1. Trang chủ
  2. » Giáo Dục - Đào Tạo

An outside barrier option

8 186 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 8
Dung lượng 141,47 KB

Nội dung

Chapter 24 An outside barrier option Barrier process: dY t Y t = dt+ 1 dB 1 t: Stock process: dS t S t = dt+ 2 dB 1 t+ q 1, 2  2 dB 2 t; where  1  0; 2 0;,11 ,and B 1 and B 2 are independent Brownian motions on some ; F ; P . The option pays off: S T  , K  + 1 fY  T Lg at time T ,where 0 S0 K; 0Y0 L; Y  T = max 0tT Y t: Remark 24.1 The option payoff depends on both the Y and S processes. In order to hedge it, we will need the money market and two other assets, which we take to be Y and S . The risk-neutral measure must make the discounted value of every traded asset be a martingale, which in this case means the discounted Y and S processes. We want to find  1 and  2 and define d e B 1 =  1 dt + dB 1 ; d e B 2 =  2 dt + dB 2 ; 239 240 so that dY Y = rdt+ 1 d e B 1 =rdt+ 1  1 dt +  1 dB 1 ; dS S = rdt+ 2 d e B 1 + q 1 ,  2  2 d e B 2 = rdt+ 2  1 dt + q 1 ,  2  2  2 dt +  2 dB 1 + q 1 ,  2  2 dB 2 : We must have  = r +  1  1 ; (0.1)  = r +  2  1 + q 1 ,  2  2  2 : (0.2) We solve to get  1 =  , r  1 ;  2 =  , r ,  2  1 p 1 ,  2  2 : We shall see that the formulas for  1 and  2 do not matter. What matters is that (0.1) and (0.2) uniquelydetermine  1 and  2 . This implies the existence and uniquenessof the risk-neutralmeasure. We define Z T  = exp n , 1 B 1 T  ,  2 B 2 T  , 1 2  2 1 +  2 2 T o ; f IP A= Z A ZTdIP; 8A 2F: Under f IP , e B 1 and e B 2 are independent Brownian motions (Girsanov’s Theorem). f IP is the unique risk-neutral measure. Remark 24.2 Under both IP and f IP , Y has volatility  1 , S has volatility  2 and dY dS YS =  1  2 dt; i.e., the correlation between dY Y and dS S is  . The value of the option at time zero is v 0;S0;Y0 = f IE h e ,rT ST  , K  + 1 fY  T Lg i : We need to work out a density which permits us to compute the right-hand side. CHAPTER 24. An outside barrier option 241 Recall that the barrier process is dY Y = rdt+ 1 d e B 1 ; so Y t=Y0 exp n rt +  1 e B 1 t , 1 2  2 1 t o : Set b  = r= 1 ,  1 =2; b B t= b t + e B 1 t; c M T  = max 0tT b B t: Then Y t=Y0 expf 1 b B tg; Y  T =Y0 expf 1 c M T g: The joint density of b B T  and c M T  , appearing in Chapter 20, is f IP f b B T  2 d ^ b; c M T  2 d ^mg = 22 ^m , ^ b T p 2T exp  , 2 ^m , ^ b 2 2T + b  ^ b , 1 2 b  2 T  d ^ bd^m; ^m0; ^ b ^m: The stock process. dS S = rdt+ 2 d e B 1 + q 1 ,  2  2 d e B 2 ; so S T = S0 expfrT +  2 e B 1 T  , 1 2  2  2 2 T + q 1 ,  2  2 e B 2 T  , 1 2 1 ,  2  2 2 T g = S 0 expfrT , 1 2  2 2 T +  2 e B 1 T + q 1, 2  2 e B 2 Tg From the above paragraph we have e B 1 T = , b T + b BT ; so S T = S0 expfrT +  2 b B T  , 1 2  2 2 T ,  2 b T + q 1 ,  2  2 e B 2 T g 242 24.1 Computing the option value v 0;S0;Y0 = f IE h e ,rT ST  , K  + 1 fY  T Lg i = e ,rT f IE  S0 exp  r , 1 2  2 2 ,  2 b  T +  2 b B T + q 1, 2  2 e B 2 T  ,K  + :1 fY0 exp 1 b M T Lg  We know the joint density of  b B T ; c M T  . The density of e B 2 T  is f IP f e B 2 T  2 d ~ bg = 1 p 2T exp  , ~ b 2 2T  d ~ b; ~ b 2 IR: Furthermore, the pair of random variables  b B T ; c M T  is independent of e B 2 T  because e B 1 and e B 2 are independent under f IP . Therefore, the joint densityof the randomvector  e B 2 T ; b B T ; c M T  is f IP f e B 2 T  2 d ~ b; b B T  2 d ^ b; c M T  2 d ^m; g = f IP f e B 2 T  2 d ~ bg: f IP f b B T  2 d ^ b; c M T  2 d ^mg The option value at time zero is v 0;S0;Y0 = e ,rT 1  1 log L Y 0 Z 0 ^m Z ,1 1 Z ,1  S 0 exp  r , 1 2  2 2 ,  2 b  T +  2 ^ b + q 1 ,  2  2 ~ b  , K  + : 1 p 2T exp  , ~ b 2 2T  : 22 ^m , ^ b T p 2T exp  , 2 ^m , ^ b 2 2T + b  ^ b , 1 2 b  2 T  :d ~ bd ^ bd^m: The answer depends on T; S0 and Y 0 . It also depends on  1 ; 2 ;;r;K and L . It does not depend on ; ;  1 ; nor  2 . The parameter b  appearing in the answer is b  = r  1 ,  1 2 : Remark 24.3 If we had not regarded Y as a traded asset, then we would not have tried to set its mean return equal to r . We would have had only one equation (see Eqs (0.1),(0.2))  = r +  2  1 + q 1 ,  2  2  2 (1.1) to determine  1 and  2 . The nonuniqueness of the solution alerts us that some options cannot be hedged. Indeed, any option whose payoff depends on Y cannot be hedged when we are allowed to trade only in the stock. CHAPTER 24. An outside barrier option 243 If we have an option whose payoff depends only on S ,then Y is superfluous. Returning to the original equation for S , dS S = dt+ 2 dB 1 + q 1 ,  2  2 dB 2 ; we should set dW = dB 1 + q 1, 2 dB 2 ; so W is a Brownian motion under IP (Levy’s theorem), and dS S = dt+ 2 dW: Now we have only Brownian motion, there will be only one  , namely,  =  , r  2 ; so with d f W = dt+dW; we have dS S = rdt+ 2 d f W; and we are on our way. 24.2 The PDE for the outside barrier option Returning to the case of the option with payoff S T  , K  + 1 fY  T Lg ; we obtain a formula for v t; x; y = e ,rT,t f IE t;x;y h S T  , K  + 1 fmax tuT Y u Lg ; i by replacing T , S 0 and Y 0 by T , t , x and y respectively in the formula for v 0;S0;Y0 . Now start at time 0 at S 0 and Y 0 . Using the Markov property, we can show that the stochastic process e ,rt vt; S t;Yt is a martingale under f IP . We compute d h e ,rt vt; S t;Yt i = e ,rt   ,rv + v t + rS v x + rY v y + 1 2  2 2 S 2 v xx +  1  2 SY v xy + 1 2  2 1 Y 2 v yy  dt +  2 Sv x d e B 1 + q 1 ,  2  2 Sv x d e B 2 +  1 Yv y d e B 1  244 L v(t, 0, 0) = 0 x y v(t, x, L) = 0, x >= 0 Figure 24.1: Boundary conditions for barrier option. Note that t 2 0;T is fixed. Setting the dt term equal to 0, we obtain the PDE , rv + v t + rxv x + ryv y + 1 2  2 2 x 2 v xx +  1  2 xy v xy + 1 2  2 1 y 2 v yy =0; 0tT; x0; 0yL: The terminal condition is v T ; x; y = x, K + ; x  0; 0  yL; and the boundary conditions are v t; 0; 0 = 0; 0  t  T; vt; x; L= 0; 0  t  T; x  0: CHAPTER 24. An outside barrier option 245 x =0 y =0 ,rv + v t + ryv y + 1 2  2 1 y 2 v yy =0 ,rv + v t + rxv x + 1 2  2 2 x 2 v xx =0 This is the usual Black-Scholes formula in y . This is the usual Black-Scholes formula in x . The boundary conditions are The boundary condition is v t; 0;L= 0;vt; 0; 0 = 0; v t; 0; 0 = e ,rT ,t 0 , K  + =0; the terminal condition is the terminal condition is v T; 0;y= 0, K + =0; y0: vT; x; 0 = x , K  + ; x  0: On the x =0 boundary, the option value is v t; 0;y= 0; 0  y  L: On the y =0 boundary, the barrier is ir- relevant, and the option value is given by the usual Black-Scholes formula for a Eu- ropean call. 24.3 The hedge After setting the dt term to 0, we have the equation d h e ,rt vt; S t;Yt i = e ,rt   2 Sv x d e B 1 + q 1 ,  2  2 Sv x d e B 2 +  1 Yv y d e B 1  ; where v x = v x t; S t;Yt , v y = v y t; S t;Yt ,and e B 1 ; e B 2 ;S;Y are functions of t .Note that d h e ,rt S t i = e ,rt ,rSt dt + dS t = e ,rt   2 S t d e B 1 t+ q 1, 2  2 St d e B 2 t  : d h e ,rt Y t i = e ,rt ,rY t dt + dY t = e ,rt  1 Y t d e B 1 t: Therefore, d h e ,rt vt; S t;Yt i = v x de ,rt S +v y de ,rt Y : Let  2 t denote the number of shares of stock held at time t ,andlet  1 t denote the number of “shares” of the barrier process Y .Thevalue X t of the portfolio has the differential dX = 2 dS + 1 dY + rX ,  2 S ,  1 Y  dt: 246 This is equivalent to de ,rt X t =  2 tde ,rt S t +  1 tde ,rt Y t: To get X t= vt; S t;Yt for all t ,wemusthave X 0 = v 0;S0;Y0 and  2 t=v x t; S t;Yt;  1 t=v y t; S t;Yt: [...]... has volatility 1, S has volatility 2 and P dY dS = YS 1 2 dt; i.e., the correlation between dY and dS is Y S The value of the option at time zero is i fh v0; S 0; Y 0 = IE e,rT S T  , K + 1fY  T  Lg : We need to work out a density which permits us to compute the right-hand side f IP is the unique CHAPTER 24 An outside barrier option 241 Recall that the barrier process is dY = r dt + Y so... for 1 and 2 do not matter What matters is that (0.1) and (0.2) uniquely determine 1 and 2 This implies the existence and uniqueness of the risk-neutral measure We define n o 2 1 2 Z T  = exp , 1 B1T  , 2B2 T  , 2  1 + 2 T ; Z f IP A = Z T  dIP; 8A 2 F : A f e e Under I , B1 and B2 are independent Brownian motions (Girsanov’s Theorem) P risk-neutral measure f Remark 24.2 Under both IP and... pair of random variables B T ; M T  is independent of B2 T  because B1 and e2 are independent under IP Therefore, the joint density of the random vector B2T ; B T ; M T  f e b c B is f e f e IP fB2 T  2 d~; B T  2 d^; M T  2 dm; g = IP fB2 T  2 d~g:IP fBT  2 d^; M T  2 dmg b b b c ^ b f b b c ^ The option value at time zero is v 0; S 0; Y 0 = e,rT 1 1 log Y L Zm Z Z 0... 24.1 Computing the option value i fh v 0; S 0; Y 0 = IE e,rT S T  , K + 1fY  T  Lg  1 f = e,rT IE S 0 exp r , 2 2 , 2 :1fY 0exp M T  Lg b b 2 T +  q b 2 B T  + 1 , 2 2 B2 T  e ,K 1 b c e We know the joint density of B T ; M T  The density of B2 T  is   b b b ffB2T  2 d~g = p 1 exp , ~2 d~; ~ 2 IR: e IP b 2T 2T e e b c Furthermore, the pair of random variables B... rt + 1 B1 t , 2 2 t : 1 Set b = r= 1 , 1=2; b e b B t = t + B1 t; c b M T  = 0maxT B t: t Then b Y t = Y 0 expf 1B tg; c Y T  = Y 0 expf 1M T g: b c The joint density of B T  and M T , appearing in Chapter 20, is f b IP fB T  2 d^; M T  2 dmg b c ^ ^  2m , ^2 b^ 1 b2  ^ m ^ = 22p , b exp , ^2T b + b , 2 T db dm; ^ T 2T m 0; ^ m: ^ b ^ The stock process dS = r dt . density which permits us to compute the right-hand side. CHAPTER 24. An outside barrier option 241 Recall that the barrier process is dY Y = rdt+ 1 d e B 1. determine  1 and  2 . The nonuniqueness of the solution alerts us that some options cannot be hedged. Indeed, any option whose payoff depends on Y cannot be

Ngày đăng: 18/10/2013, 02:20

w