Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 23 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
23
Dung lượng
1 MB
Nội dung
SỞ GIÁO DỤC VÀ ĐÀO TẠO THANH HOÁ TRƯỜNG THPT YÊN ĐỊNH SÁNG KIẾN KINH NGHIỆM TÊN ĐỀ TÀI MỘT SỐ KINH NGHIỆM HƯỚNG DẪN HỌC SINH SỬ DỤNG HAI CÔNG THỨC TỈ SỐ KHOẢNG CÁCH KHI GIẢI BÀI TỐN KHOẢNG CÁCH TRONG HÌNH HỌC KHƠNG GIAN Người thực hiện: Lê Văn Tiến Chức vụ: Tổ trưởng chuyên môn SKKN thuộc lĩnh vực (mơn): Tốn THANH HỐ NĂM 2020 MỤC LỤC Mục lục……………………………………………………………………….i Các ký hiệu đề tài………………………………………………………ii Mở đầu…………………………………………………………………….1 1.1 Lí chọn đề tài…………………….……………………………… 1.2 Mục đích nghiên cứu………….……………………………………….1 1.3 Đối tượng nghiên cứu……………….…………………………………1 1.4 Phương pháp nghiên cứu……………….…………………………… Nội dung………………………………………………………………… 2.1 Cơ sở lý thuyết…………….……………………………………….… 2.1.1 Khoảng cách từ điểm đến đường thẳng………………………2 2.1.2 Khoảng cách từ điểm đến mặt phẳng……………………… 2.1.3 Khoảng cách đường thẳng mặt phẳng song song………….… 2.1.4 Khoảng cách hai mặt phẳng song song………………………… 2.1.5 Đường vng góc chung khoảng cách hai đường thẳng chéo nhau…………………………………………………………………….3 2.1.6 Hai công thức tỉ số khoảng cách……………………………………….4 2.2 Một số toán hướng dẫn sử dụng cơng thức tỉ số khoảng cách giải tốn……….……………………………………………………….5 2.3 Bài tập tương tự………………………………………………………14 2.4 Kết luận, kiến nghị………………….……………………………… 18 Tài liệu tham khảo………………….………………………………… 19 CÁC KÍ HIỆU TRONG ĐỀ TÀI THPT – Trung học phổ thông i ii MỞ ĐẦU 1.1 Lí chọn đề tài Bài tốn hình học khơng gian nói chung, tốn tính khoảng cách hình học lớp 11 nói riêng, ln quan niệm tốn khó với hầu hết học sinh Trong kỳ thi THPT Quốc gia năm gần đây, đặc biệt Bộ Giáo dục Đào tạo chuyển từ hình thức thi tự luận sang hình thức trắc nghiệm mơn tốn tốn tính khoảng cách đề thi gây khó khăn, trở ngại làm thời gian học sinh Sự trở ngại nằm lý do, như: khơng nắm lý thuyết bản, vẽ hình khơng đúng, khơng dựng hình chiếu điểm hay đường thẳng mặt phẳng hay không xác định chân đường cao hình chóp… Đã có nhiều học sinh đặt câu hỏi: “Thưa thầy! Nếu không xác định hình chiếu điểm mặt phẳng, có tính khoảng cách từ điểm đến mặt phẳng khơng ” Về mặt lí luận tốn học, với câu hỏi thầy có đáp án làm thỏa lịng học sinh Tuy nhiên, đặt hướng mở để tiếp cận vấn đề Tơi thiết nghỉ, khơng phải xác định hình chiếu điểm mặt phẳng, tốn tính khoảng cách ngắn gọn nhiều, làm cho nhiều đối tượng học sinh giải toán Như biết, toán tính khoảng cách cần xác định hình chiếu điểm mặt phẳng Nhưng công việc không dễ với nhiều học sinh, chưa nói đến việc xác định xong phải dùng số kỹ năng, kiến thức để tính độ dài đoạn thẳng Với mong muốn làm đơn giản toán phức tạp, rút ngắn thời gian giải toán để phù hợp với hình thức thi trắc nghiệm khách quan, làm cho nhiều học sinh giải tốn khoảng cách Vì vậy, việc đề cách tiếp cận đơn giản cho loại tốn tính khoảng cách; để có thêm phương tiện cơng cụ giải tốn việc hình thành chuyên đề giúp đồng nghiệp học sinh học tập, giảng dạy cần thiết Xuất phát từ lí nêu trên, tơi chọn vấn đề “ Một số kinh nghiệm hướng dẫn học sinh sử dụng HAI CÔNG THỨC TỈ SỐ KHOẢNG CÁCH giải tốn khoảng cách hình học không gian” Làm đề tài nghiên cứu khoa học 1.2 Mục đích nghiên cứu Mục đích nghiên cứu đề tài nghiên cứu ứng dụng HAI CƠNG THỨC TỈ SỐ KHOẢNG CÁCH giải tốn tính khoảng cách; hệ thống lại tốn chương trình hướng dẫn cách tiếp cận toán theo hướng đơn giản 1.3 Đối tượng nghiên cứu Đối tượng nghiên cứu đề tài HAI CƠNG THỨC TỈ SỐ KHOẢNG CÁCH tốn tính khoảng cách khơng gian 1.4 Phương pháp nghiên cứu Phương pháp đặc biệt hóa, khái quát hóa, tương tự hóa; Tổng hợp, phân loại tốn tính khoảng cách NỘI DUNG 2.1 Lý thuyết sở Mục nhắc lại định nghĩa, tính chất Khoảng cách đặc biệt giới thiệu HAI CÔNG THỨC TỈ SỐ KHOẢNG CÁCH để làm sở nghiên cứu mục 2.1.1 Khoảng cách từ điểm đến đường thẳng Cho điểm O đường thẳng a Trong mặt phẳng O, a , gọi H hình chiếu vng góc O a Khi khoảng cách hai điểm O H gọi khoảng cách từ điểm O đến đường thẳng a 2.1.2 Khoảng cách từ điểm đến mặt phẳng Cho điểm O mặt phẳng Gọi H hình chiếu vng góc O mặt phẳng Khi khoảng cách hai điểm O H gọi d O, khoảng cách từ điểm O đến mặt phẳng Kí hiệu: 2.1.3 Khoảng cách đường thẳng mặt phẳng song song Định nghĩa: Cho đường thẳng a song song với mặt phẳng Khoảng cách đường thẳng a mặt phẳng khoảng cách từ điểm d a, a đến mặt phẳng , kí hiệu 2.1.4 Khoảng cách hai mặt phẳng song song Định nghĩa: Khoảng cách hai mặt phẳng song song , khoảng cách từ điểm mặt phẳng đến mặt phẳng Kí hiệu d , 2.1.5 Đường vng góc chung khoảng cách hai đường thẳng chéo *) Định nghĩa a) Đường thẳng cắt hai đường thẳng chéo a, b vng góc với đường thẳng gọi đường vng góc chung a b b) Nếu đường vng góc chung cắt hai đường thẳng chéo a, b M , N độ dài đoạn thẳng MN gọi khoảng cách hai đường thẳng chéo a b *) Cách tìm đường vng góc chung hai đường thẳng chéo Cho hai đường thẳng chéo a b Gọi mặt phẳng chứa b song song với a a�là hình chiếu vng góc a mặt phẳng / / a Do a�cắt b điểm Gọi giao điểm N Vì a / / nên a� Gọi mặt phẳng chứa a a� , đường thẳng qua N vng góc với Khi nằm mặt phẳng nên cắt đường thẳng a M cắt đường thẳng b N Nhận thấy +) Đường thẳng cắt hai đường thẳng a b / / a nên a +) nên b a� Mà a� Vậy cắt đồng thời vng góc với a b Do đường vng góc chung a b Chú ý Khi a b vng góc với Gọi mặt phẳng chứa a vng góc với b , gọi N giao điểm b Qua N kẻ đường thẳng vng góc với đường thẳng a , cắt đường thẳng a điểm M Khi đường vng góc chung a b Nhận xét a) Khoảng cách hai đường thẳng chéo khoảng cách hai đường thẳng đến mặt phẳng song song với chứa đường thẳng cịn lại b) Khoảng cách hai đường thẳng chéo khoảng cách hai mặt phẳng song song chứa hai đường thẳng 2.1.6 Hai cơng thức tỉ số khoảng cách Công thức thứ Khi việc dựng MH gặp khó khăn biết trước hay tính khoảng cách từ điểm N đến mặt phẳng Ta dịch chuyển việc tính khoảng cách từ điểm M đến mặt phẳng tính khoảng cách từ điểm N đến mặt d M , k d N , phẳng Tức ta tìm số thực k cho k Để tìm số thực ta thường sử dụng kết sau d M , d N, Kết 1: Nếu MN P d M , d N, Kết 2: Nếu M , N � P d M , d N, Kết 3: Nếu MN � I IM IN Công thức thứ hai Giả sử O ABC tứ diện vuông O OA OB, OB OC , OC OA Khi đó, đường cao OH tứ diện O ABC tính theo cơng thức 1 1 2 OH = OA + OB + OC (1) Hay khoảng cách từ điểm O đến mặt phẳng ABC OH tính theo cơng thức (1) Chứng minh Dựng OD BC D �BC , dựng OH AD H �AD Ta có �BC OD � BC AOD � ABC AOD BC � ABC � �BC AO Hai mặt phẳng ABC AOD vng góc với theo giao tuyến AD có OH AD nên suy OH mp ABC Trong tam giác vuông OBC OAD có 1 1 1 2 2 OD = OB + OC ; OH = OD + OA2 Vì 1 1 2 OH = OA + OB + OC Đây công thức “đẹp” thường xuyên sử dụng để tính khoảng cách từ điểm đến mặt phẳng, nhiều trường hợp công thức tỏ thuận lợi Trong đề thi Đại học năm vừa qua có nhiều sử dụng công thức 2.2 Một số tốn hướng dẫn sử dụng cơng thức tỉ số khoảng cách giải toán Bài toán 1( Bài tốn điển hình) Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a , cạnh bên SA ABCD SA 2a Gọi O AC �BD Tính khoảng cách từ A đến mặt phẳng SCD ; Tính khoảng cách từ O đến mặt phẳng SCD ; Tính khoảng cách từ B đến mặt phẳng SCD ; Tính khoảng cách từ A đến mặt phẳng SBD ; Tính khoảng cách từ C đến mặt phẳng SBD Lời giải Bình luận Bài tốn điển hình hướng dẫn học sinh giải tốn địi hỏi giáo viên phải giải chi tiết cách dựng hình chiếu điểm mặt phẳng cần tính khoảng cách cách sử dụng cơng thức tỉ số khoảng cách Ý 1, xem tảng ý cịn lại, đơn giản nên giáo viên hướng dẫn để đa số học sinh giải Tính d A, SCD ? Dựng AH SD H �SD Ta có CD AD CD SA , suy CD SAD AH d A, SCD nên AH CD Khi AH SCD Suy Xét tam giác vuông SAD , ta có 5a 1 1 � AH 2 AH AD AS a 4a Vậy d A, SCD AH 5a Tính Bình luận Rõ ràng việc xác định hình chiếu điểm O mặt d O, SCD ? phẳng SCD việc không dễ đại đa số học sinh Sau ta nhìn nhận cách giải toán theo lý luận toán học cho toán Trong mặt phẳng SAC , dựng Ox PSA cắt SC K , suy OK ABCD gọi J trung điểm CD Dựng OL KJ L �KJ Ta có CD OJ CD OK , suy CD KOJ nên OL CD Khi OL SCD OL d O, SCD Suy OKJ Xét tam giác vuông , ta có d O, SCD 1 1 5a � OL 2 OL OK OJ a a 5a OL Vậy Bây hướng dẫn học sinh tính khoảng cách từ O đến mặt phẳng SCD tình mà học sinh khơng thể xác định hình chiếu điểm O mặt phẳng SCD Đối với toán này, ta hướng dẫn học sinh sử dụng Công thức tỉ số khoảng cách thứ Nhận thấy AO � SCD C , suy d A, SCD d O, SCD AC � d O, SCD d A, SCD a AO Chúng ta nhận thấy việc tính khoảng cách từ từ O đến mặt phẳng SCD Công thức tỉ số lược bỏ nhiều bước phức tạp tốn Những bước mà khơng phải học sinh thực Cách đưa từ toán phức tạp toán đơn giản tính khoảng cách từ A đến mặt phẳng SCD Tính d B, SCD ? Bình luận: Việc xác định hình chiếu điểm O mặt phẳng SCD khó khăn với nhiều học sinh, Ý xác định hình chiếu điểm B mặt phẳng SCD điều với nhiều học sinh Và q trình giảng dạy tơi thấy có học sinh có ý tưởng để thực toán Sau đây, hướng dẫn học sinh sử dụng Công thức tỉ số khoảng cách thứ để tính khoảng cách từ B đến mặt phẳng SCD Do AB PCD nên 5a SBD d B, SCD d A, SCD Tính khoảng cách từ A đến mặt phẳng Cách giải thường dùng Dựng AI SO I �SO Do BD AC , BD SA suy BD SAC � BD AI Khi AI SBD , ta có Xét tam giác SAO , ta có d A, SBD d A, SBD AI 1 2a � AI 2 AI AO AS a 4a 2a AI Vậy Sau Tôi hướng dẫn học sinh xử dụng Cơng thức tỉ số thứ hai để tính khoảng cách A đến mặt phẳng SBD d d A, SBD Xét tứ diện vng SABD , gọi Ta có 1 1 1 2a �d 2 2 d AB AD AS a a 4a 2a d A, SBD d Vậy Bình luận Ta thấy dùng Cơng thức tỉ số thứ hai để tính khoảng cách học sinh khơng phải tìm hình chiếu A mặt phẳng SBD Việc làm đơn giản toán giảm thời gian giải toán, phù hợp cho thi trắc nghiệm Tính khoảng cách từ C đến mặt phẳng SBD Bình luận: Khi giảng dạy tốn này, tơi nhận thấy nhiều học sinh khơng xác định hình chiếu điểm C mặt phẳng SBD Do đó, việc tính khoảng cách từ C đến mặt phẳng SBD em thực Bây cho học sinh cách sử dụng Cơng thức tỉ số thứ để tính khoảng cách từ C đến mặt phẳng SBD Câu hỏi đặt để tính khoảng cách từ C đến mặt phẳng SBD , tính thơng qua điểm nào? Như biết, với tốn tính góc, tính khoảng cách, tính thể tích chân đường cao khối đa diện quan trọng Do đó, giải toán loại thường hướng đến chân đường cao khối đa diện Ta có, hai điểm A C nằm đường thẳng cắt mặt phẳng SBD O Suy d A, SBD d C , SBD d C , SBD OA � d C , SBD d A, SBD 2a OC 2a Vậy Bài toán (Đề thi tuyển sinh đại học Khối D, năm 2007) � � Cho hình chóp S ABCD có đáy hình thang ABC BAD 90 , BA BC a, AD 2a Cạnh bên SA vng góc với đáy SA a Gọi H hình chiếu vng góc A SB Tính theo a khoảng cách từ H đến mặt SCD phẳng Lời giải Cách giải thường dùng Gọi M trung điểm AD có ACD vng C Ta có MA MC MD � MC CD AC � � CD SAC � CD SC � CD SA � Vậy tam giác SCD vuông C AD ,vậy tam giác Trong SAC dựng AI SC I Ta có �AI SC � AI SCD � � d A, SCD AI �AI CD 1 1 1 � AI a 2 AC AS 2a 2a a Trong SAC vng A , ta có AI Gọi G BM �AC Ta có BM PCD nên BM P( SCD) Vậy d B, SCD d G , SCD Hai điểm A G nằm đường thẳng có giao điểm với mặt phẳng SCD d G , mp SCD GC 1 a � d G, mp SCD d A, mp SCD AC 2 C nên d A, mp SCD Trong SAB vuông A ta có SH SB SA2 SH SA2 2a 2 SH SB SA � � 2 SB SB SB SA AB 2a a SCD B H Hai điểm nằm đường thẳng có giao điểm với mặt phẳng d H , mp SCD S nên d B, mp SCD HS 2 a � d H , mp SCD d B, mp SCD BS 3 Bình luận Trong cách giải này, việc xác định điểm I hình chiếu điểm A mặt phẳng SCD khơng dễ Trong q trình dạy học, Tôi gặp số trường hợp em có học lực cịn xác định nhầm Vì khơng chứng minh tam giác ACD vuông C Hướng dẫn học sinh sử dụng công thức tỉ số thể tích để giải tốn Sau đây, Tơi hướng dẫn học sinh sử dụng CƠNG THỨC TÍNH THỂ TÍCH THỨ để tính khoảng cách từ A đến mặt phẳng SCD Khi sử dụng công thức này, học sinh xác định điểm I hình chiếu điểm A mặt phẳng SCD Để sử dụng Công thức tính thể tích thứ hai, Học sinh phải dựng tứ diện vuông A Như vậy, ta kéo dài AB CD cắt N Khi đó, tứ diện SADN tứ diện vng Gọi d d A, SCD d A, SND , Ta có 1 1 1 1 �d a 2 2 d AS AN AD 2a 4a 4a a Bình luận Cách giải giúp học sinh tháo gỡ khó khăn việc dựng điểm I hình chiếu điểm A mặt phẳng SCD Do đó, học sinh tiếp cận dễ dàng Bài toán ( Đề thi đại học Khối B năm 2014) 10 Cho hình lăng trụ ABC A ' B ' C ' có đáy tam giác cạnh a Hình chiếu vng góc A ' mặt phẳng ABC trung điểm cạnh AB , góc đường thẳng A ' C mặt phẳng đáy 600 Tính theo a khoảng cách từ điểm B đến mặt phẳng ACC ' A ' Lời giải Cách giải thường dùng Gọi H trung điểm AB Theo đề ta có A ' H ABC Có HC hình chiếu vng góc A ' C mặt phẳng ABC , nên góc A ' C a 3a 3 2 AC A ' H � AC A ' HK A ' H HC.tan 600 � mặt phẳng ABC góc A ' CH 60 Do Dựng HK AC ,( K �AC ) Có AC HK mà AC � ACC ' A ' � ACC ' A ' A ' HK hai mặt phẳng vng góc với theo giao tuyến A ' K , dựng HI A ' K , I �A ' K � HI ACC ' A ' Vậy d H , ACC ' A ' HI Ta có HK AH sin 600 Hai điểm B có: a , A ' HK có 1 16 52 3a 13 � HI 2 HI HK HA ' 3a 9a 9a 26 ACC ' A ' H d B, ACC ' A ' d H , ACC ' A ' nằm đường thẳng có giao điểm với mp A BA 3a 13 � d B, ACC ' A ' 2d H , ACC ' A ' HA 13 Hướng dẫn học sinh sử dụng công thức tỉ số thể tích để giải tốn Để giải tốn này, ta thấy việc tính khoảng cách từ H đến ACC ' A ' mấu chốt toán Tuy nhiên, sử dụng cách giải thơng thường phải xác định hình chiếu H ACC ' A ' Sau 11 đây, hướng dẫn học sinh sử dụng Công thức tỉ số thứ hai để tính khoảng cách từ H đến ACC ' A ' d H , ACC ' A ' d Xét tứ diện vuông A ' AHC Gọi , ta có Hai điểm có: 1 1 4 52 3a 13 �d 2 2 d HA HA ' HC a 9a 3a 9a 26 ACC ' A ' B H nằm đường thẳng có giao điểm với mp d B, ACC ' A ' d H , ACC ' A ' A BA 3a 13 � d B, ACC ' A ' 2d H , ACC ' A ' HA 13 Bài toán ( Câu 40 - Đề minh họa TN THPT năm 2020 – Bộ Giáo Dục Đào Tạo) Cho hình chóp S ABC có đáy tam giác vuông A, AB 2a, AC 4a, SA vng góc với mặt phẳng đáy SA a (minh học hình vẽ) Gọi M trung điểm AB Khoảng cách hai đường thẳng SM BC 2a A a B a C a D Lời giải Sau so sánh hai cách giải toán Cách giải thường dùng Gọi N trung điểm AC Ta có BC // MN � BC // SMN 12 Khi d BC , SM d BC , SMN d B, SMN d A, SMN d A, SMN AH Kẻ AI MN I �MN , AH SI H �SI Suy Ta có 2a , AM AN SA AI 2a 2a AH � d BC , SM 3 SA2 AI AM a, AN 2a, AI AM AN 2 Bình luận: Với cách giải này, học sinh phải xác định hình chiếu A SMN Tuy nhiên công việc học sinh làm Sau hướng dẫn học sinh áp dùng CÔNG THỨC TỈ SỐ THỨ HAI để giải toán Lời giải Gọi N trung điểm AC Ta có BC // MN � BC // SMN Khi Xét tứ diện SAMN , ta có AS AM , AS AN , AN AM d BC , SM d BC , SMN Gọi d d A, SMN d B, SMN d A, SMN , 1 1 1 2a �d 2 2 d AS AM AM a a 4a 4a 2a d BC , SM Vậy Bình luận: Rõ ràng áp dụng Cơng thức tỉ số thể tích thứ lời giải trở nên đơn giản có nhiều học sinh giải loại toán Bài toán (Đề thi tuyển sinh đại học Khối D năm 2008) Cho lăng trụ đứng ABC A ' B ' C ' có đáy ABC tam giác vng B , AB BC a , cạnh bên AA ' a Gọi M trung điểm BC d AM , B ' C a) Tính ; 13 b) Tính d M , mp AB ' C Lời giải a) Gọi E trung điểm BB ' B ' C Pmp AME Do d AM , CB ' d CB ', mp AME d B ', AME d B, AME Vì E trung đểm BB ' nên Vì tứ diện BAME tứ diện vng B nên ta có: d B ', AME d B , AME 1 1 2 d ( B;( AME )) = BE + BA + BM = a a a d AM , B ' C = AB ' C M Suy d B, AME b) Tính khoảng cách từ đến mặt phẳng ta hướng dẫn học sinh tính khoảng cách từ B đến mặt phẳng AB ' C trước BB ' AC tứ diện vng, sau sử dụng Cơng thức tỉ số thứ tính khoảng cách từ M Ta tính sau: 1 1 1 2 2 2 2 d B, AB ' C BA BB ' BC a a 2a 2a � d B, AB ' C a 10 Vì đường thẳng qua điểm B M có giao điểm với mặt phẳng AB ' C C nên có d M , AB ' C d B, AB ' C MC 1 a 10 � d M , AB ' C d B, AB ' C BC 2 10 2.3 Các tập tương tự 14 Bài tập Cho hình lập phượng ABCD A ' B ' C ' D ' có cạnh a Tính d AC , DC ' Lời giải Vì AC P A ' C ' � AC Pmp DA ' C ' , nên ta có d AC , DC ' d AC , mp DA ' C ' d A, mp DA ' C ' d D ', mp DA ' C ' Vì hai đểm A D ' nằm đường thẳng có giao điểm với mp DA ' C ' O nên ta có d A, mp DA ' C ' AO � d A, mp DA ' C ' d D ', mp DA ' C ' D 'O d D ', mp DA ' C ' Tứ diện D ' DA ' C ' vuông D ' , suy 1 1 1 2 2 2 2 d D ', DA ' C ' D ' D D ' A ' D 'C ' a a a a � d D ', DA ' C ' d AC , DC ' a a 3 Vậy Bài tập Cho lăng trụ ABC A ' B ' C ' có tất cạnh a Gọi M , N trung điểm AA ', BB ' Tính d B ' M , CN Lời giải 15 Vì đề cho chưa có góc để có tứ diện vuông, nên ta phải dựng thêm đường thẳng để có tứ diện vng Vì ABC nên ta nghĩ đến kẻ đường cao tam giác Gọi O O ' trung điểm BC B ' C ' Ta có tứ diện vuông O , gọi P giao điểm OO ' với CN Vì B ' M P AN , suy B ' M P CAN Ta có d MB ', CN d MB ', CAN d B ', CAN d B, CAN Muốn tính khoảng cách từ B đến mặt phẳng ACN thông qua khoảng cách từ O đến ACN Mặt phẳng ACN mặt phẳng ACP Ta có OA, OP, OC đơi vng góc O nên OACP từ diện vng O nên ta có 1 1 4 16 64 a � d O , ACP d O, ACP OA2 OC OP 3a a a 3a Vì BO có giao điểm với mặt phẳng ACN C nên ta có d B, CAN d O, CAN BC a a � d B, CAN 2d O, CAN OC d B ' M , CN a Vậy Bài tập ( Đề thi tuyển sinh đại học khối D năm 2007) � � Cho hình chóp S ABCD , có đáy ABCD hình thang, ABC BAD 90 , AB BC a , AD 2a Cạnh bên SA vng góc với đáy, SA a Gọi H d H , SCD SB A hình chiếu vng góc Tính Lời giải ? 16 Gọi M giao điểm AB với CD ; K giao điểm AH với SM Dễ thấy B trung điểm AM Ta có BH BH BS BA2 a2 BS = BS = BS = 3a = Suy H trọng tâm tam giác SAM Từ d ( H ,( SCD )) KH d ( A,( SCD)) = KA = Tứ diện ASDM vuông A nên 1 1 2 2 d ( A;(SCD )) = AS + AD + AM = a a Suy Vậy Bài tập Cho hình lập phương ABCD A ' B ' C ' D ' có cạnh a Gọi K trung điểm DD ' Tính khoảng cách hai đường thẳng CK A ' D d A, SCD a d H , SCD Lời giải Gọi M trung điểm BB ' Ta có A ' M PCK nên d CK , A ' D d CK , A ' MD d K , A ' MD Gọi N giao điểm AK với A ' D , P giao điểm AB với A ' M Khi d ( K ,( A ' MD)) NK d ( A,( A ' MD)) = NA = Suy d ( A;( A ' MD)) )= = Tứ diện AA ' DP vuông A nên d ( A,( A ' DP)) = d CK , A ' D d ( A;( A ' DP)) 1 2 AA ' + AD + AP = 4a 17 Suy d A, A ' DP a 2a d CK , A ' D Vậy 3 KẾT LUẬN, KIẾN NGHỊ Nội dung chủ yếu đề tài trình bày kinh nghiệm nhận dạng, phân tích, định hướng tìm lời giải tốn tính khoảng cách dựa vào hai công thức tỉ số khoảng cách ứng dụng giải toán trắc nghiệm khách quan Những kết đạt đề tài Trình bày lý thuyết khoảng cách tính chất Trình bày hai cơng thức tỉ số khoảng cách 18 Trình bày ứng dụng hai cơng thức tỉ số khoảng cách giải toán cách định hướng ứng dụng hai cơng thức tốn khoảng cách Đặc biệt, kết đạt đề tài là: Phương pháp sử dụng hai công thức tỉ số khoảng cách giải toán phát triển dạng tốn tính khoảng cách chương trình THPT Kết đạt đề tài dùng làm tài cho giáo viên tham khảo dạy ôn tập, học sinh làm tài liệu học tập Do khả thời gian nghiên cứu có hạn, nên đề tài chưa đầy đủ khó tránh khỏi sai sót Tác giả mong nhận đóng góp thầy, bạn đồng nghiệp để đề tài hoàn thiện XÁC NHẬN CỦA THỦ TRƯỞNG ĐƠN VỊ Thanh Hóa, ngày 29 tháng năm 2020 Tơi xin cam đoan SKKN viết, không chép nội dung người khác Lê Văn Tiến TÀI LIỆU THAM KHẢO [1] Đoàn Quỳnh, Văn Như Cương, Phạm Khắc Ban, Tạ Mân, (2009), Sách giáo khoa Hình học lớp 11, NXB giáo dục [2] Hà Văn Chương, Phạm Hồng Danh, (2010), Giới thiệu đề thi tuyển sinh Đại học Cao đẳng, NXB Đại học sư phạm [3] Đề minh họa TN THPT năm 2020 – Bộ Giáo Dục Đào Tạo 19 ... hợp công thức tỏ thuận lợi Trong đề thi Đại học năm vừa qua có nhiều sử dụng công thức 2.2 Một số tốn hướng dẫn sử dụng cơng thức tỉ số khoảng cách giải toán Bài toán 1( Bài tốn điển hình) Cho hình. .. trên, tơi chọn vấn đề “ Một số kinh nghiệm hướng dẫn học sinh sử dụng HAI CÔNG THỨC TỈ SỐ KHOẢNG CÁCH giải tốn khoảng cách hình học không gian? ?? Làm đề tài nghiên cứu khoa học 1.2 Mục đích nghiên... thuyết khoảng cách tính chất Trình bày hai cơng thức tỉ số khoảng cách 18 Trình bày ứng dụng hai cơng thức tỉ số khoảng cách giải toán cách định hướng ứng dụng hai cơng thức tốn khoảng cách Đặc