1 BàI TậP Về HàMSố ÔN THI Câu1: Cho hàm số: y = -x 3 + 3mx 2 + 3(1 - m 2 )x + m 3 - m 2 1) Khảo sát sự biến thiên và vẽ đồ thị của hàmsố trên khi m = 1. 2) Tìm k để phơng trình: -x 3 + 3x 2 + k 3 - 3k 2 = 0 có 3 nghiệm phân biệt. 3) Viết phơng trình đờng thẳng đi qua 2 điểm cực trị của đồ thị hàmsố trên. Câu2: Cho hàm số: y = mx 4 + (m 2 - 9)x 2 + 10 (1) 1) Khảo sát sự biến thiên và vẽ đồ thị của hàmsố (1) khi m = 1. 2) Tìm m để hàmsố (1) có ba điểm cực trị. Câu3: Cho hàm số: y = ( ) 1 12 2 x mxm (1) (m là tham số) 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàmsố (1) ứng với m = -1. 2) Tính diện tích hình phẳng giới hạn bởi đờng cong (C) và hai trục toạ độ. 3) Tìm m để đồ thị của hàmsố (1) tiếp xúc với đờng thẳng y = x. Câu4:Cho hàm số: y = x 3 - 3x 2 + m (1) 1) Tìm m để đồ thị hàmsố (1) có hai điểm phân biệt đối xứng với nhau qua gốc toạ độ. 2) Khảo sát sự biến thiên và vẽ đồ thị của hàmsố (1) khi m = 2 . Câu5: Cho hàm số: y = xxx 32 3 1 23 + (1) có đồ thị (C) 1) Khảo sát sự biến thiên và vẽ đồ thị của hàmsố (1). 2) Viết phơng trình tiếp tuyến của (C) tại điểm uốn và chứng minh rằng là tiếp tuyến của (C) có hệ số góc nhỏ nhất. Câu6: Gọi (C m ) là đồ thị hàm số: y = 3 2 1 1 3 2 3 m x x + (*) (m là tham số) 1. Khảo sát sự biến thiên và vẽ đồ thị của hàmsố (*) khi m = 2 2. Gọi M là điểm thuộc (C m ) có hoành độ bằng -1. Tìm m để tiếp tuyến của (C m ) tại điểm M song song với đờng thẳng 5x - y = 0 Câu7: 7.1 Khảo sát sự biến thiên và vẽ đồ thị của hàm số: y = 2x 3 - 9x 2 + 12x - 4 7.2 Tìm m để phơng trình sau có 6 nghiệm phân biệt: 3 2 2 9 12x x x m + = Câu8: Cho hàmsố y = x 3 - 3x + 2 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàmsố đã cho. 2. Gọi d là đờng thẳng đi qua điểm A(3; 2) và có hệ số góc là m. Tìm m để đờng thẳng d cắt đồ thị (C) tại ba điểm phân biệt. Câu9:Cho hàm số: y = -x 3 + 3x 2 + 3(m 2 -1)x - 3m 2 - 1 (1) m là tham số 1. Khảo sát sự biến thiên và vẽ đồ thị của hàmsố (1) khi m = 1 2. Tìm m để hàmsố (1) có cực đại, cực tiểu và các điểm cực trị của đồ thị hàmsố (1) cách đều gốc toạ đọ O. Câu10: Cho hàm số: y = 2 1 x x + 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàmsố đã cho. 2. Tìm toạ độ điểm M thuộc (C), biết tiếp tuyến của (C) tại M cắt hai trục Ox, Oy tại A, B và tam giác OAB có diện tích bằng 1 4 Câu11: Cho hàm số: y = x 4 - mx 2 + m - 1 (1) (m là tham số) 2 1) Khảo sát sự biến thiên và vẽ đồ thị của hàmsố (1) khi m = 8. 2) Xác định m sao cho đồ thị của hàmsố (1) cắt trục hoành tại bốn điểm phân biệt. Câu12: Cho hàm số: y = (x - 1)(x 2 + mx + m) (1) (m là tham số) 1) Tìm m để đồ thị hàmsố (1) cắt trục hoành tại ba điểm phân biệt. 2) Khảo sát sự biến thiên và vẽ đồ thị của hàmsố (1) khi m = 4. Câu13: Cho hàm số: y = 1 12 x x (1) 1) Khảo sát sự biến thiên và vẽ đồ thị của hàmsố (C) của hàmsố (1). 2) Gọi I là giao điểm của hai đờng tiệm cận của (C). Tìm điểm M thuộc (C) sao cho tiếp tuyến của (C) tại M vuông góc với đờng thẳng IM. Câu14: 1) Khảo sát sự biến thiên và vẽ đồ thị của hàmsố (C) của hàm số: y = 2x 3 - 3x 2 - 1 2) Gọi d k là đờng thẳng đi qua điểm M(0 ; -1) và có hệ số góc bằng k. Tìm k để đờng thẳng d k cắt (C) tại ba điểm phân biệt. Câu15: Cho hàm số: y = x 3 - mx 2 + 1 (C m ) 1) khi m = 3 a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số. b) Tìm trên đồ thị hàmsố tất cả các cặp điểm đối xứng nhau qua gốc toạ độ. 2) Xác định m để đờng cong (C m ) tiếp xúc với đờng thẳng (D) có phơng trình y = 5. Khi đó tìm giao điểm còn lại của đờng thẳng (D) với đờng cong (C m ). Câu16: 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số: y = 2 1 + x x 2) Tìm các điểm trên đồ thị (C) của hàmsố có toạ độ là những số nguyên. 3) Tìm các điểm trên đồ thị (C) sao cho tổng khoảng cách từ điểm đó đến hai tiệm cận là nhỏ nhất. Câu17: Cho hàm số: y = x 3 - (2m + 1)x 2 - 9x (1) 1) Với m = 1; a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàmsố (1). b) Cho điểm A(-2; -2), tìm toạ độ điểm B đối xứng với điểm A qua tâm đối xứng của đồ thị (C). 2) Tìm m để đồ thị của hàmsố (1) cắt trục hoành tại ba điểm phân biệt có các hoành độ lập thành một cấp số cộng. Câu18: Cho hàm số: y = x 3 + 3x 2 + 1(1) 1) Khảo sát sự biến thiên và vẽ đồ thị của hàmsố (1). 2) Đờng thẳng (d) đi qua điểm A(-3 ; 1) có hệ góc là k. Xác định k để (d) cắt đồ thị hàmsố (1) tại ba điểm phân biệt. Câu19:Cho đờng cong (C m ): y = x 3 + mx 2 - 2(m + 1)x + m + 3 và đờng thẳng (D m ): y = mx - m + 2 m là tham số. 1) Khảo sát sự biến thiên và vẽ đồ thị (C -1 ) của hàmsố với m = -1. 3 2) Với giá trị nào của m, đờng thẳng (D m ) cắt (C m ) tại ba điểm phân biệt? Câu20: Cho hàm số: y = 1 1 + x x (1) có đồ thị (C) 1) Khảo sát sự biến thiên và vẽ đồ thị của hàmsố (1). 2) Chứng minh rằng đờng thẳng d: y = 2x + m luôn cắt (C) tại hai điểm A, B thuộc hai nhánh khác nhau. Xác định m để đoạn AB có độ dài ngắn nhất. Câu21: Cho hàm số: y = mx mx + 13 (1) 1) Xác định m để hàmsố (1) nghịch biến trong khoảng (1; + ) 2) Khảo sát sự biến thiên và vẽ đồ thị của hàmsố (1) khi m = 1, gọi đồ thị của hàmsố này là (C). 3) Tìm hai điểm A, B thuộc (C) sao cho A và B đối xứng với nhau qua đờng thẳng (d): x + 3y - 4 = 0. Câu22: Cho hàm số: y = x 3 - 3x 2 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàmsố đã cho. 2) Tính diện tích của hình phẳng giới hạn bởi đờng cong (C) và trục hoành. 3) Xét đờng thẳng (D): y = mx, thay đổi theo tham số m. Tìm m để đờng thẳng (D) cắt đ- ờng cong (C) tại 3 điểm phân biệt, trong đó có hai điểm có hoành độ dơng. Câu23: 1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số: y = (x + 1) 2 (x - 2). 2) Cho đờng thẳng đi qua điểm M(2; 0) và có hệ số góc là k. Hãy xác định tất cả giá trị của k để đờng thẳng cắt đồ thị của hàmsố sau tại bốn điểm phân biệt: Câu24: 1) Khảo sát sự biến thiên và vẽ đồ thị của hàmsố y = 3 2 + x x 2) Tìm trên đồ thị của hàmsố điểm M sao cho khoảng cách từ điểm M đến đờng tiệm cận đứng bằng khoảng cách từ M đến đờng tiệm cận ngang. Câu25: Cho hàm số: y = x 3 + 3mx 2 + 3(m 2 - 1)x + m 3 - 3m 1) Khảo sát sự biến thiên và vẽ đồ thị của hàmsố ứng với m = 0. 2) Chứng minh rằng với mọi m hàmsố đã cho luôn luôn có cực đại và cực tiểu; đồng thời chứng minh rằng khi m thay đổi các điểm cực đại và cực tiểu của đồ thị hàmsố luôn luôn chạy trên hai đờng thẳng cố định. Cõu 26: Cho hm s 2 4 1 x y x + = . 1) Kho sỏt v v th ( ) C ca hm s trờn. 2) Gi (d) l ng thng qua A( 1; 1 ) v cú h s gúc k. Tỡm k sao cho (d) ct ( C ) ti hai im M, N v 3 10MN = . 4 HD Từ giả thiết ta có: ( ) : ( 1) 1.d y k x= − + Bài toán trở thành: Tìm k để hệ phương trình sau có hai nghiệm 1 1 2 2 ( ; ), ( ; )x y x y phân biệt sao cho ( ) ( ) 2 2 2 1 2 1 90(*)x x y y− + − = 2 4 ( 1) 1 ( ) 1 ( 1) 1 x k x I x y k x + = − + − + = − + . Ta có: 2 (2 3) 3 0 ( ) ( 1) 1 kx k x k I y k x − − + + = ⇔ = − + Dễ có (I) có hai nghiệm phân biệt khi và chỉ khi phương trình 2 (2 3) 3 0(**)kx k x k− − + + = có hai nghiệm phân biệt. Khi đó dễ có được 3 0, . 8 k k≠ < Ta biến đổi (*) trở thành: ( ) ( ) 2 2 2 2 2 1 2 1 2 1 (1 ) 90 (1 )[ 4 ] 90(***)k x x k x x x x+ − = ⇔ + + − = Theo định lí Viet cho (**) ta có: 1 2 1 2 2 3 3 , , k k x x x x k k − + + = = thế vào (***) ta có phương trình: 3 2 2 8 27 8 3 0 ( 3)(8 3 1) 0k k k k k k+ + − = ⇔ + + − = 3 41 3 41 3, , 16 16 − + − − = − =⇔ =k k k . KL: Vậy có 3 giá trị của k thoả mãn như trên. Câu 27: Cho hàmsố y = 2x 3 + 9mx 2 + 12m 2 x + 1, trong đó m là tham số. 1. Khảo sát sự biến thiên và vẽ đồ thị của hàmsố đã cho khi m = - 1. 2. Tìm tất cả các giá trị của m để hàmsố có cực đại tại x CĐ , cực tiểu tại x CT thỏa mãn: x 2 CĐ = x CT . Câu 28: Cho hàmsố 1 . 1 x y x + = − a) Khảo sát sự biến thiên và vẽ đồ thị ( ) C của hàm số. b) Biện luận theo m số nghiệm của phương trình 1 . 1 x m x + = − Câu 29. Cho hàmsố y = 1 12 − − x x . a, Khảo sát sự biến thiên và vẽ đồ thị ( C ) của hàm số. b, Lập phương trình tiếp tuyến của đồ thị ( C ) mà tiếp tuyến này cắt các trục Ox , Oy lần lượt tại các điểm A và B thỏa mãn OA = 4OB. Câu 30: Cho hàmsố 2 2 1 x y x − = + (C) 1. Khảo sát hàm số. 2. Tìm m để đường thẳng d: y = 2x + m cắt đồ thị (C) tại 2 điểm phân biệt A, B sao cho AB = 5 . Câu 31: Cho hàmsố y = (C) 1. Khảo sát sự biến thiên và vẽ đồ thị hàmsố (C) 2. Viết phương trình tiếp tuyến với đồ thị (C), biết rằng khoảng cách từ tâm đối xứng của đồ thị (C) đến tiếp tuyến là lớn nhất. Giả sử M(x 0 ; y 0 ) thuộc (C) mà tiếp tuyến với đồ thị tại đó có khoảng cách từ tâm đối xứng đến tiếp tuyến là lớn nhất. Phương trình tiếp tuyến tại M có dạng : 0 0 2 0 0 1 ( ) ( 1) 1 x y x x x x = − − + − − 2 0 2 2 0 0 1 0 ( 1) ( 1) x x y x x ⇔ − − + = − − - + f(t) f'(t) x 2 0 1 0 + 5 Ta cú d(I ;tt) = 0 4 0 2 1 1 1 ( 1) x x + + Xột hm s f(t) = 4 2 ( 0) 1 t t t > + ta cú f(t) = 2 4 4 (1 )(1 )(1 ) (1 ) 1 t t t t t + + + + f(t) = 0 khi t = 1 Bng bin thiờn t bng bin thiờn ta c d(I ;tt) ln nht khi v ch khi t = 1 hay 0 0 0 2 1 1 0 x x x = = = + Vi x 0 = 0 ta cú tip tuyn l y = -x + Vi x 0 = 2 ta cú tip tuyn l y = -x+4 Cõu 32: Cho hàmsố 2 32 = x x y 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2. Cho M là điểm bất kì trên (C). Tiếp tuyến của (C) tại M cắt các đờng tiệm cận của (C) tại A và B. Gọi I là giao điểm của các đờng tiệm cận. Tìm toạ độ điểm M sao cho đờng tròn ngoại tiếp tam giác IAB có diện tích nhỏ nhất. Ta có: 2x, 2x 3x2 ;xM 0 0 0 0 , ( ) 2 0 0 2x 1 )x('y = Phơng trình tiếp tuyến với ( C) tại M có dạng: ( ) 2x 3x2 )xx( 2x 1 y: 0 0 0 2 0 + = Toạ độ giao điểm A, B của ( ) và hai tiệm cận là: ( ) 2;2x2B; 2x 2x2 ;2A 0 0 0 Ta thấy M0 0BA xx 2 2x22 2 xx == + = + , M 0 0BA y 2x 3x2 2 yy = = + suy ra M là trung điểm của AB. Mặt khác I = (2; 2) và tam giác IAB vuông tại I nên đờng tròn ngoại tiếp tam giác IAB có diện tích S = += += 2 )2x( 1 )2x(2 2x 3x2 )2x(IM 2 0 2 0 2 0 0 2 0 2 Dấu = xảy ra khi = = = 3x 1x )2x( 1 )2x( 0 0 2 0 2 0 Do đó có hai điểm M cần tìm là M(1; 1) và M(3; 3) 6 Cõu 33: Cho hm s ( ) ( ) 4 2 2 2 2 5 5y f x x m x m m= = + + + 1/ Kho sỏt s bin thiờn v v th (C ) hm s vi m = 1 2/ Tỡm cỏc giỏ tr ca m đồ thị hàmsố cú cỏc im cc i, cc tiu to thnh 1 tam giỏc vuụng cõn. HD: Tỡm cỏc giỏ tr ca m (C) cú cỏc im cc i, cc tiu to thnh 1 tam giỏc vuụng cõn. * Ta cú ( ) ( ) 3 2 0 ' 4 4 2 0 2 x f x x m x x m = = + = = * Hm s cú C, CT khi f(x)=0 cú 3 nghim phõn bit v i du : m < 2 (1) . To cỏc im cc tr l: ( ) ( ) ( ) mmCmmBmmA + 1;2,1;2,55;0 2 * Do tam giỏc ABC luụn cõn ti A, nờn bi toỏn tho món khi vuụng ti A: ( ) 1120. 3 === mmACAB vỡ k (1) Trong ú ( ) ( ) 44;2,44;2 22 +=+= mmmACmmmAB Vy giỏ tr cn tỡm ca m l m = 1. Cõu 34:Cho hm s y = - x 3 + 3mx 2 -3m 1. 1. Kho sỏt s bin thiờn v v th ca hm s khi m = 1. 2. Tỡm cỏc giỏ tr ca m hm s cú cc i, cc tiu. Vi giỏ tr no ca m thỡ th hm s cú im cc i, im cc tiu i xng vi nhau qua ng thng d: x + 8y 74 = 0. HD : Ta cú y = - 3x 2 + 6mx ; y = 0 x = 0 v x = 2m. Hm s cú cc i , cc tiu phng trỡnh y = 0 cú hai nghim phõn bit m 0. Hai im cc tr l A(0; - 3m - 1) ; B(2m; 4m 3 3m 1) Trung im I ca on thng AB l I(m ; 2m 3 3m 1) Vect 3 (2 ;4 )AB m m= uuur ; Mt vect ch phng ca ng thng d l (8; 1)u = r . Hai im cc i , cc tiu A v B i xng vi nhau qua ng thng d I d AB d 3 8(2 3 1) 74 0 . 0 m m m AB u + = = uuur r m = 2 Câu 35: Cho hàmsố 2 12 + + = x x y có đồ thị là (C) 1.Khảo sát sự biến thiên và vẽ đồ thị của hàmsố 2.Chứng minh đờng thẳng d: y = -x + m luôn luôn cắt đồ thị (C) tại hai điểm phân biệt A, B. Tìm m để đoạn AB có độ dài nhỏ nhất. Hoành độ giao điểm của đồ thị (C ) và đờng thẳng d là nghiệm của phơng trình =++ += + + )1(021)4( 2 2 12 2 mxmx x mx x x Do (1) có mmmvam =++>+= 0321)2).(4()2(01 22 nên đờng thẳng d luôn luôn cắt đồ thị (C ) tại hai điểm phân biệt A, B Ta có y A = m x A ; y B = m x B nên AB 2 = (x A x B ) 2 + (y A y B ) 2 = 2(m 2 + 12) suy ra AB ngắn nhất AB 2 nhỏ nhất m = 0. Khi đó 24 = AB 7 Cõu 36 : Cho hm s 3 2 2 ( 3) 4y x mx m x= + + + + cú th l (C m ) 1) Kho sỏt s bin thiờn v v th (C 1 ) ca hm s trờn khi m = 1. 2) Cho (d ) cú phng trỡnh y = x + 4 v im K(1; 3). Tỡm cỏc giỏ tr ca tham s m sao cho (d) ct (C m ) ti ba im phõn bit A(0; 4), B, C sao cho tam giỏc KBC cú din tớch bng 8 2 . Hng dn gii 2)Phng trỡnh honh im chung ca (C m ) v d l: = + + + + = + + + + = = + + + = 3 2 2 2 0 2 ( 3) 4 4 (1) ( 2 2) 0 ( ) 2 2 0 (2) x x mx m x x x x mx m g x x mx m (d) ct (C m ) ti ba im phõn bit A(0; 4), B, C phng trỡnh (2) cú 2 nghim phõn bit khỏc 0. = > = + / 2 1 2 2 0 ( ) 2 (0) 2 0 m m m m a m g m . Mt khỏc: + = = 1 3 4 ( , ) 2 2 d K d Do ú: = = = = 2 1 8 2 . ( , ) 8 2 16 256 2 KBC S BC d K d BC BC 2 2 ( ) ( ) 256 B C B C x x y y + = vi , B C x x l hai nghim ca phng trỡnh (2). + + + = = + = 2 2 2 2 ( ) (( 4) ( 4)) 256 2( ) 256 ( ) 4 128 B C B C B C B C B C x x x x x x x x x x 2 2 1 137 4 4( 2) 128 34 0 2 m m m m m + = = = (tha K (a)). Vy 1 137 2 m = Câu 37 : Cho hàmsố 2 12 + + = x x y có đồ thị là (C) 1.Khảo sát sự biến thiên và vẽ đồ thị của hàmsố 2.Chứng minh đờng thẳng d: y = - x + m luôn luôn cắt đồ thị (C) tại hai điểm phân biệt A, B. Tìm m để đoạn AB có độ dài nhỏ nhất. Hoành độ giao điểm của đồ thị (C ) và đờng thẳng d là nghiệm của phơng trình =++ += + + )1(021)4( 2 2 12 2 mxmx x mx x x Do (1) có mmmvam =++>+= 0321)2).(4()2(01 22 nên đờng thẳng d luôn luôn cắt đồ thị (C ) tại hai điểm phân biệt A, B Ta có y A = m x A ; y B = m x B nên AB 2 = (x A x B ) 2 + (y A y B ) 2 = 2(m 2 + 12) suy ra AB ngắn nhất AB 2 nhỏ nhất m = 0. Khi đó 24 = AB Cõu 38: 1. Kho sỏt v v th (C) ca hm s y = 2 4 1 x x + 2. Tỡm trờn (C) hai im i xng nhau qua ng thng MN bit M(- 3;0) v N(- 1; - 1) 2. MN uuuur = (2;-1). ==> MN: x + 2y + 3 = HD ng thng (d) MN, (d) cú dng phng trỡnh y = 2x + m. Gi A, B l hai im thuc (C) i xng nhau qua ng thng MN 8 Hoành độ của A và B là nghiệm của phương trình: 2 4 2 1 x x m x − = + + ⇒ 2x 2 + mx + m + 4 = 0 ( x ≠ - 1) (1) Để (d) cắt (C) tại hai điểm phân biệt khi và chỉ khi (1) có ∆ = m 2 – 8m – 32 > 0 Ta có A(x 1 ,2x 1 + m), B(x 2 ;2x 2 + m) với x 1 , x 2 là nghiệm của (1 Trung điểm của AB là I 1 2 1 2 ; 2 x x x x m + + + ÷ ≡ I( ( ; ) 4 2 m m − ( theo định lý Vi-et) Ta có I ∈ MN ==> m = - 4, (1) ⇒ 2x 2 – 4x = 0 ⇒ A(0; - 4), B(2;0) . thị hàm số trên. Câu2: Cho hàm số: y = mx 4 + (m 2 - 9)x 2 + 10 (1) 1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 1. 2) Tìm m để hàm số. vẽ đồ thị của hàm số (1) khi m = 4. Câu13: Cho hàm số: y = 1 12 x x (1) 1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số (C) của hàm số (1). 2) Gọi