Sở Giáo dục và Đào tạo Kỳ thi chọn học sinh giỏi tỉnh Thừa Thiên Huế Giải toán trên máy tính cầm tay Đềthi chính thức Khối 9 THCS - Năm học 2008-2009 GK2 Bi 1: (5 im) Tớnh giỏ tr ca biu thc: a) 3 3 3 3 3 3 3 3 2001 2002 2004 2005 2006 2007 2008 2009A = + + + + + + + (Kt qu chớnh xỏc). b) 3 3 2 2 3 2 3sin 4 .cot os 2cot 3cos .sin .cot 3 x tgx gy c y B x g x x y tg y g + + = + + ữ bit 2sin 3cos 2,211 5sin 7 cos 1,946 x y x y + = = c) 1 1 2 : 1 1 1 x x x x C x x x x x x + + = + ữ ữ ữ ữ + + , vi 169,78x = . Bi 2: (5 im) Cho a thc 3 2 ( ) 8 18 6g x x x x= + + . a) Tỡm cỏc nghim ca a thc ( )g x . b) Tỡm cỏc h s , ,a b c ca a thc bc ba 3 2 ( )f x x ax bx c= + + + , bit rng khi chia a thc ( )f x cho a thc ( )g x thỡ c a thc d l 2 ( ) 8 4 5r x x x= + + . c) Tớnh chớnh xỏc giỏ tr ca (2008)f . Bi 3: (5 im) a/ Tớnh tng cỏc c dng l ca s D = 8863701824. Thongphysics85@gmail.com - Trang 1 A = sinx = B cosy = C a) Cỏc nghim ca a thc ( )g x l: x 1 = ; x 2 = ; x 3 = b) Cỏc h s ca a thc ( )f x : a = ; b = ; c = c) (2008)f = b/ Tìm các số aabb sao cho ( ) ( ) ( ) ( ) 1 1 1 1aabb a a b b= + + × − − . Nêu quy trình bấm phím để được kết quả. Bài 4: (5 điểm) Tìm số tự nhiên n nhỏ nhất sao cho khi lập phương số đó ta được số tự nhiên có 3 chữ số cuối đều là chữ số 7 và 3 chữ số đầu cũng đều là chữ số 7: 3 777 .777n = . Nêu sơ lược cách giải. Bài 5: (5 điểm) Tìm số tự nhiên N nhỏ nhất và số tự nhiên M lớn nhất gồm 12 chữ số, biết rằng M và N chia cho các số 1256; 3568 và 4184 đều cho số dư là 973. Nêu sơ lược cách giải. Thongphysics85@gmail.com - Trang 2 a/ Tổng các ước dương lẻ của D là: b/ Các số cần tìm là: Quy trình bấm phím: n = Sơ lược cách giải: Sơ lược cách giải: Bài 6: (4 điểm) Tìm số dư trong phép chia 63 (197334) cho 793 và số dư trong phép chia 2008 (197334) cho 793 Bài 7: (6 điểm) Cho dãy hai số n u và n v có số hạng tổng quát là: ( ) ( ) 5 2 3 5 2 3 4 3 n n n u + − − = và ( ) ( ) 7 2 5 7 2 5 4 5 n n n v + − − = ( n ∈ N và 1n ≥ ) Xét dãy số 2 3 n n n z u v= + ( n ∈ N và 1n ≥ ). a) Tính các giá trị chính xác của 1 2 3 4 1 2 3 4 , , , ; , , ,u u u u v v v v . b) Lập các công thức truy hồi tính 2n u + theo 1n u + và n u ; tính 2n v + theo 1n v + và n v . c) Từ 2 công thức truy hồi trên, viết quy trình bấm phím liên tục để tính 2 2 , n n u v + + và 2n z + theo 1 1 , , , n n n n u u v v + + ( 1, 2, 3, .n = ). Ghi lại giá trị chính xác của: 3 5 8 9 10 , , , ,z z z z z Thongphysics85@gmail.com - Trang 3 a) 1 2 3 4 ; ; ;u u u u= = = = 1 2 3 4 ; ; ;v v v v= = = = b) Công thức truy hồi tính 2n u + = Công thức truy hồi tính 2n v + = c) 3 5 8 9 10 ; ; ; z z z z z = = = = = Quy trình bấm phím: Số dư trong phép chia 63 (197334) cho 793 là: 1 r = Số dư trong phép chia 2008 (197334) cho 793 là: 2 r = Bài 8: (3 điểm) Trong đợt khảo sát chất lượng đầu năm, điểm của ba lớp 9A, 9B, 9C được cho trong bảng sau: Điểm 10 9 8 7 6 5 4 3 9A 16 14 11 5 4 11 12 4 9B 12 14 16 7 1 12 8 1 9C 14 15 10 5 6 13 5 2 a) Tính điểm trung bình của mỗi lớp. Kết quả làm tròn đến chữ số lẻ thứ hai. b) Nếu gọi X số trung bình cộng của một dấu hiệu X gồm các giá trị 1 2, 3 , , ., k x x x x có các tần số tương ứng là 1 2 3 , , , ., k n n n n , thì số trung bình của các bình phương các độ lệch của mỗi giá trị của dấu hiệu so với X : ( ) ( ) ( ) ( ) 2 2 2 2 1 1 2 2 3 3 2 1 2 3 k k x k n x X n x X n x X n x X s n n n n − + − + − +×××+ − = + + +×××+ gọi là phương sai của dấu hiệu X và 2 x x s s= gọi là độ lệch chuẩn của dấu hiệu X. Áp dụng: Tính phương sai và độ lệch chuẩn của dấu hiệu điểm của mỗi lớp 9A, 9B, 9C. Kết quả làm tròn đến chữ số lẻ thứ hai. Bài 9: (5 điểm) Lãi suất của tiền gửi tiết kiệm của một số ngân hàng thời gian vừa qua liên tục thay đổi. Bạn Châu gửi số tiền ban đầu là 5 triệu đồng với lãi suất 0,7% tháng chưa đầy một năm, thì lãi suất tăng lên 1,15% tháng trong nửa năm tiếp theo và bạn Châu tiếp tục gửi; sau nửa năm đó lãi suất giảm xuống còn 0,9% tháng, bạn Châu tiếp tục gửi thêm một số tháng tròn nữa, khi rút tiền bạn Châu được cả vốn lẫn lãi là 5 747 478,359 đồng (chưa làm tròn). Hỏi bạn Châu đã gửi tiền tiết kiệm trong bao nhiêu tháng ? Nêu sơ lược quy trình bấm phím trên máy tính để giải. Thongphysics85@gmail.com - Trang 4 Số tháng gửi là: Quy trình bấm phím: a) Điểm trung bình của lớp 9A, 9B, 9C: A X ≈ ; B X ≈ ; C X ≈ b) Phương sai và độ lệch chuẩn của lớp 9A: 2 a s ≈ ; a s ≈ Phương sai và độ lệch chuẩn của lớp 9B: 2 b s ≈ ; b s ≈ Phương sai và độ lệch chuẩn của lớp 9A: 2 c s ≈ ; c s ≈ Bài 10: (7 điểm) Cho 3 đường thẳng 1 2 3 ( ); ( ); ( )d d d lần lượt là đồ thị của các hàm số 2 3 5; 2 3 y x y x= + = − và 2 3y x= − + . Hai đường thẳng 1 ( )d và 2 ( )d cắt nhau tại A; hai đường thẳng 2 ( )d và 3 ( )d cắt nhau tại B; hai đường thẳng 3 ( )d và 1 ( )d cắt nhau tại C. a) Tìm tọa độ của các điểm A, B, C (viết dưới dạng phân số). b) Tính gần đúng hệ số góc của đường thẳng chứa tia phân giác trong góc A của tam giác ABC và tọa độ giao điểm D của tia phân giác trong góc A với cạnh BC. c) Tính gần đúng diện tích phần hình phẳng giữa đường tròn ngoại tiếp và đường tròn nội tiếp tam giác ABC. Kết quả làm tròn đến 2 chữ số lẻ thập phân. (Cho biết công thức tính diện tích tam giác: ( )( )( ) , 4 abc S p p a p b p c S R = − − − = (a, b, c là ba cạnh ; p là nửa chu vi, R là bán kính đường tròn ngoại tiếp của tam giác; đơn vị độ dài trên mỗi trục tọa độ là cm) Hết Thongphysics85@gmail.com - Trang 5 a) Tọa độ các điểm A, B, C là: b) Hệ số góc của đường thẳng chứa tia phân giác trong góc A là: a ≈ Tọa độ giao điểm D: c) Diện tích phần hình phẳng giữa đường tròn ngoại tiếp và đường tròn nội tiếp tam giác ABC là: S ≈ Sở Giáo dục và đào tạo kỳ thichọn hoc sinh giỏi tỉnh Thừa Thiên Huế lớp 9 thCS năm học 2008 - 2009 Mụn : MY TNH CM TAY Đáp án và thang điểm: Bi Cỏch gii im TP im ton bi 1 72541712025A = 1,5 5 sin 0,735; cos 0,247x y= = 0.040227236B . 2,0 2833.646608C 1,5 2 1 2 3 1 3 ; 2; 2 4 x x x= = = 1,5 5 Theo gi thit ta cú: 2 ( ) . ( ) 8 4 5f x q g x x x= + + + , suy ra: 1 1 1 1 1 5 5 2 2 4 2 8 (2) (2) 45 4 2 45 8 9 3 25 27 3 3 25 16 4 2 64 4 4 2 f r a b c f r a b c a b c f r = = + = + ữ ữ = = + + = + + = = = ữ ữ Gii h phng trỡnh ta c: 23 33 23 ; ; 4 8 4 a b c= = = Cỏch gii: Nhp biu thc 3 2 23 33 23 4 8 4 X X X+ + + , bm phớm CALC v nhp s 2008 = ta c s hin ra trờn mn hỡnh: 8119577169. n phớm nhp 8119577169 = c 0.25 . Suy ra giỏ tr chớnh xỏc: (2008) 8119577168.75f = . 1,5 1,0 1,5 3 a) 6 2 8863701824=2 101 1171ì ì Tng cỏc c l ca D l: ( ) 2 2 1 101 1171 1171 101 1171 1171 139986126+ + + + + = 1,0 1,0 5 b) S cn tỡm l: 3388 Cỏch gii: ( ) 1000 100 10 1100 11 11 100aabb a a b b a b a b= + + + = + = + ( ) ( ) ( ) ( ) ( ) ( ) 2 1 1 1 1 11 1 1a a b b a b+ + ì = + . Do ú: ( ) ( ) ( ) ( ) ( ) ( ) 1 1 1 1 100 11 1 1aabb a a b b a b a b= + + ì + = + Nu 0 10 11a b= = , iu ny khụng xy ra. Tng t, nu 1 100 1 0b a = + = , iu ny khụng xy ra. Quy trỡnh bm mỏy: 100 ALPHA A + ALPHA X 11 ( ALPHA A + 1 ) ( ALPHA X 1 ) ALPHA = 0 1,0 1,0 Thongphysics85@gmail.com - Trang 6 SHIFT SOLVE Nhập giá trị A là 1 = Nhập tiếp giá trị đầu cho X là 2 = cho kết quả X là số lẻ thập phân. SHIFT SOLVE Nhập giá trị A là 2 = Nhập tiếp giá trị đầu cho X là 2 = cho kết quả X là số lẻ thập phân. SHIFT SOLVE Nhập giá trị A là 3 = Nhập tiếp giá trị đầu cho X là 2 = cho kết quả X = 8; tiếp tục quy trình cho đến khi A = 9. Ta chỉ tìm được số: 3388. 2,0 1,0 4 Hàng đơn vị chỉ có 3 3 27= có chữ số cuối là 7. Với cac số 3 3a chỉ có 3 53 14877= có 2 chữ số cuối đều là 7. Với các chữ số ( ) 3 53a chỉ có 753 3 có 3 chữ số cuối đều là 7. Ta có: 3 777000 91.xxxx≈ ; 3 7770000 198. .xxxx≈ , 3 5 777 10 426, .;xxx× ≈ 3 36 7 777 10 919, .; 777 10 1980, .xxx xxx× ≈ × ≈ ; 3 8 777 10 4267, .;xxx× ≈ . Như vậy, để các số lập phương của nó có 3 số đuôi là chữ số 7 phải bắt đầu bởi các số: 91; 198; 426; 91x; 198x; 426x; (x = 0, 1, 2, ., 9) Thử các số: 3 3 3 91753 77243 .; 198753 785129 .; 426753 77719455 .= = = Vậy số cần tìm là: n = 426753 và 3 426753 77719455348459777= . 1,5 1,5 2,0 5 6 197334 SHIFT STO A SHIFT MOd( ALPHA A , 793 ) = cho kết quả: 670 SHIFT MOd( ALPHA A x 2 , 793 ) = cho kết quả: 62 SHIFT MOd( ALPHA A ^ 3 , 793 ) = cho kết quả: 304 (Lưu ý: A 4 vượt quá 16 chữ số, kết quả không còn chính xác nữa) SHIFT MOd( ALPHA 304 × 62 , 793 ) = cho kết quả: 609. Tức là: 5 609 (mod793)A ≡ SHIFT MOd( ALPHA 606 x 2 , 793 ) = cho kết quả: 550. Tức là: 10 550 (mod793)A ≡ . Tương tự: 30 3 60 2 550 428 (mod793); 428 1 (mod 793)A A≡ ≡ ≡ ≡ . Vậy: 63 3 304 (mod793)A A≡ ≡ . Đáp số: 304 + Ta có: 2008 = 33×60 + 28, nên: ( ) 33 2008 60 20 8 A A A A= × × ( ) 33 60 33 1 1 (mod 793)A ≡ ≡ ; ( ) 2 20 10 2 550 367(mod793)A A= ≡ ≡ ( ) 4 8 2 4 62 367(mod 793)A A≡ ≡ ≡ Suy ra: 2008 2 1 367 672(mod 793)A ≡ × ≡ . Đáp số: 672. 2,0 5 Thongphysics85@gmail.com - Trang 7 2,0 7 1 2 3 4 1, 10, 87; 740.u u u u= = = = 1 2 3 4 1, 14, 167, 1932v v v v= = = = . Công thức truy hồi của u n+2 có dạng: 2 1 2n n n u au bu + + + = + . Ta có hệ phương trình: 3 2 1 4 3 2 10 87 10; 13 87 10 740 u au bu a b a b u au bu a b = + + = ⇔ ⇔ = = − = + + = Do đó: 2 1 10 13 n n n u u u + + = − Tương tự: 2 1 14 29 n n n v v v + + = − Quy trình bấm phím: 1 SHIFT STO A 10 SHIFT STO B 1SHIFT STO C 14 SHIFT STO D 2SHIFT STO X (Biến đếm) ALPHA X ALPHA = ALPHA X + 1 ALPHA : ALPHA E ALPHA = 10 ALPHA B − 13 ALPHA A ALPHA : ALPHA A ALPHA = ALPHA B ALPHA : ALPHA B ALPHA = ALPHA E ALPHA : ALPHA F ALPHA = 14 ALPHA D − 29 ALPHA C ALPHA : ALPHA C ALPHA = ALPHA D ALPHA : ALPHA D ALPHA = ALPHA F ALPHA : ALPHA Y ALPHA = 2 ALPHA E + 3 ALPHA F = = = . (giá trị của E ứng với u n+2 , của F ứng với v n+2 , của Y ứng với z n+2 ). Ghi lại các giá trị như sau: 3 5 8 9 10 675, 79153, =108234392, z 1218810909, z 13788770710 z z z= = = = 1,0 1,0 1,0 1,0 2,0 5 8 Điểm trung bình của lớp 9A là: 7,12 A X ≈ ; Phương sai: 2 5,58; A s ≈ và độ lệch chuẩn là: 2,36 A s ≈ . Điểm trung bình của lớp 9B là: 7,38 B X ≈ ; Phương sai: 2 4,32; B s ≈ và độ lệch chuẩn là: 2,07 B s ≈ . Điểm trung bình của lớp 9C là: 7,39 C X ≈ ; Phương sai: 2 4,58; C s ≈ và độ lệch chuẩn là: 2,14 C s ≈ . 1,0 1,0 1,0 3 Thongphysics85@gmail.com - Trang 8 9 Gọi a là số tháng gửi với lãi suất 0,7% tháng, x là số tháng gửi với lãi suất 0,9% tháng, thì số tháng gửi tiết kiệm là: a + 6 + x. Khi đó, số tiền gửi cả vốn lẫn lãi là: 6 5000000 1.007 1.0115 1.009 5747478.359 a x × × × = Quy trình bấm phím: 5000000 × 1.007 ^ ALPHA A × 1.0115 ^ 6 × 1.009 ^ ALPHA X − 5747478.359 ALPHA = 0 SHIFT SOLVE Nhập giá trị của A là 1 = Nhập giá trị đầu cho X là 1 = SHIFT SOLVE Cho kết quả X là số không nguyên. Lặp lại quy trình với A nhập vào lần lượt là 2, 3, 4, 5, .đến khi nhận được giá trị nguyên của X = 4 khi A = 5. Vậy số tháng bạn Châu gửi tiết kiệm là: 5 + 6 + 4 = 15 tháng 2,0 2,0 1,0 5 10 a) ( ) 15 3 2 19 3; 4 , ; ; ; 8 4 5 5 A B C − − − − ÷ ÷ b) µ 1 1 2 tan 3 tan 3 A − − = − ÷ Góc giữa tia phân giác At và Ox là: µ 1 1 1 2 1 2 tan tan 3 tan 3 2 2 3 A − − − + = + ÷ ÷ ÷ Suy ra: Hệ số góc của At là: 1 1 1 2 tan tan 3 tan 2 3 a − − = + ÷ ÷ Bấm máy: tan ( 0.5 ( SHIFT tan -1 3 + SHIFT tan -1 ( 2 a b/c 3 ) ) ) SHIFT STO A cho kết quả: 1.309250386a ≈ + Đường thẳng chứa tia phân giác At là đồ thị của hàm số: y ax b= + , At đi qua điểm ( 3; 4)A − − nên 3 4b a = − . + Tọa độ giao điểm D của At và BC là nghiệm của hệ phương trình: 2 3 3 4 x y ax y a + = − = − + . Giải hệ pt bằng cách bấm máy nhưng nhập hệ số a 2 dùng ALPHA A và nhập hệ số c 2 dùng (−) 3 ALPHA A + 4, ta được kết quả: (0,928382105; 1,143235789)D 1,5 1,0 1,5 7 c) 2 2 15 3 3 4 8 4 AB = + + − ÷ ÷ Tính và gán cho biến A 2 2 15 2 19 3 8 5 5 4 BC = + + + ÷ ÷ Tính và gán cho biến B Thongphysics85@gmail.com - Trang 9 2 2 2 19 3 4 5 5 CA = − + + ÷ ÷ Tính và gán cho biến C ( ALPHA A + ALPHA B + ALPHA C ) ÷ 2 SHIFT STO D (Nửa chu vi p) Diện tích của tam giác ABC: ( ( ALPHA D ( ALPHA D − ( ALPHA A ) ( ALPHA D − ( ALPHA B ) ( ALPHA D ) ) SHIFT STO E Bán kính đường tròn ngoại tiếp tam giác ABC: 4 abc R S = : ALPHA A ALPHA B ALPHA C ÷ 4 ÷ ALPHA E SHIFT STO F 1,0 1,0 Bán kính đường tròn nội tiếp tam giác ABC: S r p = . Diện tích phần hình phẳng giữa đường tròn nội tiếp và đường tròn ngoại tiếp tam giác ABC là: ( ) 2 2 2 2 S R r R r π π π = − = − SHIFT π ( ALPHA E x 2 − ( ALPHA E ÷ ALPHA D ) x 2 = Cho kết quả 2 46,44 ( )S cm≈ 1,0 Thongphysics85@gmail.com - Trang 10 . Sở Giáo dục và Đào tạo Kỳ thi chọn học sinh giỏi tỉnh Thừa Thi n Huế Giải toán trên máy tính cầm tay Đề thi chính thức Khối 9 THCS - Năm học. tròn nội tiếp tam giác ABC là: S ≈ Sở Giáo dục và đào tạo kỳ thi chọn hoc sinh giỏi tỉnh Thừa Thi n Huế lớp 9 thCS năm học 2008 - 2009 Mụn : MY TNH CM TAY