥❣ tr➻♥❤ ✤↕♦ ❤➔♠ r✐➯♥❣ t✉②➳♥ t➼♥❤ ❝➜♣ ❤❛✐ ❑❤✐ ♥❣❤✐➯♥ ❝ù✉ ♣❤÷ì♥❣ tr➻♥❤ ✈✐ ♣❤➙♥ t✉②➳♥ t➼♥❤ ✤↕♦ ❤➔♠ r✐➯♥❣ ♥â✐ ❝❤✉♥❣ ✈➔ ♣❤÷ì♥❣ tr➻♥❤ ✤↕♦ ❤➔♠ r✐➯♥❣ ❝➜♣ ❤❛✐ t✉②➳♥ t➼♥❤ ♥â✐ r✐➯♥❣ ♥❣÷í✐ t❛ ❝❤✐❛ ❧➔♠ ❜❛ ❧♦↕✐ ♣❤÷ì♥❣ tr➻♥❤ ❝ì ❜↔♥✿ ♣❤÷ì♥❣ tr➻♥❤ ❡❧❧✐♣t✐❝✱ ♣❤÷ì♥❣ tr➻♥❤ ❤②♣❡r❜♦❧✐❝ ✈➔ ♣❤÷ì♥❣ tr➻♥❤ ♣❛r❛❜♦❧✐❝✳ ❳➨t ♣❤÷ì♥❣ tr➻♥❤ ✤↕♦ ❤➔♠ r✐➯♥❣ t✉②➳♥ t➼♥❤ ❝➜♣ ❤❛✐ ✭✶✳✶✮✳ ✣➦t A (x) = [a✐❥ (x)] , a✐❥ (x) ✤÷đ❝ ❝♦✐ ❧➔ t❤ü❝ i, j = 1, n ●✐↔ sû x0 ∈ Ω ởt tũ ỵ (x0 ) , (x0 ) , , λn (x0 ) ❧➔ ❝→❝ ❣✐→ trà r✐➯♥❣ t❤ü❝ ❝õ❛ ♠❛ tr➟♥ A (x0 ) ❚❛ ❦➼ ❤✐➺✉ n+ = n+ (x0 ) ❧➔ sè ❝→❝ ❣✐→ trà r✐➯♥❣ ❞÷ì♥❣ n− = n− (x0 ) ❧➔ sè ❝→❝ ❣✐→ trà r✐➯♥❣ ➙♠ ✈➔ n0 = n0 (x0 ) ❧➔ sè ❝→❝ ❣✐→ trà r✐➯♥❣ ❜➡♥❣ ❦❤æ♥❣✱ n = n+ + n− + n0 ❑❤✐ ✤â✿ ∗ P❤÷ì♥❣ tr➻♥❤ ✭✶✳✶✮ ✤÷đ❝ ❣å✐ ❧➔ ♣❤÷ì♥❣ tr➻♥❤ ❡❧❧✐♣t✐❝ t↕✐ ✤✐➸♠ x0 ✭❤♦➦❝ ❡❧❧✐♣t✐❝ t↕✐ ✤✐➸♠ x0 ✮ ♥➳✉ n+ = n ❤♦➦❝ n− = n ∗ P❤÷ì♥❣ tr➻♥❤ ✭✶✳✶✮ ✤÷đ❝ ❣å✐ ❧➔ ♣❤÷ì♥❣ tr➻♥❤ ❤②♣❡r❜♦❧✐❝ t↕✐ ✤✐➸♠ x0 ✭❤♦➦❝ ❤②♣❡r❜♦❧✐❝ t↕✐ ✤✐➸♠ x0 ✮ ♥➳✉ n+ = n − ✈➔ n− = ❤♦➦❝ n+ = ✈➔ n− = n − ∗ P❤÷ì♥❣ tr➻♥❤ ✭✶✳✶✮ ✤÷đ❝ ❣å✐ ❧➔ ♣❤÷ì♥❣ tr➻♥❤ ♣❛r❛❜♦❧✐❝ t↕✐ ✤✐➸♠ x0 ✭❤♦➦❝ ♣❛r❛❜♦❧✐❝ t↕✐ ✤✐➸♠ x0 ✮ ♥➳✉ n0 > ∗ P❤÷ì♥❣ tr➻♥❤ ✭✶✳✶✮ ✤÷đ❝ ❣å✐ ❧➔ ♣❤÷ì♥❣ tr➻♥❤ ❡❧❧✐♣t✐❝✱ ❤②♣❡r❜♦❧✐❝ ✈➔ ♣❛r❛❜♦❧✐❝ tr➯♥ t➟♣ Ω ♥➳✉ t÷ì♥❣ ù♥❣ ♥â ❡❧❧✐♣t✐❝✱ ❤②♣❡r❜♦❧✐❝ ✈➔ ♣❛r❛❜♦❧✐❝ t↕✐ ♠é✐ ✤✐➸♠ ❝õ❛ ♠✐➲♥ Ω ✳ ❳➨t ♣❤÷ì♥❣ tr➻♥❤ ❚r❛♣❤✐❣✐♥ ✭♥❂✷✮ ❱➼ ❞ư ∂ 2u ∂ 2u + a(x ) = f (x), ∂x21 ∂x22 ✹ ❈❤ù♥❣ ♠✐♥❤✳ ❚➟♣ Σ3 ❜➜t ❜✐➳♥ ✈ỵ✐ ❝→❝ ❜✐➳♥ ✤ë❝ ❧➟♣ ✭✷✳✽✮ ✤÷đ❝ s✉② r❛ tø ✤➥♥❣ t❤ù❝ ✿ n n a j Φy Fxl k Φys Fxsj Fxp Fxp kj a γk γj = −1 k,j=1 k,j=1 n a j Fxl k Fxsj γ j γ s Fxp Fxp = −1 (Φyn Φyn ), k,j=1 tr♦♥❣ ❧➙♥ ❝➟♥ ❝õ❛ ✤✐➸♠ ❜✐➯♥ Σ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ✭✷✳✾✮✳ → − − → − → ❈á♥ γ = γ , γ n ❧➔ ✈➨❝tì ♣❤→♣ t✉②➳♥ tr♦♥❣ ✤ì♥ ✈à tr➯♥ Σ tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ (y1 , , yn ) ❚➟♣ Σ0 , Σ1 , Σ2 ❜➜t ❜✐➳♥ ✤÷đ❝ s✉② r❛ tø t➟♣ ❜➜t ❜✐➳♥ Σ3 ✈➔ ❇ê ✤➲ ỵ ữủ ự ổ tự r ❝❤♦ t♦→♥ tû ▲✭✉✮ ✉ ✈➔ v ∈ C ( ) tỷ ữủ t ữợ ❞↕♥❣✿ ●✐↔ sû n n n kj L (u) = k k,j=1 ✭✷✳✶✶✮ akj xj )uxk + Cu, (b − (a uxk )xj + j=1 k=1 tr♦♥❣ ✤â t❛ ❣✐↔ t❤✐➳t r➡♥❣ ❞↕♥❣ t♦➔♥ ♣❤÷ì♥❣ n akj (x) ξk ξj ❤♦➦❝ ❦❤ỉ♥❣ k,j=1 ➙♠✱ ❤♦➦❝ ❦❤ỉ♥❣ ❞÷ì♥❣ t↕✐ ♠é✐ ✤✐➸♠ x ∈ Ω ∪ Σ n ✣➦t k akj xj ), t❛ ❝â k = (b − j=1 n n kj ∗ L (x) = a vxk xj k − k,j=1 v xk + Cv k=1 n n ∗ kj L (u) v − L (v) u = a uxk v xj − k,j=1 n kj a vxk k,j=1 xj k + uv x✭✷✳✶✷✮ k j=1 ❚➼❝❤ ♣❤➙♥ ✤➥♥❣ t❤ù❝ ✭✷✳✶✷✮ tr♦♥❣ ♠✐➲♥ Ω ✈➔ sû ❞ư♥❣ ❝ỉ♥❣ t❤ù❝ ❖str♦❣r❛❞s❦✐✱ t❛ ♥❤➟♥ ✤÷đ❝✿ (L (u) v − L∗ (v) u) dx = Ω ✸✹  n n akj uxk v − ( k,j=1 Σ  n akj vxk )γj + k uvγk  dδ, j=1 k,j=1 − ✈ỵ✐ → γ = (γ1 , , γn ) ❧➔ ✈➨❝tì ♣❤→♣ t✉②➳♥ tr♦♥❣ ✤ì♥ ✈à tr➯♥ Σ, dδ ❧➔ ♣❤➛♥ tû ❞✐➺♥ t➼❝❤ tr➯♥ Σ n ❘ã r➔♥❣ tr➯♥ Σ t❛ ❝â akj γj = 0, k = 1, n j=1 n ❚❤➟t ✈➟②✱ ❣✐↔ sû x ∈ Σ , akj x0 γk γj = 0 k,j=1 n ❚❛ ❝â t❤➸ ❣✐↔ t❤✐➳t ❞↕♥❣ t♦➔♥ ♣❤÷ì♥❣ akj x0 ξk ξj ❧➔ ❦❤æ♥❣ ➙♠ k,j=1 ✈➻ ♥➳✉ ♥â ❦❤æ♥❣ ữỡ t õ ợ õ t ♣❤÷ì♥❣ n akj x0 ξk ξj ✤↕t ❝ü❝ t✐➸✉ t↕✐ ξ = γ ✈➔ ❝→❝ ✤↕♦ ❤➔♠ r✐➯♥❣ ❝õ❛ ♥â t❤❡♦ k,j=1 γk = ❚❛ ✤➣ ❣✐↔ t❤✐➳t akj = ajk ♥➯♥ ✤↕♦ ❤➔♠ r✐➯♥❣ ❝õ❛ ❞↕♥❣ t♦➔♥ ♣❤÷ì♥❣ n t❤❡♦ γk ❧➔ akj γj j=1 n − ❈á♥ tr➯♥ Σ3 , → η = (η1 , , ηn ) = 0, ηk = n a γj ✣➦t b = kj j=1 k γk k=1 ❚ø ✤➥♥❣ t❤ù❝ ✭✷✳✶✷✮✱ s✉② r❛✿ (L (u) v − L∗ (v) u) dx = − Ω v ∂v ∂u −u ∂η ∂η dδ − buvdδ , Σ Σ3 n ∂ ∂ tr♦♥❣ ✤â ≡ akj ηj ∂η k,j=1 ∂xk ❚ø ✤â t❛ ❝❤ù♥❣ ♠✐♥❤ ✤÷đ❝ ♠➺♥❤ ✤➲ s❛✉✿ ▼➺♥❤ ✤➲ ✷✳✸✳ ●✐↔ sû t♦→♥ tû ▲✭✉✮ ❝â ❞↕♥❣✿ n n kj L (u) = tr♦♥❣ ✤â ❞↕♥❣ t♦➔♥ ♣❤÷ì♥❣ akj xj )uxk + Cu, (b − (a uxk )xj + k,j=1 n k k=1 n akj x0 ξk ξj k,j=1 ➙♠ t↕✐ ♠ët ✤✐➸♠ x ∈ (Σ ∪ Ω) ✸✺ j=1 ❤♦➦❝ ❦❤ỉ♥❣ ❞÷ì♥❣✱ ❤♦➦❝ ❦❤ỉ♥❣ ❍➔♠ ✉ ✈➔ v ∈ C (Ω ∪ Σ) , akj = ajk , (L (u) v − L∗ (v) u) dx = − Ω v k, j = 1, n ∂u ∂v −u ∂η ∂η ❑❤✐ ✤â Σ3 tr♦♥❣ ✤â buvdδ, ✭✷✳✶✸✮ dδ − Σ n ∂ ∂ akj γj ≡ ∂η k,j=1 ∂xk ❈ỉ♥❣ t❤ù❝ ✭✷✳✶✸✮ ✤÷đ❝ ❣å✐ ❧➔ ❝æ♥❣ t❤ù❝ ●r❡❡♥ ❝❤♦ t♦→♥ tû ▲✭✉✮ ✈➔ ❝ơ♥❣ ❧➔ ❝ỉ♥❣ t❤ù❝ ●r❡❡♥ ❝❤♦ ♣❤÷ì♥❣ tr➻♥❤ ✭✷✳✶✮✳ ✷✳✺✳ ỹ tỗ t s rở t t❤ù ♥❤➜t ✷✳✺✳✶✳ ✣→♥❤ ❣✐→ t✐➯♥ ♥❣❤✐➺♠ tr♦♥❣ Lp (Ω) ❚r♦♥❣ ♠ư❝ ♥➔②✱ t❛ ✤→♥❤ ❣✐→ t✐➯♥ ♥❣❤✐➺♠ trì♥ ❝õ❛ ❜➔✐ t♦→♥ n n bk (x) uxk + Cu = f Ω, kj a (x) uxk xj + L (u) = k=1 k,j=1 u = tr➯♥ Σ2 ∪ Σ3 ✭✷✳✶✹✮ ✣→♥❤ ❣✐→ t✐➯♥ ♥❣❤✐➺♠ ♥➔② ✤÷đ❝ sû ự ỵ sỹ tỗ t ♥❣❤✐➺♠ s✉② rë♥❣ ❝õ❛ ❜➔✐ t♦→♥ ❜✐➯♥ t❤ù ♥❤➜t✳ ❚❛ ❦➼ ❤✐➺✉✿ 1 p p  |u| dx  u Lp (Ω) = Ω  u Lp (Σi ) = 1 p p  |u| dσ , i = 0, Σi ✸✻ ❇ê ✤➲ ✷✳✹✳ ●✐↔ sû u ∈ C (Σ ∪ Ω) , u = tr➯♥ Σ2 ∪ Σ3, ♣ ❧➔ ❣✐→ trà ❞÷ì♥❣ tị② þ s❛♦ ✤â ≤ p ≤ +∞, ❣✐↔ sû tỗ t số C ( Ω) t❤ä❛ ♠➣♥ ✤✐➲✉ ❦✐➺♥ ω ≤ ✈➔ L∗ (ω) + (p − 1) Cω > Σ ∪ Ω ✭✷✳✶✺✮ ❑❤✐ ✤â max p |ω| u Lp (Ω) ≤ Ω∪Σ Ω∪Σ ∗ [L (ω) + (p − 1) Cω] L (u) ✭✷✳✶✻✮ Lp (Ω) ❈❤ù♥❣ ♠✐♥❤✳ ⑩♣ ❞ư♥❣ ❝ỉ♥❣ t❤ù❝ ●r❡❡♥ ✭✷✳✶✸✮ ❝❤♦ ❤➔♠ ω ✈➔ ❤➔♠ u2 + δ p ✈ỵ✐ δ > tr tũ ỵ t õ p p L∗ (ω) u2 + δ dx − Ω ωL u2 + δ dx Ω ∂ u2 + δ ω ∂η p 2 bω u + δ dδ − = Σ − u +δ p dω ∂η p u2 + δ p dω dδ, ∂η ✭✷✳✶✼✮ ✈➻ ∂ u +δ ∂η p 2 =p u +δ p −1 n akj uxk xj = tr➯♥ Σ3 u k,j=1 ❉➵ ❞➔♥❣ ♥❤➟♥ t❤➜②✿ L∗ u2 + δ p dδ Σ3 bω u2 + δ dδ − = p = u2 + δ p −1 uL (u) + C u2 + δ n akj uxk uxj p u2 + δ + p −2 p −1 (1 − p) u2 + δ (p − 1) u2 + δ k,j=1 ❱➻ tr➯♥ Σ1 ❜➜t ✤➥♥❣ t❤ù❝ ❜❃✵ t❤ä❛ ♠➣♥✱ ♥❣♦➔✐ r❛ t❛ ❝â✿ n akj uxk uxj ≥ 0, p ≥ 0, ω ≤ k,j=1 ✸✼ ❙✉② r❛ p L∗ (ω) u2 + δ − ω u2 + δ p −1 C (1 − p) u2 + δ dx Ω p −1 ωp u2 + δ ≤ p bωdδ−δ Σ1 ∪Σ2 Ω ∂ω dδ ∂η p uL (u) dx + δ ✭✷✳✶✽✮ Σ3 ❚r♦♥❣ ❜➜t ✤➥♥❣ t❤ù❝ ✭✷✳✶✽✮ t❛ ❝❤♦ δ → t❛ t❤➜②✿ ♣❃✶ ✰ ◆➳✉ ♣❂✶ ✰ ◆➳✉ p −1 t❤➻ u2 + δ t❤➻ − 21 u2 + δ → |u|p−2 δ → u ≤ ▼➦t ❦❤→❝✱ ♥➳✉ p ≥ t❤➻ lim u + δ p δ→∞ L∗ (ω) − Cω u2 + δ −1 (1 − p) u2 + δ = |u|p [L∗ (ω) − (1 − p) ω] ♥➯♥ tø ❜➜t ✤➥♥❣ t❤ù❝ ✭✷✳✶✽✮ t❛ ♥❤➟♥ ✤÷đ❝✿ pmax |ω| p |u| dx ≤ Ω∪Σ Ω Ω∪Σ ∗ [L (ω) + (p − 1) Cω] |u|p−1 |L (u)| dx ✭✷✳✶✾✮ |u| |L (u)| dx ✭✷✳✷✵✮ Ω ❙✉② r❛ pmax |ω| |u| dx ≤ Ω∪Σ [L∗ (ω) + (p − 1) Cω] Ω∪Σ Ω ⑩♣ ❞ö♥❣ ❜➜t ✤➥♥❣ t❤ù❝ ❍♦❧❞❡r ❝❤♦ t➼❝❤ ♣❤➙♥ ð ✈➳ tr→✐ ❝õ❛ ✭✷✳✷✵✮ t❛ ❝â✿ pmax |ω| u Lp (Ω) ≤ Ω∪Σ Ω∪Σ ∗ [L (ω) + (p − 1) Cω] L (u) Lp (Ω) ❇ê ✤➲ ✤÷đ❝ ❝❤ù♥❣ ♠✐♥❤✳ ✣à♥❤ ỵ tr t ợ ♠å✐ ❣✐→ trà ♣ ✤õ ❧ỵ♥ s❛♦ ❝❤♦ −C ∗ + (1 − p) C > tr♦♥❣ Σ ∪ Ω ✈➔ ♠➣♥ ✉❂✵ tr➯♥ Σ2 ∪ Σ3 t❛ ❝â ✤→♥❤ ❣✐→ u Lp (Ω) ≤ ❝❤♦ ♠å✐ ❤➔♠ u ∈ C (Σ ∪ Ω) t❤ä❛ s❛✉✿ p L (u) [−C ∗ + (1 − p) C] Ω∪Σ ✸✽ Lp (Ω) ✭✷✳✷✶✮ ◆➳✉ C ∗ < tr♦♥❣ Σ ∪ Ω t❤➻ ✭✷✳✷✵✮ t❤ä❛ ♠➣♥ ✈ỵ✐ ♣ ✤õ ❣➛♥ ✶ s❛♦ ❝❤♦ −C ∗ + (1 − p) C > tr♦♥❣ Σ ∪ Ω ◆➳✉ C ∗ < ✈➔ ❈ ❃ ✵ t❤➻ ✭✷✳✷✵✮ t❤ä❛ ♠➣♥ ✈ỵ✐ ∀p ≥ ✈ỵ✐ u ∈ C (Σ ∪ Ω) tr➯♥ Σ2 ∪ Σ3 ❈❤ù♥❣ ♠✐♥❤✳ ⑩♣ ❞ư♥❣ ❇ê ✤➲ ✭✷✳✹✮ ✈ỵ✐ ❤➔♠ ω = −1, L∗ (ω) = −C ∗ s✉② r❛✿ u Lp (Ω) ≤ p L (u) [−C ∗ + (1 − p) C] Lp () ú ỵ C < 0, u ∈ C (Σ ∪ Ω) ✈➔ u = tr➯♥ Σ2 ∪ Σ3 t❤➻ tr♦♥❣ ❜➜t ✤➥♥❣ t❤ù❝ ✭✷✳✷✵✮ t❛ ❝â t❤➸ ❝❤✉②➸♥ q✉❛ ❣✐ỵ✐ ❤↕♥ ❦❤✐ p → ∞ ❚❤➟t ✈➟②✱ ❣✐↔ sû ❝â ♠ët sè p0 s❛♦ ❝❤♦ −C ∗ + (1 − p0 ) C > ❑❤✐ p > p0 t❛ ❝â −C ∗ + (1 − p) C > C (p0 − p) t tự ữủ t ữợ u Lp (Ω) ≤ p L (u) (p − p0 ) |C| Lp (Ω) ✭✷✳✷✷✮ Ω∪Σ ❈❤✉②➸♥ q✉❛ ❣✐ỵ✐ ❤↕♥ ❦❤✐ p → ∞ tr♦♥❣ ❜➜t ✤➥♥❣ t❤ù❝ t ữủ ỹ s ợ ❜➜t ❦➻ ❤➔♠ u ∈ C (Σ ∪ Ω) ❝ị♥❣ ✈ỵ✐ ✤✐➲✉ ❦✐➺♥ u = tr➯♥ Σ2 ∪ Σ3 ✤➲✉ t❤ä❛ ♠➣♥ ❜➜t ✤➥♥❣ t❤ù❝✿ max |L (u)| |u| ≤ Ω∪Σ |C| Ω Ω∪Σ ✣à♥❤ ỵ sỷ tr õ tọ p tỗ t tọ ✤✐➲✉ ❦✐➺♥ s❛✉ ✤➙②✿ ω < 0, L∗ (ω) + (p − 1) Cω > tr♦♥❣ Σ ∪ Ω, ω = tr➯♥ Σ3 ❑❤✐ ✤â✱ ✈ỵ✐ ❜➜t ❦➻ ❤➔♠ u ∈ C (Σ ∪ Ω) s❛♦ ❝❤♦ L (u) = ✤➲✉ t❤ä❛ ♠➣♥ ❜➜t ✤➥♥❣ t❤ù❝✿ u ∈ C (Σ2 ∪ Σ3 ) u Lp (Ω) ≤ kp u Lp (Σ2 ) ✈ỵ✐ ✸✾ + kp u Lp (Σ3 ) ✭✷✳✷✸✮ kp =   1 p max |bω| Σ2  |L∗ (ω) + (p − 1) Cω|  , Ω∪Σ kp =       n akj ωxk γj max Σ3  p      k,j=1  |L∗ (ω) + (p − 1) Cω|         Ω∪Σ  ❈❤ù♥❣ ♠✐♥❤✳ ⑩♣ ❞ư♥❣ ❝ỉ♥❣ t❤ù❝ ●r❡❡♥ ❝❤♦ ❤➔♠ sè ω ✈➔ ❤➔♠ u2 − δ p ✈ỵ✐ ọ tũ ỵ t õ p p L () u2 + δ dx − Ω Ω p p 2 bω u + δ dσ − = L u2 + δ ωL u2 + δ dx = p u2 + δ p −1 u +δ ∂ω dσ ∂η p −1 uL (u) + C u2 + δ n p −1 akj uxk uxj p u2 + δ + p ✭✷✳✷✹✮ (1 − p) u2 + δ ✭✷✳✷✺✮ (p − 1) u2 + δ k,j=1 ❚❤❛② ✭✷✳✷✺✮ ✈➔♦ ✭✷✳✷✹✮ t❛ ❝â✿ p L∗ (ω) u2 + δ dx − Ω ωp u2 + δ p −1 uL(u)dx Ω ωC u2 + δ − Ω − (1 − p) u2 + δ dx n kj ω Ω p −1 a uxk uxj p u + δ p Σ1 (p − 1) u2 + δ dx k,j=1 bω u2 + δ dσ+ ≤ p −1 p bω u2 + δ dσ+ Σ2 bω u2 + δ Σ3 ✹✵ p ∂ω dσ ∂η p bω u2 + δ dσ− − Σ3 p u2 + δ ∂ω dσ ∂η Σ3 ❈❤✉②➸♥ q✉❛ ❣✐ỵ✐ ❤↕♥ ❜➜t ✤➥♥❣ t❤ù❝ tr➯♥ ❦❤✐ δ → t❛ ❝â✿ u p ωb|u|p dσ + [L∗ (ω) + (p − 1) + Cω] dx ≤ Ω Σ3 |u|p ∂ω dσ ✭✷✳✷✻✮ ∂η Σ3 ✣➦t✿ kp =   1 p max |bω| Σ2  |L∗ (ω)| + (p − 1) Cω  Ω∪Σ kp = ❚❛ ❝â u Lp (Ω)       n max Σ2 akj ωxk γj k,j=1  p       |L∗ (ω)| + (p − 1) Cω         Ω∪Σ  ≤ kp u Lp ( 2) + kp u Lp ( 3) ỵ ữủ ự ỹ tỗ t s rở t ❜✐➯♥ t❤ù ♥❤➜t tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ Lp (Ω) ●✐↔ sû ❤➔♠ u ∈ C (Σ ∪ Ω) ✈➔ ✉❂✵ tr➯♥ Σ2 ∪ Σ3 ❚❛ ❦➼ ❤✐➺✉ ❱ ❧➔ ❧ỵ♣ ❝→❝ ❤➔♠ v ∈ C (Σ ∈ Ω) , v = tr➯♥ Σ2 ∪ Σ3 ❑❤✐ ✤â✱ tø ❝æ♥❣ t❤ù❝ ●r❡❡♥ ✭✷✳✶✸✮ s✉② r❛✿ uL∗ (v) dx = Ω vL (u)dx Ω ✣à♥❤ ♥❣❤➽❛ ✷✳✷✳ ❚❛ ❣å✐ u ∈ Lp (Ω) ❧➔ ♥❣❤✐➺♠ s✉② rë♥❣ ❝õ❛ ❜➔✐ t♦→♥✿ L (u) = f Ω ✭✷✳✷✼✮ u = 0, tr➯♥ Σ1 ∪ Σ3 , ✭✷✳✷✽✮ ♥➳✉ ✈ỵ✐ ♠å✐ ❤➔♠ v ∈ V t❤➻ ✤➥♥❣ t❤ù❝ s❛✉ t❤ä❛ ♠➣♥✿ uL∗ (v)dx vf dx = Ω Ω ✹✶ ✭✷✳✷✾✮ ỵ sỷ tỗ t C (Σ ∪ Ω) cho ω ≤ ✈➔ L (ω) + (q − 1) C ∗ ω > Ω ∪ Σ, ✭✷✳✸✵✮ tr♦♥❣ ✤â < q < +∞ ❑➼ ❤✐➺✉ ♣ ❧➔ sè ❧✐➯♥ ❤đ♣ ✈ỵ✐ q tù❝ ❧➔ p1 + 1q = ❑❤✐ ✤â✱ ✈ỵ✐ ❜➜t ❦➻ f ∈ Lp (Ω) ❧✉ỉ♥ tỗ t s rở t ✭✷✳✷✽✮ t❤ä❛ ♠➣♥ ❜➜t ✤➥♥❣ t❤ù❝✿ inf u + u0 Lp (Ω) u0 ∈z ≤k f Lp (Ω) , k = const Ð ✤➙② ❩ ❧➔ t➟♣ ❝→❝ ❤➔♠ u0 t❤✉ë❝ Lp (Ω) s❛♦ ❝❤♦ ✈ỵ✐ ♠å✐ ❤➔♠ v ∈ V ❜➜t ❦➻ ✤✐➲✉ ❦✐➺♥ s❛✉ t❤ä❛ ♠➣♥✿ u0 L∗ (v) dx = Ω ❈❤ù♥❣ ♠✐♥❤✳ ⑩♣ ❞ö♥❣ ❇ê ✤➲ ✭✷✳✹✮ ❝❤♦ ❤➔♠ v ∈ C (Ω ∪ Σ) s❛♦ ❝❤♦ v = tr➯♥ Σ3 ∪ Σ1 , q ≥ ❜➜t ❦➻✱ t❛ ❝â✿ max q |ω| v Lq (Ω) ≤ Ω∪Σ ∗ [L (ω) + Ω∪Σ (q − 1) C ∗ ω] L∗ (v) Lq (Ω) ✭✷✳✸✶✮ ❇ð✐ ✈➻ ✈❛✐ trá ❝õ❛ t♦→♥ tû L∗ (v) tr♦♥❣ t➟♣ ❤ñ♣ Σ3 ✤â♥❣ ✈❛✐ trá ❝õ❛ t♦→♥ tû L (u) tr♦♥❣ t➟♣ ❤ñ♣ Σ1 t f vdx ữ ố ợ Ω ✈ tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ LP (Ω) ð 1 + = p q ❚❛ →♣ ❞ö♥❣ ❜➜t ✤➥♥❣ t❤ù❝ ❍♦❧❞❡r✱ ✤→♥❤ ❣✐→ ✭✷✳✸✶✮✱ t❛ ✤÷đ❝✿ ✤➙② f vdx ≤ f Lp (Ω) v Lq (Ω) ≤ kq L∗ (v) Lq (Ω) Ω ð ✤➙② max q |ω| kq = Ω∪Σ ∗ [L (ω) + Ω∪Σ ✹✷ (q − 1) C ∗ ω] f Lp (Ω) , ✭✷✳✸✷✮ ●✐↔ sû Lq (Ω) ❧➔ ❦❤æ♥❣ ❣✐❛♥ ❝♦♥ ❝õ❛ ❦❤ỉ♥❣ ❣✐❛♥ Lq (Ω) ❚❛ ♥❤➟♥ ✤÷đ❝ tø ❦❤ỉ♥❣ ❣✐❛♥ Lq (Ω) ❤➔♠ L∗ (v) , v ∈ V ❉➵ ❞➔♥❣ ♥❤➟♥ t❤➜② ❦❤ỉ♥❣ ❣✐❛♥ Lq (Ω) ✈ỵ✐ ❦❤ỉ♥❣ ❣✐❛♥ t❤÷ì♥❣ Lp (Ω) /Z ❧➟♣ ♥➯♥ ❤➔♠ ❩ s❛♦ ❝❤♦✿ L∗ (v) zdx = 0, ✈ỵ✐ v ∈ V ❜➜t ❦➻✱ Ω z ⊂ Lp (Ω) ▼å✐ ❤➔♠ tr➯♥ Lq (Ω) ❝â t❤➸ t❤→❝ tr✐➸♥ tr➯♥ Lq (Ω) ❱➻ ✈➟② ♠å✐ ❤➔♠ tr➯♥ Lq (Ω) ❝â t❤➸ t ữợ uL (v) dx; u Lp () ó r ợ ổ tữỡ Lp (Ω) /Z ✤÷❛ r❛ ♠ët ❤➔♠ ❞✉② ♥❤➜t ❝â ❞↕♥❣ ✭✷✳✸✸✮ tr♦♥❣ Lq (Ω) ❚ø ❜➜t ✤➥♥❣ t❤ù❝ ✭✷✳✸✶✮ s✉② r❛ ❤➔♠ f vdx ❧➔ ❤➔♠ t✉②➳♥ t➼♥❤ ❧✐➯♥ tư❝ Ω ✤è✐ ✈ỵ✐ x ∈ Lq (Ω) ✈➔ ✈➻ õ õ t t ữợ r uL∗ (v) dx ✈ỵ✐ ∀u ∈ Lp (Ω) /Z f vdx = Ω Ω ❚❛ ❝â ❜➜t ✤➥♥❣ t❤ù❝ ✤è✐ ✈ỵ✐ ❤➔♠ uL∗ (v) dx Ω ≤ f Lp (Ω) ✉ v Lq (Ω) ≤ kq L∗ (v) Lq (Ω) f Lp (Ω) Lp (Ω) ❚❤❡♦ ✤à♥❤ ♥❣❤➽❛ ✈➲ ❝❤✉➞♥ ❝õ❛ ❤➔♠ tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ Lq (Ω) s✉② r❛✿ inf u + u0 u0 ∈z Lp (Ω) ≤ kq f Lp (Ω) , u0 ∈ Z ✣➦t k = kq ỵ ữủ ự t rữớ ủ ố ợ ữỡ tr t t Ω ❜à ❝❤➦♥ tr♦♥❣ Rn ✈ỵ✐ Σ ❧➔ ❜✐➯♥ ❝õ❛ õ Pữỡ tr õ t t ữợ n n kj L (u) = a (x) uk k,j=1 xj bj (x) uxj + c (x) u = f (x) , + j=1 ợ bj (x) ữủ t❤❛② ✤ê✐ ♠ët ❝→❝❤ t÷ì♥❣ ù♥❣✳ → − γ = (γ1 , γ2 , , γn ) ❧➔ ✈➨❝tì ♣❤→♣ t✉②➳♥ tr♦♥❣ ✤ì♥ ✈à tr➯♥ Σ − x0 ∈ Σ, → γ x0 = n ❚❛ ❝â − akj x0 γk γj > ♥➳✉ → γ = k,j=1 ❚ø ✤â s✉② r❛ Σ0 = φ, Σ3 = Σ ❇➔✐ t♦→♥ ❜✐➯♥ t❤ù ♥❤➜t ❝❤♦ ♣❤÷ì♥❣ tr➻♥❤ ✭✷✳✸✹✮ s➩ ✤÷đ❝ ♣❤→t ❜✐➸✉ ♥❤÷ s❛✉✿ ❚➻♠ ❤➔♠ sè ✉✭①✮ tr♦♥❣ Ω ∈ Σ t❤ä❛ ♠➣♥✿ L (x) = f tr♦♥❣ Ω u = g tr➯♥ Σ ❚r♦♥❣ tr÷í♥❣ ❤đ♣ ♥➔② ❜➔✐ t♦→♥ ❜✐➯♥ tr➯♥ ❝❤➼♥❤ ❧➔ ❜➔✐ t♦→♥ ❜✐➯♥ t❤ù ♥❤➜t ❝❤♦ ♣❤÷ì♥❣ tr➻♥❤ ❡❧❧✐♣t✐❝✭✷✳✸✹✮ ✤➣ ✤÷đ❝ tr➻♥❤ ❜➔② tr♦♥❣ ♠ư❝ ✶✳✼ ❝õ❛ ❈❤÷ì♥❣ ✶✳ ∗ ▼✐➲♥ Ω ❜à ❝❤➦♥ tr♦♥❣ Rn ✈ỵ✐ Σ ❧➔ ❜✐➯♥ ❝õ❛ ♥â✳ ❚❛ ❝â QT = Ω × [0, T ] ❧➔ ❤➻♥❤ trö✱ ❚ ❃ ✵✳ ❝â ♠➦t ①✉♥❣ q✉❛♥❤ ΓT = {(x, t) ; x ∈ Σ, < t < T } ✣→② tr➯♥ ❝õ❛ QT ❧➔ ΩT = {(x, t) ; x ∈ Ω, t = T } ữợ QT = {(x, t) ; x ∈ Ω, t = 0} → − γ = (γ1 , γ2 , , γn , γn+1 ) ❧➔ ✈➨❝tì ♣❤→♣ t✉②➳♥ tr♦♥❣ ✤ì♥ ✈à tr➯♥ ❜✐➯♥ ❝õ❛ QT − ❚r➯♥ Ωo t❛ ❝â → γ = (0, 0, , 0, 1) − ❚r➯♥ ΩT t❛ ❝â → γ = (0, 0, , 0, −1) → − − ❚r➯♥ ΓT t❛ ❝â γ = (γ1 , γ2 , , γn , 0) , → = rữớ ủ ố ợ ữỡ tr r n ❑❤✐ ✤â t❛ ❝â ∀x ∈ Ω0 ∪ ΩT : akj x0 γk γj = 0; k,j=1 n akj x0 γk γj = 0; ∀x ∈ ΓT : k,j=1 ❞♦ ✤â✿ ✹✹ Σ0 = Ω0 ∪ ΩT ; Σ3 = ΓT ❚r♦♥❣ ♠✐➲♥ ❤➻♥❤ trö QT ❣✐↔ sû ❝❤♦ ♣❤÷ì♥❣ tr➻♥❤ ♣❛r❛❜♦❧✐❝ ❝➜♣ ❤❛✐✿ n n kj L (x) = ut − a (x) uxk xj bj (x) uxj + c (x) u = f (x) ✭✷✳✸✺✮ + j=1 k,j=1 ❚❛ ♥❤➙♥ ❝↔ ❤❛✐ ✈➳ ❝õ❛ ữỡ tr ợ t ữủ ữỡ tr ợ ❞↕♥❣ ✤➦❝ tr÷♥❣ ❦❤ỉ♥❣ ➙♠ s❛✉ ✤➙②✿ n n kj −ut − a (x) uxk xj bj (x) uxj − c (x) u = −f (x) − ✭✷✳✸✻✮ j=1 k,j=1 − ❚❛ ❝♦✐ xn+1 = t ❑❤✐ ✤â → γ = (γ1 , γ2 γn , γn+1 ) ❍➔♠ ❋✐❦❡r❛ ❝â ❞↕♥❣ s❛✉ n n k akj ) (γk − γn+1 ) xj (b − b (x) = k=1 j=1 ❉♦ ✤â✿ b (x) = > tr➯♥ ΩT b (x) = −1 < tr➯♥ Ω0 ❉♦ ✈➟② t❛ s➩ ❝â Σ0 = Ω0 ∪ ΩT ✈➔ Σ1 = ΩT = {(x, T ) ; x ∈ Ω} ; Σ2 = Ω0 = {(x, 0) ; x ∈ Ω} ; Σ3 = ΓT = {(x, t) ; x ∈ Σ, < t < T } ❇➔✐ t♦→♥ ❜✐➯♥ t❤ù ♥❤➜t ❝❤♦ ♣❤÷ì♥❣ tr➻♥❤ ✭✷✳✸✻✮ s➩ ✤÷đ❝ ♣❤→t ❜✐➸✉ ♥❤÷ s❛✉✿ ❚➻♠ ❤➔♠ ✉✭①✮ tr♦♥❣ Ω ∪ Σ t❤ä❛ ♠➣♥✿ L (u) = f tr♦♥❣ Ω; u (x, 0) = u0 (x) , x ∈ Ω; u (x, t) = ϕ (x, t) , (x, t) ∈ ΓT ◆❤÷ ✈➟② ❜➔✐ t♦→♥ ❜✐➯♥ tr♦♥❣ tr÷í♥❣ ❤đ♣ ♥➔② ❝❤♦ ♣❤÷ì♥❣ tr➻♥❤ ✭✷✳✸✻✮ ❝❤➼♥❤ ❧➔ ❜➔✐ t♦→♥ ❜✐➯♥ ❤é♥ ❤đ♣ t❤ù ♥❤➜t ✤➣ ❜✐➳t ❝❤♦ ♣❤÷ì♥❣ tr➻♥❤ ♣❛r❛❜♦❧✐❝ ❝➜♣ ❤❛✐ ✭✷✳✸✺✮ ♠➔ ✤➣ ✤÷đ❝ tr➻♥❤ ❜➔② tr♦♥❣ ♠ư❝ ✶✳✽ ❝õ❛ ❈❤÷ì♥❣ ✶✳ ✹✺ ❘ã r➔♥❣✱ t❛ t r ợ ữỡ tr ợ trữ ❦❤ỉ♥❣ ➙♠ ❝❤ù❛ ❝→❝ ♣❤÷ì♥❣ tr➻♥❤ ❡❧❧✐♣t✐❝ ✈➔ ♣❛r❛❜♦❧✐❝ ♥❤÷ ❧➔ ❝→❝ tr÷í♥❣ ❤đ♣ ✤➦❝ ❜✐➺t✳ ✹✻ ❑➌❚ ▲❯❾◆ ▲✉➟♥ ✈➠♥ ✤➣ tr➻♥❤ ❜➔② ♠ët sè ❦➳t q✉↔ ✈➲ ❜➔✐ t tự t ố ợ ữỡ tr r t t ợ trữ ổ ➙♠✳ ❚r♦♥❣ ❧✉➟♥ ✈➠♥ ♥➔② ✤➣ tr➻♥❤ ❜➔② ♥❤ú♥❣ ✈➜♥ ✤➲ s❛✉✿ ✶✳ ❚r➻♥❤ ❜➔② tê♥❣ q✉❛♥ ♠ët sè ❦❤→✐ ♥✐➺♠ ❝ì ❜↔♥ ❧✐➯♥ q✉❛♥ ✤➳♥ ♥ë✐ ❞✉♥❣ ❝❤➼♥❤ ❝õ❛ ❧✉➟♥ ✈➠♥ ♥❤÷ ❦❤ỉ♥❣ ❣✐❛♥ ❙♦❜♦❧❡✈✱ ❜➔✐ t♦→♥ ❜✐➯♥ t❤ù t ố ợ ữỡ tr t t ộ ủ tự t ố ợ ữỡ tr r ❚r➻♥❤ ❜➔② ❜➔✐ t♦→♥ ❜✐➯♥ t❤ù ♥❤➜t ❝❤♦ ♣❤÷ì♥❣ tr➻♥❤ ✤↕♦ ❤➔♠ r✐➯♥❣ ❝➜♣ ❤❛✐ t✉②➳♥ t➼♥❤ ✈ỵ✐ ❞↕♥❣ ✤➦❝ tr÷♥❣ ❦❤ỉ♥❣ ➙♠✱ ✤→♥❤ ❣✐→ t✐➯♥ ♥❣❤✐➺♠ trì♥ ❝õ❛ ❜➔✐ t tự t ự ỵ sỹ tỗ t s rở t tự ♥❤➜t✳ ✹✼ ❚⑨■ ▲■➏❯ ❚❍❆▼ ❑❍❷❖ ❚➔✐ ❧✐➺✉ t✐➳♥❣ ❱✐➺t [1] ✣➟✉ ❚❤➳ ❈➜♣ ✭✷✵✵✷✮✱ ●✐↔✐ t➼❝❤ ❤➔♠✱ ◆❤➔ ①✉➜t ❜↔♥ ●✐→♦ ❞ư❝ ❍➔ ◆ë✐✳ [2] ◆❣✉②➵♥ ▼✐♥❤ ❈❤÷ì♥❣✱ ❍➔ ❚✐➳♥ ◆❣♦↕♥✱ ◆❣✉②➵♥ ▼✐♥❤ ❚r➼✱ ▲➯ ◗✉❛♥❣ ❚r✉♥❣ ✭✷✵✵✵✮✱ P❤÷ì♥❣ tr➻♥❤ ✤↕♦ ❤➔♠ r✐➯♥❣✱ ◆❤➔ ①✉➜t ❜↔♥ ●✐→♦ ❞ö❝ ❍➔ ◆ë✐✳ [3] ◆❣✉②➵♥ ❚❤ø❛ ❍đ♣ ✭✷✵✵✶✮✱ ●✐→♦ tr➻♥❤ ♣❤÷ì♥❣ tr➻♥❤ ✤↕♦ ❤➔♠ r✐➯♥❣✱ ◆❤➔ ①✉➜t ❜↔♥ ✣❍◗●✱ ❍➔ ◆ë✐✳ [4] ◆❣✉②➵♥ ▼↕♥❤ ❍ị♥❣ ✭✷✵✶✶✮✱ P❤÷ì♥❣ tr➻♥❤ ✤↕♦ ❤➔♠ r✐➯♥❣✱ ◆❤➔ ①✉➜t ❜↔♥ ◗✉è❝ ❣✐❛ ❍➔ ◆ë✐✳ ❚➔✐ ❧✐➺✉ t✐➳♥❣ ❆♥❤ [5] ▲❛❞②③❤❡♥s❦❛②❛✳❖✳❆ ✭✶✾✽✺✮✱ ❚❤❡ ❇♦✉♥❞❛r② ❱❛❧✉❡ ❡r♠❛t✐❝❛❧ P❤②s✐❝s✱ ❙♣r✐r❣❡r✱ ❱❡r❛❣✱ ◆❡✇ ❨♦r❦✳ [6] ❖❧❡✐♥✐❦✳❖✳❆✱ ❘❛❞❦❡✈✐❧③✳❊✳❱ ✭✶✾✼✶✮✱ ❙❡❝♦♥❞ ♦r❞❡r ❝❛❧ ❊q✉❛t✐♦♥ ✇✐t❤ ♥♦✉♥❡❣❛t✐✈❡✱ ❋♦r♠ ▼♦s❝♦✇✳ ✹✽ Pr♦❜❧❡♠s ♦❢ ♠❛t❤✲ Pr❛t✐❝❛❧ ❉❡❢❢❡r❡♥t✐✲

Ngày đăng: 06/09/2020, 15:24

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan