Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 19 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
19
Dung lượng
1,44 MB
Nội dung
Phơng trình , Bất phơng trìnhvô tỉ Bài 1: Giải phơng trình a) + = 3 3 1 2 2 1x x + = = + = 3 3 3 3 1 2 2 1 2 1 1 2 x x y x y x - Phơng trình đợc chuyển thành hệ = = = + = + = + = + = = + = = + + + = + = = = 3 3 3 3 3 3 2 2 3 1 1 2 1 2 1 2 1 5 2 1 2 2( ) 2 0( ) 1 5 1 2 2 x y x y x y x y x y x y y x x y x y x xy y vn x y x y - Vậy phơng trình đã cho có 3 nghiệm. b) + = + 2 2 1 1 (1 2 1 )x x x ĐS:x=1/2; x=1 c) + = + + 2 ( 3 2 1) 4 9 2 3 5 2x x x x x ĐS: x=2. d) + + + = 1 ( 3)( 1) 4( 3) 3 3 x x x x x ĐS: = = 1 13; 1 5x x e) + = + 2 2 1 1 2 2 4 ( )x x x x - Sử dụng BĐT Bunhia. f) + = 4 1 1 2x x x ĐS: x=0 Bài 2: Giải BPT: a) + 5 1 4 1 3x x x S: x1/4 b) + > 2 2( 16) 7 3 3 3 x x x x x ĐK > 2 16 0 4 3 0 x x x - Biến đôỉ bất phơng trình về dạng + > > < > > < > 2 2 2 2 2( 16) 3 7 2( 16) 10 2 10 2 0 5 10 2 0 10 34. 10 34 5 2( 16) (10 2 ) x x x x x x x x x x x x - Kết hợp ĐK ta có nghiệm của BPT là > 10 34x . c) + > ( 1)(4 ) 2x x x . d) < 2 1 1 4 3 x x . ĐK: < < 2 1 0 1 4 0 2 1 0 0 2 x x x x - Thực hiện phép nhân liên hợp ta thu đợc BPT < + > < < > > 2 2 2 2 2 2 2 4 3(1 1 4 ) 3 1 4 4 3 3 4 4 3 0 1 1 4 0 1 2 2 4 3 0 3 9(1 4 ) (4 3) 4 9(1 4 ) (4 3) x x x x x x x x x x x x x x x . - Kết hợp ĐK thu đợc nghiệm < < 1 0 2 1 0 2 x x Cách 2: - Xét 2 TH: + Với < < 2 1 0. 1 4 1 3 2 x BPT x x + Với < > 2 1 0 . 1 4 1 3 2 x BPT x x e) 2 2 5 10 1 7 2x x x x+ + ĐK: 2 5 2 5 5 5 10 1 0 5 2 5 5 x x x x + + + - Với Đk đó 2 2 5 5 10 1 36 5 10 1x x x x + + + + + - Đặt 2 5 10 1; 0t x x t= + + . - ĐS: x-3 hoặc x1. Bài 3: Tìm m để phơng trình sau có nghiệm: 2 2 1 1x x x x m+ + + = . Giải: Xét hàm số 2 2 1 1y x x x x= + + + + Miền xác định D = R . + Đạo hàm + = + + + = + + = + + + > + + = + + 2 2 2 2 2 2 2 2 2 1 2 1 ' 2 1 2 1 ' 0 (2 1) 1 (2 1) 1 (2 1)(2 1) 0 (vo nghiem) (2 1) ( 1) (2 1) ( 1) x x y x x x x y x x x x x x x x x x x x x x + y(0) =1> 0 nên hàm số ĐB + Giới hạn + = = + + + = 2 2 2 lim lim 1 1 1 lim 1. x x x x y x x x x y + + + BBT x - + y + y 1 -1 Vậy phơng trình có nghiệm khi và chỉ khi -1 < m <1. Bài 4: Tìm m để phơng trình sau có nghiệm thực 2 1x x m+ = + Giải: - Đặt 1; 0t x t= + . Phơng trình đã cho trở thành: 2t = t 2 -1+m m = -t 2 +2t+1 - Xét hàm số y = -t 2 +2t+1; t 0; y= -2t+2 x 0 1 + y + 0 - y 2 1 - - Theo yêu cầu của bài toán đờng thẳng y=m cắt ĐTHS khi m2. Bài 5: Tìm m để phơng trình sau có đúng 2 nghiệm dơng: 2 2 4 5 4x x m x x + = + . Giải:- Đặt 2 2 2 ( ) 4 5; '( ) ; '( ) 0 2 4 5 x t f x x x f x f x x x x = = + = = = + . Xét x>0 ta có BBT: x 0 2 + f(x) - 0 + f(x) 5 + 1 - Khi đó phơng trình đã cho trở thành m=t 2 +t-5 t 2 +t-5-m=0 (1). - Nếu phơng trình (1) có nghiệm t 1 ; t 2 thì t 1 + t 2 =-1. Do đó (1) có nhiều nhất 1 nghiệm t1. - Vậy phơng trình đã cho có đúng 2 nghiệm dơng khi và chỉ khi phơng trình (1) có đúng 1 nghiệm t (1; 5) . - Đặt g(t) = t 2 + t -5. Ta đi tìm m để phơng trình g(t) = m có đúng 1 nghiệm t (1; 5) . f(t) = 2t+1 > 0 với mọi t (1; 5) . Ta có BBT sau: t 1 5 g(t) + g(t) 5 -3 Từ BBT suy ra -3 < m < 5 là các giá trị cần tìm. Bài 6: Xác định m để phơng trình sau có nghiệm 2 2 4 2 2 ( 1 1 2) 2 1 1 1m x x x x x+ + = + + . Giải: - Điều kiện -1 x 1. Đặt 2 2 1 1t x x= + . - Ta có 2 2 2 4 1 1 0; 0 0 2 2 1 2 2; 2 1 x x t t x t x t t x + = = = = = - Tập giá trị của t là 0; 2 (t liên tục trên đoạn [-1;1]). Phơng trình đã cho trở thành: 2 2 2 ( 2) 2 (*) 2 t t m t t t m t + + + = + + = + - Xét 2 2 ( ) ;0 2. 2 t t f t t t + + = + Ta có f(t) liên tục trên đoạn 0; 2 . Phơng trình đã cho có nghiệm x khi và chỉ khi phơng trình (*) có nghiệm t thuộc 0; 2 0; 2 0; 2 min ( ) max ( )f t m f t . - Ta có 2 2 0; 2 0; 2 4 '( ) 0, 0; 2 ( ) 0; 2 . ( 2) Suy ra min ( ) ( 2) 2 1;ma x ( ) (0) 1 t t f t t f t NB t f t f f t f = + = = = = . - Vậy 2 1 1.m Bi 7: Tỡm m bt phng trỡnh 3 1mx x m + (1) cú nghim. Gii: t 3; [0; )t x t= + . Bt phng trỡnh tr thnh: 2 2 2 1 ( 3) 1 ( 2) 1 2 t m t t m m t t m t + + + + + + (2) (1)cú nghim (2) cú nghim t 0 cú ớt nht 1 im ca THS y = 2 1 2 t t + + vi t0 khụng phớa di ng thng y = m.Xột y = 2 1 2 t t + + vi t 0 cú 2 2 2 2 2 ' ( 2) t t y t + = + t 1 3 0 1 3 + + y - 0 + | + 0 - y 3 1 4 + T Bng bin thiờn ta cú m 3 1 4 + . Bi 8: Tỡm m phng trỡnh 3 6 (3 )(6 )x x x x m+ + + = cú nghim. Gii:t ( ) 3 6t f x x x= = + + vi [ 3;6]x thỡ 6 3 ' '( ) 2 (6 )(3 ) x x t f x x x + = = + x -3 3/2 6 + f(x) + 0 - f(x) | 3 2 | 3 3 Vậy t [3;3 2]∈ . Phươngtrình (1) trở thành 2 2 9 9 2 2 2 t t t m t m − − = ⇔ − + + = (2). Phươngtrình (1) có nghiệm Phươngtrình (2) có nghiệm t [3;3 2]∈ đường thẳng y=m có điểm chung với đồ thị y= 2 9 2 2 t t− + + với t [3;3 2]∈ . Ta có y’=-t+1 nên có t 1 3 3 2 y’ + 0 - | - | y 3 9 3 2 2 − Bài 9: Cho bất phươngtrình 2 1 (4 )(2 ) (18 2 ) 4 x x a x x− + ≥ − + − . Tìm a để bất phươngtrình nghiệm đúng với mọi x ∈ [-2;4]. Giải: Đặt . Bất phươngtrình trở thành: 2 2 1 (10 ) 4 10 4 t a t a t t≥ − + ⇔ ≥ − + .(2) (1)ghiệm (2) có nghiệm mọi t ∈ [0;3] đường thẳng y=a nằm trên ĐTHS Y = t 2 - 4t +10 với t ∈ [0;3] y’= 2t - 4; y’ = 0 t=2 t 0 2 3 y’ | - 0 + | y 10 7 6 Vậy m≥10. Bài 10: Cho phươngtrình 4 2 2 2 ( 1)x x x m x+ + = + (1). Tìm m để phươngtrình có nghiệm. Giải: Phươngtrình đã cho tương đương 3 2 2 2 2 2 2 2 2 2 2 4( ) 4 ( 1) 4 2 2 4 2. ( ) 4 (1 ) (1 ) 1 1 x x x x x x x x m m m x x x x + + + + = ⇔ = ⇔ + = + + + + Đặt t= 2 2 1 x x+ ; t ∈ [-1;1]. Khi đó phươngtrình (1) trở thành 2t + t 2 = 4m. (1) có nghiệm (2) có nghiệm t ∈ [-1;1] Xét hàm số y = f(t) = t 2 + 2t với t ∈ [-1;1]. Ta có f’(t)=2t+2 ≥ 0 với mọi t ∈ [-1;1]. t -1 1 f’ 0 + | f 3 -1 Từ BBT -1≤ 4m ≤3 1 3 4 4 m⇔ − ≤ ≤ . Bài 11 Giảiphươngtrình sau : 3 3 1 2 2 2x x x x+ + + = + + Giải: Đk 0x ≥ Bài 12. Giảiphươngtrình sau : 3 2 1 1 1 3 3 x x x x x x + + + = − + + + + Giải: Điều kiện : 1x ≥ − : , 3 2 1 (2) 3 1 1 3 x x x x x x + ⇔ − + = − + − + + Bình phương 2 vế ta được: 3 2 2 1 3 1 1 2 2 0 3 1 3 x x x x x x x x = − + = − − ⇔ − − = ⇔ + = + Bài 13 . Giảiphươngtrình sau : ( ) 2 2 2 2 3 5 1 2 3 1 3 4x x x x x x x− + − − = − − − − + Giải: Ta có thể trục căn thức 2 vế : ( ) 2 2 2 2 2 4 3 6 2 3 4 3 5 1 3 1 x x x x x x x x x − + − = − + − + − + + − + Dể dàng nhận thấy x=2 là nghiệm duy nhất của phươngtrình . Bài 14. : 2 2 12 5 3 5x x x+ + = + + Giải: : 2 2 5 12 5 3 5 0 3 x x x x+ − + = − ≥ ⇔ ≥ ( ) ( ) 2 2 2 2 2 2 2 2 4 4 12 4 3 6 5 3 3 2 12 4 5 3 2 1 2 3 0 2 12 4 5 3 x x x x x x x x x x x x x x − − + − = − + + − ⇔ = − + + + + + + + ⇔ − − − = ⇔ = ÷ + + + + Dễ dàng chứng minh được : 2 2 2 2 5 3 0, 3 12 4 5 3 x x x x x + + − − < ∀ > + + + + Bài 15. Giảiphươngtrình : 2 33 1 1x x x− + = − Giải :Đk 3 2x ≥ Nhận thấy x=3 là nghiệm của phươngtrình , nên ta biến đổi phươngtrình ( ) ( ) ( ) ( ) 2 2 33 2 3 2 23 3 3 3 9 3 1 2 3 2 5 3 1 2 5 1 2 1 4 x x x x x x x x x x x − + + + − − + − = − − ⇔ − + = − + − + − + Ta chứng minh : ( ) ( ) 2 2 2 2 23 3 3 3 3 1 1 2 1 2 1 4 1 1 3 x x x x x + + + = + < − + − + − + + 2 3 3 9 2 5 x x x + + < − + Vậy pt có nghiệm duy nhất x=3 Bài 16. Giảiphươngtrình sau : 2 2 2 9 2 1 4x x x x x+ + + − + = + Giải: 4x = − không phải là nghiệm Xét 4x ≠ − Trục căn thức ta có : 2 2 2 2 2 8 4 2 9 2 1 2 2 9 2 1 x x x x x x x x x x + = + ⇒ + + − − + = + + − − + Vậy ta có hệ: 2 2 2 2 2 0 2 9 2 1 2 2 2 9 6 8 2 9 2 1 4 7 x x x x x x x x x x x x x x = + + − − + = ⇒ + + = + ⇔ = + + + − + = + Thử lại thỏa; vậy phươngtrình có 2 nghiệm : x=0 v x= 8 7 Bài 17. Giảiphươngtrình : 2 2 2 1 1 3x x x x x+ + + − + = Ta thấy : ( ) ( ) 2 2 2 2 1 1 2x x x x x x+ + − − + = + , như vậy không thỏa mãn điều kiện trên. Ta có thể chia cả hai vế cho x và đặt 1 t x = thì bài toán trở nên đơn giản hơn Bài 18. Giảiphươngtrình : 23 3 3 1 2 1 3 2x x x x+ + + = + + + Giải: ( ) ( ) 3 3 0 1 1 2 1 0 1 x pt x x x = ⇔ + − + − = ⇔ = − Bi 19. Giảiphươngtrình : 2 23 3 3 3 1x x x x x+ + = + + Giải: + 0x = , không phải là nghiệm + 0x ≠ , ta chia hai vế cho x: ( ) 3 3 3 3 3 1 1 1 1 1 1 0 1 x x x x x x x x + + + = + + ⇔ − − = ⇔ = ÷ Bài 20. Giảiphương trình: 2 3 2 1 2 4 3x x x x x x+ + + = + + + Giải: : 1dk x ≥ − pt ( ) ( ) 1 3 2 1 1 0 0 x x x x x = ⇔ + − + − = ⇔ = Bài 21. Giảiphươngtrình : 4 3 4 3 x x x x + + = + Giải: Đk: 0x ≥ Chia cả hai vế cho 3x + : 2 4 4 4 1 2 1 0 1 3 3 3 x x x x x x x + = ⇔ − = ⇔ = ÷ + + + Bài 22. Giảiphươngtrình : 3 3x x x− = + Giải: Đk: 0 3x≤ ≤ khi đó pt đ cho tương đương : 3 2 3 3 0x x x+ + − = 3 3 1 10 10 1 3 3 3 3 x x − ⇔ + = ⇔ = ÷ Bài 23. Giảiphươngtrình sau : 2 2 3 9 4x x x+ = − − Giải: Đk: 3x ≥ − phươngtrình tương đương : ( ) 2 2 1 3 1 3 1 3 9 5 97 3 1 3 18 x x x x x x x x = + + = + + = ⇔ ⇔ − − = + + = − Bài24. Giảiphươngtrình sau : ( ) ( ) 2 2 3 3 2 3 9 2 2 3 3 2x x x x x+ + = + + Giải : pttt ( ) 3 3 3 2 3 0 1x x x⇔ + − = ⇔ = Bài 25. Giảiphương trình: 2 2 1 1 2x x x x− − + + − = Điều kiện: 1x ≥ Nhận xét. 2 2 1. 1 1x x x x− − + − = Đặt 2 1t x x= − − thìphươngtrình có dạng: 1 2 1t t t + = ⇔ = Thay vào tìm được 1x = Bài 26. Giảiphương trình: 2 2 6 1 4 5x x x− − = + Giải Điều kiện: 4 5 x ≥ − Đặt 4 5( 0)t x t= + ≥ thì 2 5 4 t x − = . Thay vào ta có phươngtrình sau: 4 2 2 4 2 10 25 6 2. ( 5) 1 22 8 27 0 16 4 t t t t t t t − + − − − = ⇔ − − + = 2 2 ( 2 7)( 2 11) 0t t t t⇔ + − − − = Ta tìm được bốn nghiệm là: 1,2 3,4 1 2 2; 1 2 3t t= − ± = ± Do 0t ≥ nên chỉ nhận các gái trị 1 3 1 2 2, 1 2 3t t= − + = + Từ đó tìm được các nghiệm của phươngtrình l: 1 2 2 3 vaø x x= − = + Cách khác: Ta có thể bình phương hai vế của phươngtrình với điều kiện 2 2 6 1 0x x− − ≥ Ta được: 2 2 2 ( 3) ( 1) 0x x x− − − = , từ đó ta tìm được nghiệm tương ứng. Đơn giản nhất là ta đặt : 2 3 4 5y x− = + và đưa về hệ đối xứng Bài 27. Giảiphươngtrình sau: 5 1 6x x+ + − = Điều kiện: 1 6x ≤ ≤ Đặt 1( 0)y x y= − ≥ thìphươngtrình trở thnh: 2 4 2 5 5 10 20 0y y y y y+ + = ⇔ − − + = ( với 5)y ≤ 2 2 ( 4)( 5) 0y y y y⇔ + − − − = 1 21 1 17 , 2 2 (loaïi)y y + − + ⇔ = = Từ đó ta tìm được các giá trị của 11 17 2 x − = Bài 28. Giảiphươngtrình sau : ( ) ( ) 2 2004 1 1x x x= + − − Giải: đk 0 1x≤ ≤ Đặt 1y x= − pttt ( ) ( ) 2 2 2 1 1002 0 1 0y y y y x ⇔ − + − = ⇔ = ⇔ = Bài 29. Giảiphươngtrình sau : 2 1 2 3 1x x x x x + − = + Giải: Điều kiện: 1 0x− ≤ < Chia cả hai vế cho x ta nhận được: 1 1 2 3x x x x + − = + Đặt 1 t x x = − , ta giải được. Bài 30. Giảiphươngtrình : 2 4 23 2 1x x x x+ − = + Giải: 0x = không phải là nghiệm , Chia cả hai vế cho x ta được: 3 1 1 2x x x x − + − = ÷ Đặt t= 3 1 x x − , Ta có : 3 2 0t t+ − = ⇔ 1 5 1 2 t x ± = ⇔ = Bài 31. Giảiphươngtrình : ( ) 2 3 2 2 5 1x x+ = + Giải: Đặt 2 1, 1u x v x x= + = − + Phươngtrình trở thành : ( ) 2 2 2 2 5 1 2 u v u v uv u v = + = ⇔ = Tìm được: 5 37 2 x ± = Bài 32. Giảiphươngtrình : 2 4 2 3 3 1 1 3 x x x x− + = − + + Bài 33: giảiphươngtrình sau : 2 3 2 5 1 7 1x x x+ − = − Giải: Đk: 1x ≥ Nhận xt : Ta viết ( ) ( ) ( ) ( ) 2 2 1 1 7 1 1x x x x x x α β − + + + = − + + Đồng nhất thức ta được: ( ) ( ) ( ) ( ) 2 2 3 1 2 1 7 1 1x x x x x x− + + + = − + + Đặt 2 1 0, 1 0u x v x x= − ≥ = + + > , ta được: 9 3 2 7 1 4 v u u v uv v u = + = ⇔ = Ta được : 4 6x = ± Bài 34. Giảiphươngtrình : ( ) 3 3 2 3 2 2 6 0x x x x− + + − = Giải: Nhận xét : Đặt 2y x= + ta hãy biến pt trên về phươngtrình thuần nhất bậc 3 đối với x và y : 3 2 3 3 2 3 3 2 6 0 3 2 0 2 x y x x y x x xy y x y = − + − = ⇔ − + = ⇔ = − Pt có nghiệm : 2, 2 2 3x x= = − Bài 35. giảiphươngtrình : 2 2 4 2 3 1 1x x x x+ − = − + Giải: Ta đặt : 2 2 1 u x v x = = − khi đó phươngtrình trở thành : 2 2 3u v u v+ = − Bài 36.Giải phươngtrình sau : 2 2 2 2 1 3 4 1x x x x x+ + − = + + Giải Đk 1 2 x ≥ . Bình phương 2 vế ta có : ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 2 2 2 1 1 2 2 1 2 2 1x x x x x x x x x x+ − = + ⇔ + − = + − − Ta có thể đặt : 2 2 2 1 u x x v x = + = − khi đó ta có hệ : 2 2 1 5 2 1 5 2 u v uv u v u v − = = − ⇔ + = Do , 0u v ≥ . ( ) 2 1 5 1 5 2 2 1 2 2 u v x x x + + = ⇔ + = − Bài 37. giảiphươngtrình : 2 2 5 14 9 20 5 1x x x x x− + − − − = + Giải: Đk 5x ≥ . Chuyển vế bình phương ta được: ( ) ( ) 2 2 2 5 2 5 20 1x x x x x− + = − − + : ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 20 1 4 5 1 4 4 5x x x x x x x x x− − + = + − + = + − − Ta viết lại phương trình: ( ) ( ) 2 2 2 4 5 3 4 5 ( 4 5)( 4)x x x x x x− − + + = − − + . Đến đây bài toán được giải quyết . . Bài 38. Giảiphươngtrình : ( ) 2 2 2 3 2 1 2 2x x x x+ − + = + + Giải: 2 2t x= + , ta có : ( ) 2 3 2 3 3 0 1 t t x t x t x = − + − + = ⇔ = − Bài 39. Giảiphươngtrình : ( ) 2 2 1 2 3 1x x x x+ − + = + Giải: Đặt : 2 2 3, 2t x x t= − + ≥ Khi đó phươngtrình trở thnh : ( ) 2 1 1x t x+ = + ( ) 2 1 1 0x x t⇔ + − + = Bây giờ ta thêm bớt , để được phươngtrình bậc 2 theo t có ∆ chẵn : ( ) ( ) ( ) ( ) 2 2 2 2 3 1 2 1 0 1 2 1 0 1 t x x x t x t x t x t x = − + − + + − = ⇔ − + + − = ⇔ = − Bài 40. Giảiphươngtrình sau : 2 4 1 1 3 2 1 1x x x x+ − = + − + − Giải: Nhận xét : đặt 1t x= − , pttt: 4 1 3 2 1x x t t x+ = + + + (1) Ta rút 2 1x t= − thay vào thì được pt: ( ) ( ) 2 3 2 1 4 1 1 0t x t x− + + + + − = Nhưng không có sự may mắn để giải được phươngtrình theo t ( ) ( ) 2 2 1 48 1 1x x∆ = + + − + − không có dạng bình phương . Muốn đạt được mục đích trên thì ta phải tách 3x theo ( ) ( ) 2 2 1 , 1x x− + Cụ thể như sau : ( ) ( ) 3 1 2 1x x x= − − + + thay vào pt (1) ta được: Bài 41. Giảiphương trình: 2 2 2 4 4 2 9 16x x x+ + − = + Giải . Bình phương 2 vế phương trình: ( ) ( ) ( ) 2 2 4 2 4 16 2 4 16 2 9 16x x x x+ + − + − = + Ta đặt : ( ) 2 2 4 0t x= − ≥ . Ta được: 2 9 16 32 8 0x t x− − + = [...]... x= 1 29 2 a) x 3 + 1 = 2 3 2 x 1 x3 + 1 = 2 3 2 x 1 y = 3 2 x 1 y3 + 1 = 2 x - Phơng trình đợc chuyển thành hệ x = y x = y = 1 3 3 3 x + 1 = 2y x + 1 = 2y 1 + 5 x + 1 = 2 y 3 2 x = y = 3 3 2 2 y + 1 = 2 x x y = 2( x y ) x + xy + y + 2 = 0(vn) 3 1 5 x + 1 = 2 y x = y = 2 - Vậy phơng trình đã cho có 3 nghiệm 3 c) (2 x) 2 + 3 (7 + x) 2 3 (7 x)(2 x) = 3 2 2 u = 3 2 x... 9 x + 3 = 0 ( pt ( 2 x + 1) 2 + ( 2 x + 1) ( 2 ) ( + 3 = ( 3 x ) 2 + ) ( 3 x ) 2 ) + 3 f ( 2 x + 1) = f ( 3x ) 2 Xột hm s f ( t ) = t 2 + t + 3 , l hm ng bin trờn R, ta cú x = 1 5 Bi tp trong cỏc thi tuyn sinh Bi 1 : a)(HXD) Gii pt x 2 6 x + 6 = 2 x 1 x2 + 4x 3 = 2x 5 c) (CSP NINH BèNH) 3 x 2 x + 7 = 1 d) (C hoỏ cht) x + 8 x = x + 3 e) (C TP 2004) 2 x 2 x 1 = 7 g) (CSP bn tre) 5 x 1 . phương trình ta được ( )( ) 0x y x y− + = Giải ra ta tìm được nghiệm của phương trình là: 2 2x = + Bài 50. Giải phương trình: 2 2 6 1 4 5x x x− − = + Giải. + + + Bài 15. Giải phương trình : 2 33 1 1x x x− + = − Giải :Đk 3 2x ≥ Nhận thấy x=3 là nghiệm của phương trình , nên ta biến đổi phương trình ( ) ( )