1. Trang chủ
  2. » Đề thi

Các chuyên đề thường gặp ôn thi toán THPT quốc gia 2020 k29

27 36 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 27
Dung lượng 500,61 KB

Nội dung

Đối với nhiều bạn, môn toán khiến nhiều bạn cảm thấy khó khăn nhất trong tất cả các môn khi tham gia vào kỳ thi THPT Quốc Gia 2020. Để các bạn thêm phần tự tin khi một kỳ thi nữa sắp đến gần, tài liệu sẽ gửi tới các bạn bộ tài liệu ôn thi THPT Quốc Gia 2020 Môn Toán kèm theo đáp án chi tiết ngay bên dưới

CÁC DẠNG TOÁN THƯỜNG GẶP TRONG KỲ THI THPTQG ĐT:0946798489 CHUN BÀI TỐN TÌM TẬP HỢP ĐIỂM BIỂU DIỄN SỐ PHỨC TRUY CẬP https://diendangiaovientoan.vn/tai-lieu-tham-khao-d8.html ĐỂ ĐƯỢC NHIỀU ĐỀ 26 HƠN MỤC LỤC Phần A. CÂU HỎI Dạng 1. Tập hợp điểm biểu diễn là đường tròn Dạng 2. Tập hợp điểm biểu diễn là đường thẳng Dạng 3. Tập hợp điểm biểu diễn là đường conic Dạng 4. Tập hợp điểm biểu diễn là một miền Phần B. LỜI GIẢI THAM KHẢO 10 Dạng 1. Tập hợp điểm biểu diễn là đường tròn 10 Dạng 2. Tập hợp điểm biểu diễn là đường thẳng 19 Dạng 3. Tập hợp điểm biểu diễn là đường conic 21 Dạng 4. Tập hợp điểm biểu diễn là một miền 23   Phần A. CÂU HỎI  Dạng 1. Tập hợp điểm biểu diễn là đường tròn    Câu 1.   (Mã đề 102 BGD&ĐT NĂM 2018) Xét các số phức  z  thỏa mãn   z  3i  z  3  là số thuần ảo.  Trên mặt phẳng tọa độ, tập hợp tất cả các điểm biểu diễn các số phức  z  là một đường tròn có bán  kính bằng:  A.    B.    C.    D.    2 Câu 2.   (MĐ 103 BGD&ĐT NĂM 2017-2018) Xét các số phức  z  thỏa mãn   z  2i  z    là số thuần  ảo. Trên mặt phẳng tọa độ, tập hợp tất cả các điểm biểu diễn các số phức  z  là một đường tròn có  bán kính bằng  A.  2   B.    C.    D.    Câu 3.   (Mã đề 104 - BGD - 2019) Xét các số phức  z thỏa mãn  z   Trên mặt phẳng tọa độ  Oxy  tập  hợp các điểm biểu diễn các số phức  w  A.  44   Câu 4.  B.  52    iz  là một đường tròn có bán kính bằng  1 z C.  13   D.  11      (Mã đề 104 BGD&ĐT NĂM 2018) Xét các số phức  z  thỏa mãn  z  2i  z    là số thuần ảo.  Trên mặt phẳng tọa độ, tập hợp tất cả các điểm biểu diễn các số phức  z  là một đường tròn có bán  kính bằng?  A.    B.    C.    D.  2   Nguyễn Bảo Vương: https://www.facebook.com/phong.baovuong CÁC DẠNG TOÁN THƯỜNG GẶP TRONG KỲ THI THPTQG Câu 5.  ĐT:0946798489  (ĐỀ MINH HỌA GBD&ĐT NĂM 2017) Cho các số phức  z  thỏa mãn z   Biết rằng tập hợp  các điểm biểu diễn các số phức w  (3  4i ) z  i  là một đường tròn. Tính bán kính  r  của đường tròn  đó  A.  r  22   B.  r    C.  r    D.  r  20   Câu 6.     (ĐỀ THAM KHẢO BGD&ĐT NĂM 2018-2019) Xét các số phức  z  thỏa mãn   z  2i  z   là  số thuần ảo. Biết rằng tập hợp tất cả các điểm biểu diễn của  z  là một đường tròn, tâm của đường  tròn đó có tọa độ là  A.  1;1   B.   1;1   C.   1; 1   D.  1; 1   Câu 7.     (Mã đề 101 BGD&ĐT NĂM 2018) Xét các số phức  z  thỏa mãn  z  i  z    là số thuần ảo. Trên  mặt phẳng tọa độ, tập hợp tất cả các điểm biểu diễn số phức  z  là một đường tròn có bán kính bằng  5 A.    B.  1  C.    D.    2 Câu 8.   (Mã đề 101 - BGD - 2019) Xét số phức  z  thỏa mãn  z   Trên mặt phẳng tọa độ  Oxy , tập  hợp điểm biểu diễn các số phức  w  A.  26   Câu 9.  B.  34    iz  là một đường tròn có bán kính bằng  1 z C.  26   D.  34    (Mã 102 - BGD - 2019) Xét số phức  z  thỏa mãn  z   Trên mặt phẳng tọa độ  Oxy , tập hợp   iz  là một đường tròn có bán kính bằng  1 z B.  20   C.  12   D.    điểm biểu diễn các số phức  w  A.    Câu 10.   (Mã 103 - BGD - 2019) Xét các số phức  z  thỏa mãn  z   Trên mặt phẳng tọa độ  Oxy , tập  hợp các điểm biểu diễn số phức  w  A.  10   B.     iz  là một đường tròn có bán kính bằng  1 z C.    D.  10   Câu 11.   (THPT GIA LỘC HẢI DƯƠNG NĂM 2018-2019 LẦN 01)   Cho số phức z thỏa mãn  z   Biết  rằng tập hợp các điểm biểu diễn số phức  w   2i    i  z  là một đường tròn. Tìm tọa độ tâm  I  của đường tròn đó?  A.  I  3;  2   B.  I  3;2   C.  I  3;2   D.  I  3;     Câu 12.   (ĐỀ MẪU KSNL ĐHQG TPHCM NĂM 2018-2019) Trong mặt phẳng phức, tập hợp các điểm  biểu diễn số phức  z  thoả mãn  z.z   là  A. một đường thẳng.  B. một đường tròn.  C. một elip.  D. một điểm.  Câu 13.   (CHUN  LÊ  Q  ĐƠN  QUẢNG  TRỊ  NĂM  2018-2019  LẦN  01)  Cho  số  phức  z   thỏa  z   2i   Biết rằng tập hợp các điểm biểu diễn của số phức  w  z  i  trên mặt phẳng   Oxy    là một đường tròn. Tìm tâm của đường tròn đó.  A.  I  2; 3   B.  I 1;1   C.  I  0;1   D.  I 1;0    Câu 14.   (THPT CHUYÊN SƠN LA NĂM 2018-2019 LẦN 01) Tập hợp các điểm biểu diễn số phức  z  thỏa  mãn  z  i  1  i  z  là một đường tròn, tâm của đường tròn đó có tọa độ là  Nguyễn Bảo Vương: https://www.facebook.com/phong.baovuong CÁC DẠNG TOÁN THƯỜNG GẶP TRONG KỲ THI THPTQG A.  1;1   B.   0; 1   ĐT:0946798489 C.   0;1   D.    1;    Câu 15.   (THPT  QUANG  TRUNG  ĐỐNG  ĐA  HÀ  NỘI  NĂM  2018-2019)  Cho  số  phức  z thỏa  mãn  z   Biết rằng tập hợp các điểm biểu diễn số phức  z là một đường tròn   C   Tính bán kính  i2 r của đường tròn   C    A.  r    C.  r  .  B.  r    D.  r  .  Câu 16.   (KTNL GV BẮC GIANG NĂM 2018-2019) Trong mặt phẳng tọa độ điểm biểu diễn số phức  z thỏa mãn  z   2i   là  A. đường tròn tâm  I (1; 2) , bán kính  R    B. đường tròn tâm  I (1; 2) , bán kính  R    C. đường tròn tâm  I (1; 2) , bán kính  R    D. đường thẳng có phương trình  x  y     Câu 17.   (SỞ GD&ĐT THANH HÓA NĂM 2018 - 2019) Xét các số phức  z thỏa mãn  (2  z )( z  i)  là số  thuần ảo. Tập hợp các điểm biểu diễn của  z trong mặt phẳng tọa độ là:   1 A. Đường tròn tâm  I 1;  ,bán kính  R     2 1  B. Đường tròn tâm  I  1;   ,bán kính  R    2  C. Đường tròn tâm  I  2;1 ,bán kính  R     1 D. Đường tròn tâm  I 1;  ,bán kính  R  nhưng bỏ điểm  A(2;0); B(0;1)    2 Câu 18.   (CHUYÊN BẮC GIANG NĂM 2018-2019 LẦN 02) Tìm tập hợp điểm biểu diễn số phức z thỏa  mãn  z  i  (1  i) z   A. Đường tròn tâm I(0; 1), bán kính  R    B. Đường tròn tâm I(1; 0), bán kính  R    C. Đường tròn tâm I(-1; 0), bán kính  R    D. Đường tròn tâm I(0; -1), bán kính  R    Câu 19.   (ĐỀ THI THỬ VTED 02 NĂM HỌC 2018 - 2019) Tâp hợp tất cả các điểm biểu diễn số phức  z  x  yi  x, y     thỏa mãn  z  i   là đường cong có phương trình  A.   x  1  y    B.  x   y  1    C.   x  1  y  16   D.  x   y  1  16   Câu 20.   (CHUYÊN NGUYỄN  TẤT THÀNH YÊN BÁI  LẦN 01 NĂM 2018-2019) Tập hợp tất  cả các  điểm biểu diễn các số phức  z thỏa mãn  z   i   là đường tròn có tâm và bán kính lần lượt là  A.  I  2;  1 ;  R    B.  I  2;  1 ;  R    C.  I  2;  1 ;  R    D.  I  2;  1 ;  R    Câu 21.   (ĐỀ THI CÔNG BẰNG KHTN LẦN 02 NĂM 2018-2019) Tập hợp điểm biểu diễn số phức  z   thỏa mãn  z   i   là đường tròn có tâm và bán kính lần lượt là:  A.  I  1;1 , R    B.  I  1;1 , R    C.  I 1;  1 , R    D.  I 1;  1 , R    Câu 22.   (CHUYÊN KHTN NĂM 2018-2019 LẦN 01) Tập hợp tất cả các điểm biểu diễn các số phức  z   thỏa mãn  1  i  z   i   là một đường tròn tâm  I  và bán kính  R  lần lượt là  A.  I  2; 3  , R    B.  I  2; 3 , R    C.  I  2;3  , R    D.  I  2;3 , R    Nguyễn Bảo Vương: https://www.facebook.com/phong.baovuong CÁC DẠNG TOÁN THƯỜNG GẶP TRONG KỲ THI THPTQG ĐT:0946798489 z2  là số thuần ảo.  z  2i Biết rằng tập hợp các điểm biểu diễn các số phức  z  ln thuộc một đường tròn cố định. Bán kính  của đường tròn đó bằng  A.  1.  B.    C.  2   D.    Câu 23.   (CHUN KHTN NĂM 2018-2019 LẦN 01) Xét các số phức  z  thỏa mãn  Câu 24.   (CHUN LÊ Q ĐƠN QUẢNG TRỊ NĂM 2018-2019 LẦN 01) Tính tổng của tất cả các giá  trị của tham số  m  để tồn tại duy nhất số phức  z  thoả mãn đồng thời  z  m  và  z  4m  3mi  m2   A.    B.    C.    D.  10   Câu 25.   (THPT YÊN KHÁNH - NINH BÌNH - 2018 - 2019) Cho số phức  z  thỏa mãn:  z   i   Tập  hợp các điểm trong mặt phẳng tọa độ   Oxy   biểu diễn số phức  w   z  là  A. Đường tròn tâm  I  2;1  bán kính  R    B. Đường tròn tâm  I  2; 1  bán kính  R    C. Đường tròn tâm  I  1; 1  bán kính  R    D. Đường tròn tâm  I  1; 1  bán kính  R    Câu 26.   (KTNL GV BẮC GIANG NĂM 2018-2019) Cho các số phức  z  thỏa mãn  z   Biết rằng  trong mặt phẳng tọa độ các điểm biểu diễn của số phức  w  i    i  z  cùng thuộc một đường tròn  cố định. Tính bán kính  r  của đường tròn đó?  A.  r    B.  r  10   C.  r  20   D.  r    Câu 27.   (ĐỀ THI THỬ VTED 03 NĂM HỌC 2018 - 2019) Xét các số phức  z  thỏa mãn   z  2i  z  3  là  số thuần ảo. Trên mặt phẳng tọa độ, tập hợp tất cả các điểm biểu diễn số phức  z  là một đường tròn  có bán kính bằng  11 13 A.  13   B.  11   C.    D.    2 Câu 28.   Cho  các  số  phức  z   thỏa  mãn  z     Biết  rằng  tập  hợp  các  điểm  biểu  diễn  các  số  phức    w   i z  i  là một đường tròn. Bán kính  r  của đường tròn đó là  A.    B.  36   C.    D.    Câu 29.   Cho  z1 , z2 là hai số phức thỏa mãn điều kiện  | z   3i | đồng thời | z1  z2 |  Tập hợp các điểm  biểu diễn số phức w  z1  z2  trong mặt phẳng tọa độ  Oxy là đường tròn có phương trình  A.  ( x  10)  ( y  6)  36   C.  ( x  )  ( y  )    2 B.  ( x  10)2  ( y  6)2  16   D.  ( x  )  ( y  )    2 Câu 30.   (CHUYÊN KHTN - LẦN 1 - 2018). Tập hợp tất cả các điểm biểu diễn các số phức  z thỏa mãn:  z   i   là đường tròn có tâm I  và bán kính  R  lần lượt là:  A.  I  2; 1 ; R    B.  I  2; 1 ; R    C.  I  2; 1 ; R    D.  I  2; 1 ; I  2; 1   Câu 31.   (TOÁN HỌC TUỔI TRẺ - THÁNG 4 - 2018) Cho số phức  z  thỏa mãn  z   Tập hợp điểm biểu  diễn số phức  w  1  i  z  2i  là  A. Một đường tròn.  B. Một đường thẳng.  Nguyễn Bảo Vương: https://www.facebook.com/phong.baovuong CÁC DẠNG TOÁN THƯỜNG GẶP TRONG KỲ THI THPTQG C. Một Elip.  ĐT:0946798489 D. Một parabol hoặc hyperbol.  Câu 32.   (SGD&ĐT  ĐỒNG  THÁP  -  HKII  -  2018)  Tập  hợp  điểm  biểu  diễn  của  số  phức  z   thỏa  mãn  z    i  z  là đường tròn   C   Tính bán kính  R  của đường tròn   C    A.  R  10   C.  R  B.  R      D.  R  10   Câu 33.   (SGD - HÀ TĨNH - HK 2 - 2018) Tập hợp tất cả các điểm biểu diễn số phức  z thỏa mãn  z  i    là một đường tròn có bán kính bằng:  A.    B.    C.    D.    Câu 34.   (THPT CHUYÊN THĂNG LONG - ĐÀ  LẠT - 2018) Cho số phức  z  thỏa mãn  z   3i    Biết tập hợp điểm biểu diễn số phức  w    i  z  3i   là một đường tròn. Xác định tâm  I  và  bán kính của đường tròn trên.  A.  I  6;   , R    B.  I  6;  , R  10   C.  I  6;  , R    D.  I  6;  , R    Câu 35.   (THPT CHUN HỒNG VĂN THỤ - HỊA BÌNH - 2018) Cho số phức  z  thỏa mãn  z    Biết rằng tập hợp các điểm biểu diễn số phức  w   2i    i  z  là một đường tròn. Bán kính  R   của đường tròn đó bằng?  A.    B.  20   C.    D.    Câu 36.   (SGD THANH HÓA - LẦN 1 - 2018) Cho  z1 ,  z2  là hai trong các số phức  z  thỏa mãn điều kiện  z   3i  , đồng thời  z1  z2   Tập hợp các điểm biểu diễn của số phức  w  z1  z2  trong  mặt phẳng tọa độ  Oxy  là đường tròn có phương trình nào dưới đây?  2 5  3  A.   x     y      2  2  2 2 B.   x  10    y    36   5  3  D.   x     y      2  2  C.   x  10    y    16   Câu 37.   (THPT THÁI PHIÊN - HẢI PHÒNG - LẦN 1 - 2018) Xét số phức z thỏa mãn  z  3i   , biết  rằng tập hợp các điểm biểu diễn số phức  w  (12  5i) z  4i  là một đường tròn. Tìm bán kính r của  đường tròn đó.  A.  r  13   B.  r  39   C.  r  17   D.  r    Câu 38.   (THPT THỰC HÀNH - TPHCM - 2018) Cho số phức  z  thỏa mãn  z    Biết rằng tập hợp    các điểm biểu diễn các  số  phức  w   3i z   2i   là một  đường tròn. Tính  bán kính  r  của  đường tròn đó.  A.  r    B.  r    C.  r    D.  r    Câu 39.   [THPT  Lệ  Thủy-Quảng  Bình]  Gọi  M   là  điểm  biểu  diễn  của  số  phức  z   thỏa  mãn  z  m   3i   Tìm tất cả các số thực  m  sao cho tập hợp các điểm  M  là đường tròn tiếp xúc  với trục  Oy   A.  m  5; m    B.  m  5; m  3   C.  m  3   Nguyễn Bảo Vương: https://www.facebook.com/phong.baovuong D.  m    CÁC DẠNG TOÁN THƯỜNG GẶP TRONG KỲ THI THPTQG ĐT:0946798489 Câu 40.   [Cụm 4 HCM] Cho số phức  z  thỏa mãn  z    Biết rằng tập hợp các điểm biểu diễn các số  phức  w  1  i  z  i  là một đường tròn. Tính bán kính  r  của đường tròn đó.  A.  r    B.  r    C.  r    D.  r  2   Câu 41.   (Chuyên  Lương  Thế  Vinh  –  Hà  Nội  –  Lần  2  –  2018  –  BTN)  Cho  số  phức  z   thỏa  mãn   z   i  z   i  25  Biết tập hợp các điểm  M  biểu diễn số phức  w  z   3i  là đường    tròn tâm  I  a; b   và bán kính  c  Giá trị của  a  b  c  bằng  A.  18   B.  20   C.  10   Dạng 2. Tập hợp điểm biểu diễn là đường thẳng    D.  17   Câu 42.   (THPT  HÙNG  VƯƠNG  BÌNH  PHƯỚC  NĂM  2018-2019  LẦN  01)  Cho  số  phức  z   thỏa  mãn  z   i  z   Trong mặt phẳng phức, quỹ tích điểm biểu diễn các số phức  z   A. là đường thẳng  x  y     C. là đường thẳng  x  y     B. là đường thẳng  x  y     D. là đường thẳng  x  y     Câu 43.   (ĐỀ  15  LOVE  BOOK  NĂM  2018-2019)  Trên  mặt  phẳng  phức,  tập  hợp  các  số  phức  z  x  yi  x, y     thỏa mãn  z   i  z  3i  là đường thẳng có phương trình  A.  y  x    B.  y   x    C.  y   x    D.  y  x    Câu 44.   (CHUYÊN LÊ QUÝ ĐÔN QUẢNG TRỊ NĂM 2018-2019 LẦN 01) Trong mặt phẳng tọa độ  Oxy ,  tập hợp  các điểm biểu  biễn các số  phức  z   thỏa mãn  z   2i  z   2i  là đường  thẳng  có  phương trình  A.  x  y     B.  x  y     C.  x  y    D.  x  y      Câu 45.   Xét các số phức  z thỏa mãn  z z   i  4i   là số thực. Biết rằng tập hợp các điểm biểu diễn  của số phức  z là đường thẳng  d  Diện tích tam giác giới hạn bởi đường thẳng  d  và hai trục tọa  độ bằng  A.    B.    C.    D.  10   Câu 46.   (ĐỀ THI CÔNG BẰNG KHTN LẦN 02 NĂM 2018-2019) Tập hợp các điểm biểu diễn các số  phức  z  thỏa mãn  z   z  i  là một đường thẳng có phương trình  A.  x  y     B.  x  y  13    C.  x  y     D.  x  y  13    Câu 47.   (LIÊN TRƯỜNG - NGHỆ AN - LẦN 2 - 2018) Cho số phức  z  thỏa mãn:  z   z   3i  Tập  hợp các điểm biểu diễn số phức  z  là  A. Đường tròn tâm  I 1;  , bán kính  R    B. Đường thẳng có phương trình  x  y  12    C. Đường thẳng có phương trình  x  y     D. Đường thẳng có phương trình  x  y     Câu 48.   (THPT CHUYÊN LÊ HỒNG PHONG - TPHCM - 2018) Tìm tập hợp điểm biểu diễn các số phức  12  5i  z  17  7i  13   z  thỏa  z 2i A.  d :6 x  y     B.  d : x  y     C.   C  : x  y  x  y     D.   C  : x  y  x  y     Nguyễn Bảo Vương: https://www.facebook.com/phong.baovuong CÁC DẠNG TOÁN THƯỜNG GẶP TRONG KỲ THI THPTQG ĐT:0946798489 Câu 49.   (CHUYÊN TRẦN ĐẠI NGHĨA - TPHCM - HK2 - 2018) Trên mặt phẳng tạo độ  Oxy , tập hợp  điểm biểu diễn số phức  z  thỏa mãn  z  i  iz  là  A. Đường thẳng  y    B. Đường thẳng  y     C. Đường thẳng  y    D. Đường tròn tâm  I  0;  1   Câu 50.   (SGD&ĐT  BRVT  - 2018) Cho  số phức  z  x  yi    x, y      thỏa  mãn  z   i  z 1  i     Trong mặt phẳng tọa độ  Oxy , điểm  M  là điểm biểu diễn của số phức  z  Hỏi  M  thuộc đường  thẳng nào sau đây?  A.  x  y     B.  x  y     C.  x  y     D.  x  y      Câu 51.  Trong mặt phẳng phức  Oxy , tập hợp các điểm biểu diễn số phức  Z  thỏa mãn  z  z 2 z  16   là hai đường thẳng  d1, d2  Khoảng cách giữa 2 đường thẳng  d1, d2  là bao nhiêu?  A.  d  d1 , d2     B.  d  d1 , d2     C.  d  d1 , d2     D.  d  d1 , d2     Câu 52.   [BTN 166 - 2017] Trong mặt phẳng phức, tập hợp các điểm  M  biểu diễn số phức  z  thỏa mãn  điều kiện  z  z   4i  là?  A. Parabol  y  x   B. Đường thẳng  x  y  25    C. Đường tròn  x  y     D. Elip  x2 y     Câu 53.   [TTLTĐH Diệu Hiền - 2017] Cho số phức  z thỏa:  z   3i  2i   z  Tập hợp điểm biểu  diễn cho số phức  z  là.  A. Một đường thẳng có phương trình:  20 x  32 y  47    B. Một đường có phương trình:  y  20 x  y  20    C. Một đường thẳng có phương trình:  20 x  16 y  47    D. Một đường thẳng có phương trình:  20 x  16 y  47    Dạng 3. Tập hợp điểm biểu diễn là đường conic    Câu 54.   (SỞ GD&ĐT BÌNH PHƯỚC NĂM 2018-2019 LẦN 01) Tập hợp các điểm biểu diễn các số phức  z  thỏa mãn  z  i  z  z  2i  là  A. Một điểm  B. Một đường tròn  C. Một đường thẳng  D. Một Parabol  Câu 55.   (CHUYÊN LƯƠNG THẾ VINH ĐỒNG NAI NĂM 2018-2019 LẦN 01) Cho số phức  z  thỏa mãn  z   z    Tập hợp điểm biểu diễn của số phức  z  trên mặt phẳng tọa độ là  A. Một đường elip.  B. Một đường parabol.  C. Một đoạn thẳng.  D. Một đường tròn.  Câu 56.   (ĐỀ 01 ĐỀ PHÁT TRIỂN ĐỀ THAM KHẢO BGD&ĐT NĂM 2018-2019) Xét các số phức  z  thoả  z z 1  i mãn   là số thực. Tập hợp các điểm biểu diễn của số phức   là  z  z i 1   parabol có toạ độ đỉnh  1 3 A.  I  ;     4 4  1 B.  I   ;     4 1 3 C.  I  ;     2 2 Nguyễn Bảo Vương: https://www.facebook.com/phong.baovuong  1 D.  I   ;     2 CÁC DẠNG TOÁN THƯỜNG GẶP TRONG KỲ THI THPTQG ĐT:0946798489 Câu 57.   (CHUN KHTN LẦN 2 NĂM 2018-2019) Tính diện tích hình phẳng giới hạn bởi các điểm biểu  diễn các số phức thỏa mãn  z   i  z   i  10   A.  15   B.  12   C.  20   D. Đáp án khác.  Câu 58.   (SGD  -  BÌNH DƯƠNG - HK  2  - 2018) Tập hợp các điểm biểu diễn các số  phức  z   thỏa mãn  z  i  z  z  2i  là  A. Một đường thẳng.  B. Một đường tròn.  C. Một Parabol.  D. Một điểm  Câu 59.   [THPT CHUYÊN VINH] Gọi  M  là điểm biểu diễn của số phức  z  thỏa mãn  z  i  z   z  3i  Tìm tập hợp tất cả những điểm  M  như vậy.  A. Một đường thẳng.  B. Một parabol.  C. Một elip.  D. Một đường tròn.  Câu 60.   [Sở Bình Phước] Cho số phức  z  thỏa mãn  z   z    Trong mặt phẳng phức tập hợp những  điểm  M  biểu diễn cho số phức  z  là?  x2 y 2 A.   C  :  x     y    64   B.   E  :     16 12 x2 y 2 C.   E  :  D.   C  :  x     y         12 16 Câu 61.   [THPT Nguyễn Trãi Lần 1] Tập hợp các điểm trong mặt phẳng tọa độ biểu diễn số phức  z  thỏa  mãn điều kiện  z  i  z  z  2i  là hình gì?  A. Một đường tròn.  C. Một đường Elip.  B. Một đường Parabol.  D. Một đường thẳng.  Câu 62.   [THPT Hai Bà Trưng- Huế] Tìm tập hợp các điểm  M  biểu diễn hình học số phức  z  trong mặt  phẳng phức, biết số phức  z  thỏa mãn điều kiện:  z   z   10 .  x y2 A. Tập hợp các điểm cần tìm là đường elip có phương trình      25 B. Tập hợp các điểm cần tìm là những điểm  M x ; y   trong mặt phẳng Oxy  thỏa mãn phương trình  x  4  y2  x  4  y  12   C. Tập hợp các điểm cần tìm là đường tròn có tâm O 0; 0  và có bán kính  R    D. Tập hợp các điểm cần tìm là đường elip có phương trình  x y2     25 Câu 63.   [THPT CHUYÊN BẾN TRE] Cho số phức  z  thỏa mãn điều kiện:   z   z   10  Tập hợp  các điểm  M  biểu diễn cho số phức  z  là đường có phương trình.  x2 y x2 y2 x2 y A.     B.    C.  1  1     25 25 9 25 Dạng 4. Tập hợp điểm biểu diễn là một miền    D.  x2 y     25 Câu 64.   (THPT NĂM 2018-2019 LẦN 04) Phần gạch trong hình vẽ dưới là hình biểu diễn của tập các số  phức thỏa mãn điều kiện nào sau đây?  Nguyễn Bảo Vương: https://www.facebook.com/phong.baovuong CÁC DẠNG TOÁN THƯỜNG GẶP TRONG KỲ THI THPTQG A.   z    ĐT:0946798489   B.   z   4i    C.   z   4i    D.   z   4i  16   Câu 65.   (CHUN LÊ Q ĐƠN ĐIỆN BIÊN LẦN 3 NĂM 2018-2019) Trong mặt phẳng tọa độ  Oxy ,  tìm tập hợp các điểm biểu diễn số phức  z  biết  z    3i     A. Một đường thẳng.  B. Một hình tròn.  C. Một đường tròn.  D. Một đường Elip.  Câu 66.   Trong mặt phẳng phức, tập hợp điểm biểu diễn cho số phức  z  thỏa z   4i   là  A. Hình tròn tâm  I  4; 4 , bán kính  R    B. Hình tròn tâm I  4; 4  , bán kính  R    C. Hình tròn tâm  I  4;  , bán kính  R    D. Hình tròn tâm I  4;  , bán kính  R    Câu 67.   (THPT QUANG TRUNG ĐỐNG ĐA HÀ NỘI NĂM 2018-2019) Cho số phức  z  thỏa mãn điều  kiện   z  3i    Tập hợp các điểm biểu diễn của  z tạo thành một hình phẳng. Tính diện tích  của hình phẳng đó.  A.  S  25   B.  S  8   C.  S  4   D.  S  16   Câu 68.   (THPT THỰC HÀNH - TPHCM - 2018) Trong mặt phẳng  Oxy  cho số phức  z  có điểm biểu diến  nằm trong cung phần tư thứ   I   Hỏi điểm biểu diễn số phức  w   nằm trong cung phần tư thứ  iz mấy?  A. Cung   IV    B. Cung   II    C. Cung   III    D. Cung   I    Câu 69.   (SỞ GD&ĐT NAM ĐỊNH - HKII - 2018) Trong mặt phẳng tọa độ  Oxy ,gọi  H  là phần mặt phẳng  chứa các điểm biểu diễn các số phức  z  thỏa mãn  0;1 Tính diện tích  S  của   H    A.  S  32       B.  S  16       z 16 và   có phần thực và phần ảo đều thuộc đoạn  16 z C.  S  256 .  D.  S  64   Câu 70.   (SỞ GD&ĐT YÊN BÁI - 2018) Cho số phức  z  thỏa mãn điều kiện   z  3i    Tập hợp các  điểm biểu diễn của  z  tạo thành một hình phẳng. Tính diện tích  S  của hình phẳng đó.  A.  S  4   B.  S  25   C.  S  8   D.  S  16   Câu 71.   [SỞ GD-ĐT HÀ TĨNH L2] Biết số phức  z  thõa mãn  z    và  z  z  có phần ảo khơng âm.  Phần mặt phẳng biểu diễn số phức  z  có diện tích là:  A.  2   B.     C.   Nguyễn Bảo Vương: https://www.facebook.com/phong.baovuong   D.     CÁC DẠNG TOÁN THƯỜNG GẶP TRONG KỲ THI THPTQG ĐT:0946798489 Câu 72.   [CHUYÊN VÕ NGUYÊN GIÁP] Gọi  H là hình biểu diễn tập hợp các số phức  z trong mặt phẳng  tọa độ  0xy sao cho  z  z  , và số phức  z có phần ảo khơng âm. Tính diện tích hình  H   A.  3   B.  3   C.  6   D.  3   Câu 73.   [THPT Chuyên Thái Nguyên] Tập hợp các số phức  w  1  i  z   với  z  là số phức thỏa mãn  z    là hình tròn. Tính diện tích hình tròn đó.  A.  2   B.     C.  3   D.  4   z  z  3i ,  trong  đó  z   là  số  phức  thỏa  mãn  z2      i  z  i    i  z   Gọi  N   là  điểm  trong  mặt  phẳng  sao  cho  Ox, ON  2 ,  trong  đó      Ox , OM  là góc lượng giác tạo thành khi quay tia  Ox  tới vị trí tia  OM  Điểm  N  nằm trong  Câu 74.   [2017]  Gọi  M   là  điểm  biểu  diễn  số  phức        góc phần tư nào?  A. Góc phần tư thứ (IV). B. Góc phần tư thứ (I).  C. Góc phần tư thứ (II).  D. Góc phần tư thứ (III).  Câu 75.   [TRẦN HƯNG ĐẠO – NB-2017] Cho số phức  z  thỏa mãn điều kiện  z   4i   Trong mặt  phẳng  Oxy  tập hợp điểm biểu diễn số phức  w  z   i  là hình tròn có diện tích  A.  S  9   B.  S  12   C.  S  16   D.  S  25   Câu 76.   [THPT Hồng Hoa Thám - Khánh Hòa - 2017] Biết số phức  z  thỏa điều kiện   z  3i     Tập hợp các điểm biểu diễn của  z  tạo thành  1 hình phẳng. Diện tích của hình phẳng đó bằng:  A.  9   B.  16   C.  25   D.  4     Phần B. LỜI GIẢI THAM KHẢO  Dạng 1. Tập hợp điểm biểu diễn là đường tròn  Câu 1.   Chọn D  Gọi  z  x  yi , với  x, y     Theo giả thiết, ta có   z  3i  z  3  z  z  3iz  9i  là số thuần ảo khi  Câu 2.  3 3 x  y  x  y   Đây là phương trình đường tròn tâm  I  ;  , bán kính  R    2 2 Chọn C  Giả sử  z  x  yi  với  x, y     Vì   z  2i  z     x    y  i   x    yi    x  x    y   y     xy   x    y   i  là  2 số thuần ảo nên có phần thực bằng khơng do đó  x  x    y   y       x  1   y  1    Câu 3.  Suy ra tập hợp các điểm biểu diễn các số phức  z  là một đường tròn có bán kính bằng    Chọn C  Gọi  w  x  yi  với  x, y  là các số thực.   iz w5 Ta có  w    z 1 z iw w5 Lại có  z    2  iw 2  w   w  i   x    y   x   y  1      Nguyễn Bảo Vương: https://www.facebook.com/phong.baovuong 10 CÁC DẠNG TOÁN THƯỜNG GẶP TRONG KỲ THI THPTQG ĐT:0946798489   x     y    20   Vây tập hợp biểu diễn số phức  w  là đường tròn tâm  I  3;  2   Câu 12.  Đặt  z  x  yi ;  x, y    Khi đó  z  x  yi   Vì  z.z    x  yi  x  yi    x  y    Câu 13.  Câu 14.  Vậy tập hợp các điểm biểu diễn số phức  z  cần tìm là đường tròn đơn vị.  Cách 1:  Gọi  M  là điểm biểu diễn số phức  w   wi Ta có  w  z  i  z    wi Do đó  z   2i     2i   w   3i   MI  , với  I  2; 3   Do đó tập hợp điểm  M  là đường tròn tâm  I  2; 3  và bán kính  R    Đặt  z  x  yi  x, y      Ta có  z  i  1  i  z    x   y  1 i  1  i  x  yi   x   y  1 i   x  y    x  y  i   2 2  x   y  1   x  y    x  y     x  y  y      x   y  1    Vậy tập hợp các điểm biểu diễn số phức  z  là đường tròn có tâm   0;  1   Câu 15.  Ta có:  z   z  i     i2 Suy ra tập hợp các điểm biểu diễn số phức  z là một đường tròn có bán kính  r    Chọn C  Giả sử điểm  M(x; y)  là điểm biểu diễn số phức  z  Ta có:  z   2i   ( x  1)  ( y  2)i   ( x  1)2  ( y  2)2    I (1; 2) , bán kính  R    Vậy điểm  M(x; y)  thuộc đường tròn ( x  1)  ( y  2)2   có tâm  Câu 17.  Gọi số phức  z  x  yi  x, y     z  x  yi   Câu 16.  Thay vào điều kiện ta được:  (2  z )( z  i )  (2  x  yi )( x  yi  i)    x   yi   x  1  y  i     (2  x) x  y (1  y )   (2  x)(1  y )  xy  i (2  z )( z  i )  là số thuần ảo khi và chỉ khi:  (2  x) x  y(1  y )     x  y  x  y     1 Vậy số phức  z  x  yi  thuộc đường tròn tâm  I 1;  ,bán kính  R     2 Câu 18.  Chọn D  Nguyễn Bảo Vương: https://www.facebook.com/phong.baovuong 13 CÁC DẠNG TOÁN THƯỜNG GẶP TRONG KỲ THI THPTQG ĐT:0946798489 2 z  i  (1  i ) z  a   b  1   nên tập điểm  M  là Đường tròn tâm I(0; -1), bán kính  R    Câu 19.    lời giải:  2 Ta có  z  i   x   y  1   x   y  1  16   Câu 20.  Giả sử số phức thỏa mãn bài tốn có dạng  z  x  yi  x, y      Suy ra  z   i  x  yi   i  x   ( y  1)i   Do đó:  z   i   x   ( y  1)i   ( x  2)2  ( y  1)2  16   Vậy tập hợp tất cả các điểm biểu diễn số phức  z  là đường tròn tâm  I  2;  1 , bán kính  R    Câu 21.  Gọi  z  a  bi , với  x, y   , ta có:  2 z   i     x  yi   i    x  1   y  1 i      x  1   y  1    Vậy tập hợp các điểm biểu diễn số phức  z  là đường tròn tâm  I 1;  1 , bán kính  R    Câu 22.  Gọi  z  x  yi,  x , y     Ta có:  1  i  z   i   1  i  x  yi    i    x  y     x  y  1 i 2   x  y     x  y  1   x  y  x  12 y  22     2   x  y  x  y  11    Vậy tập hợp tất cả các điểm biểu diễn các số phức  z  là đường tròn tâm  I  2;  3  và  R    Câu 23.  Đặt  z  a  bi, a, b    Gọi  M  a; b   là điểm biểu diễn cho số phức  z   Có  w    a   bi   a   b   i  z2 a   bi      z  2i a   b   i a2   b  2 a  a    b  b       a   b    ab  i a2  b  2   a  a    b  b    1 w  là số thuần ảo      a   b    Có  1  a  b2  2a  2b    Suy ra  M  thuộc đường tròn tâm  I  1;1 , bán kính  R    Câu 24.  Đặt  z  x  yi  x, y     Ta có điểm biểu diễn  z là  M  x; y    Với  m  , ta có  z  , thoả mãn u cầu bài tốn.  Với  m  , ta có:  +  z  m  M  thuộc đường tròn   C1   tâm  I  0;0  , bán kính  R  m   2 +  z  4m  3mi  m   x  4m    y  3m   m    M  thuộc đường tròn   C2   tâm  I   4m; 3m  ,  bán kính  R   m   Nguyễn Bảo Vương: https://www.facebook.com/phong.baovuong 14 CÁC DẠNG TOÁN THƯỜNG GẶP TRONG KỲ THI THPTQG ĐT:0946798489 +) Có duy nhất một số phức  z  thoả mãn u cầu bài tốn khi và chỉ khi   C1   và   C2   tiếp xúc nhau    5m  m  m    II   R  R m      5m  m  m      m   II   R  R  m  Kết hợp với  m  , suy ra  m  0; 4;6  Vậy tổng tất cả các giá trị của  m  là  10   Câu 25.  Gọi  w  x  yi ,  x ,  y    Số phức  w  được biểu diễn bởi điểm  M  x; y    Từ  w   z  suy ra  x  yi   z  z   x  1  yi  z   x  1  yi   Mà  z   i   nên ta có:   x  1  yi   i    x  1   y  1 i    x  12   y  12  2   x  1   y  1  32   Vậy tập hợp điểm biểu diễn số phức  w  là đường tròn tâm  I  1; 1  bán kính  R    Câu 26.  Chọn B  Ta có  w  i    i  z  w  i    i  z  Suy ra  w  i    i  z   i z  10   Vậy tập hợp điểm biểu diễn của số phức  w  trên mặt phẳng tọa độ nằm trên đường tròn có bán  kính  r  10   Câu 27.  Chọn D  Gọi  z  x  y i    x, y     Khi đó:  w   z  2i  z  3   x  ( y  2)i  ( x  3)  y i   x( x  3)  y( y  2)   xy  ( x  3)( y  2)  i   Do  w  là số thuần ảo   x ( x  3)  y ( y  2)   x  y  x  y  3 13    x     y  1    2  13   Vậy tập hợp các điểm biểu diễn số phức  z  là đường tròn tâm  I   ; 1 , bán kính  R      Câu 28.  Gọi  w  x  yi    x, y      Theo đề bài ta có:           w  i   i  1  i   z  1   x  1   y    i  1  i   z  1     x  1   y          x  1   y     36   Vậy tập hợp các điểm biểu diễn số phức w  1  i  z  i là một đường tròn có bán kính  r      w   i z  i  w  i   i z  w  i   i  z  1   i   Câu 29.  2 2 +)Đặt  z  x  yi   Khi đó  | z  3i | | x   (y 3)i |  ( x  5)2  ( y  3)2  25 (C )   Gọi A, B lần lượt là 2 điểm biểu diễn số phức  z1 , z2    A, B thuộc đường tròn  (C ) có tâm I (5; 3), bán kính R = 5 và  | z1  z2 |  AB    Nguyễn Bảo Vương: https://www.facebook.com/phong.baovuong 15 CÁC DẠNG TOÁN THƯỜNG GẶP TRONG KỲ THI THPTQG +) Gọi H là điểm biểu diễn số phức  w =  H là trung điểm AB  AH  ĐT:0946798489 z1  z2   AB  4  Xét tam giác AIH vng tại H có AH = 4, AI = 5 nên  IH  IA2  AH  52  42      H thuộc đường tròn  (C ) có tâm I (5; 3), bán kính  R  (*)  +) Gọi M là điểm biểu diễn số phức  w=z1  z2      OM  2OH    M là ảnh của H qua phép vị tự tâm O, tỉ số k = 2 với O là gốc tọa độ (**)  Từ (*)và (**)  tập hợp M là đường tròn (C ) là ảnh của  (C ) phép vị tự tâm O, tỉ số k = 2  +) Giả sử đường tròn  (C ) có tâm J (a; b) và bán kính  R     a  2.5  10   b  2.3     R  2.R     Phương trình đường tròn  (C ) là  ( x  10)  ( y  6)  36   Câu 30.  Gọi số phức  z  x  iy  x, y      Ta có:  2 z   i    x      y  1 i      x     y  1  16   Vậy tập hợp tất cả các điểm biểu diễn các số phức  z thỏa mãn:  z   i   là đường tròn có tâm I  2;  1 và có bán kính  R    Câu 31.  Ta có:  w  1  i  z  2i  w  2i  1  i  z  w  2i  1  i  z  w  2i  2   Do đó, tập hợp điểm biểu diễn số phức  w  là đường tròn tâm  I  0;   và bán kính  2   Câu 32.   Gọi số phức  z  a  bi ,   a, b      a  bi    i   a  bi    a  1  b2  1  2a    1  2b     a  2a   b   4a  4a   4b  4b  a  b  2a  b     3 2  Tập hợp các điểm biểu diễn số phức  z  là một đường tròn có tâm  I 1;   ,  3  10  2 Bán kính  R           3 Câu 33.  Cách 1: Đặt  z  a  bi  ta có  z  i   2a  2bi  i     4a   2b  1    1 35  4a  4b  4b  35     a  b  b    a   b      2  2 2  1 Vậy tập hợp tất cả các điểm biểu diễn số phức  z  là đường tròn tâm  I  0;   bán kính  R     2 Nguyễn Bảo Vương: https://www.facebook.com/phong.baovuong 16 CÁC DẠNG TOÁN THƯỜNG GẶP TRONG KỲ THI THPTQG ĐT:0946798489 1   Cách 2:  z  i   z    i    Gọi  I  là điểm biểu diễn số phức   i , M là điểm biểu    diễn số phức  z  Ta có  MI   Vậy tập hợp tất cả các điểm biểu diễn số phức  z  là đường tròn tâm   1 I  0;   bán kính  R     2 Câu 34.  Ta có:  w    i  z  3i   w    i  z   3i    4i    w   4i    i  z   3i     w   4i    i  z   3i     Gọi  M  x; y   là điểm biểu diễn số phức  w  x  yi  x; y      w   4i    x     y   i        x  6   y  4    Vậy tập hợp điểm biểu diễn số  w  là đường tròn tâm  I  6;  , bán kính  R    Câu 35.  Ta có  w   2i    i  z  z  Khi đó  z  w   2i  Đặt  w  x  yi    x, y      2i x  yi   2i   2i Ta có  z   x    y  2 i x    y  2 i x  yi   2i 2  2  2  2i 2i 2i 2    x    y   i  2  i  x    y   i    x  3   y      Vậy tập hợp các điểm biểu diễn số phức  w   2i    i  z  là một đường tròn có bán kính  R    Câu 36.    Gọi  A ,  B ,  M   là  các  điểm  biểu  diễn  của  z1 ,  z2 ,  w   Khi  đó  A ,  B   thuộc  đường  tròn  2  C  :  x  5   y  3  25  và  AB  z1  z2     C   có tâm  I  5;3  và bán kính  R  , gọi  T  là trung điểm của  AB  khi đó  T  là trung điểm của  OM  và  IT  IA2  TA2    Gọi  J  là điểm đối xứng của  O  qua  I  suy ra  J 10;   và  IT  là đường trung bình của tam giác  OJM , do đó  JM  IT    2 Vậy  M  thuộc đường tròn tâm  J  bán kính bằng   và có phương trình   x  10    y    36   Nguyễn Bảo Vương: https://www.facebook.com/phong.baovuong 17 CÁC DẠNG TOÁN THƯỜNG GẶP TRONG KỲ THI THPTQG Câu 37.  ĐT:0946798489 Gọi số phức  w  x  yi, với  x, y  R , biểu diễn bởi  M ( x; y )   x  ( y  4)i   w  (12  5i) z  4i  x  yi  (12  5i) z  4i  z  12  5i x  ( y  4)i z   12  5i x  ( y  4)i  3i     Ta có :  z  3i    12  5i ( x  63)2  ( y  12) x  63  ( y  12)i 3   ( x  63)  ( y  12)  392   2 12  5i 12  Vậy  r  39   Câu 38.  Gọi  w  x  yi   x 1   y  2 i w   3i z   2i    x  yi   3i z   2i    z     3i 1   x  1   y    y     x  1  z   x    y   i    i      i  4 4   x  13   y     y     x  1 i    z 3  4      2   x  13   y      y     x  1  z   1       1      4     2 2   x  13   x  13 y     y     y     y   x  1   x  1  16      x  y  x   y  12  43     Bán kính  r  42  2  3   12  43    Câu 39.   Chọn B  Đặt  z  x  yi ,  x, y     Khi đó.  z  m   3i   x  yi  m   3i        y  3   x  m  1  y  i     x  m  1  x  m  1   y      16     Do đó tập hợp các điểm  M  biểu diễn của số phức  z  là đường tròn tâm  I  m;  và bán kính  1  m   m  3    R   Để đường tròn này tiếp xúc với trục  Oy  thì   m    1  m  4 m  Vậy  m  5; m  3   Câu 40.   Chọn D  wi w  1  i  z  i  z  ; đặt  w  x  yi  ; x, y    1 i  x  yi  i 1  i      x  yi  i x  yi  i z 2  2  Ta có  z    1 i 1 i Nguyễn Bảo Vương: https://www.facebook.com/phong.baovuong 18 CÁC DẠNG TOÁN THƯỜNG GẶP TRONG KỲ THI THPTQG   x  yi  i 1  i     2 ĐT:0946798489 x  xi  yi  y  i     x  y    x  y  1 i    x  y  3   x  y  1  16  x  y   xy  y  x  x  y   xy  y  x  16    x2  y  8x  y    x2  y  x  y   Đường tròn có bán kính là  R  22  12   2   Câu 41.   Chọn A  Giả sử  z  a  bi    a; b     và  w  x  yi    x; y       z   i   z   i   25   a    b  1 i  a    b  1 i   25   2   a     b  1  25 1   Theo giả thiết:  w  z   3i  x  yi   a  bi    3i  x  yi  2a     2b  i   x2  a   x  2a           y   b  y  b   2 2  x2   3 y  Thay     vào  1  ta được:    2    1  25   x     y    100       Suy ra, tập hợp điểm biểu diễn của số phức  w  là đường tròn tâm  I  2;5  và bán kính  R  10   Vậy  a  b  c  17   Dạng 2. Tập hợp điểm biểu diễn là đường thẳng  Câu 42.   x, y      Giả sử số phức  z  có dạng:  z  x  yi Ta có:  z   i  z   x  yi   i  x  yi    x  1   y  1 i   x    yi     x  1   y  1 2   x  2 2  y2     x  1   y  1   x    y    x2  x   y2  y   x2  x   y2    x  y    3x  y     Vậy tập hợp điểm biểu diễn số phức  z  là đường thẳng  x  y     Câu 43.  Câu 44.  2 z   i  z  3i   x     y  1  x   y  3  x  y    y  x    Đặt  z  x  yi  x, y     z  x  yi  và  M  x; y   là điểm biểu diễn của số phức  z   Ta có:  z   2i  z   2i  x  yi   2i  x  yi   2i     x  1   y   i   x  1    y  i     x  1   y     x  1    y   x  x   y  y   x  x   y  y   x  y   x  y    Vậy tập hợp các điểm biểu biễn các số phức  z  thỏa mãn u cầu bài tốn là đường thẳng có phương  trình là  x  y    Câu 45.   Giả sử  z  a  bi    a, b  R      Khi đó  z z   i  4i    a  bi  a  bi   i   4i    a  bi   a    1  b  i   4i    Nguyễn Bảo Vương: https://www.facebook.com/phong.baovuong 19 CÁC DẠNG TOÁN THƯỜNG GẶP TRONG KỲ THI THPTQG ĐT:0946798489  a  a    b 1  b    a 1  b   b  a    i  4i     a  a    b 1  b     a  2b   i     +  z z   i  4i   là số thực suy ra  a  2b     + Số phức  z  có điểm biểu diễn  M  a; b   M  d : x  y     + Đường thẳng  d  cắt trục  Ox ,  Oy  lần lượt tại  A  4;0   và  B  0;   SOAB  OA.OB    Câu 46.  Gọi số phức  z  a  bi , với  a, b  thuộc    Khi đó,  M (a; b)  là điểm biểu diễn số phức  z   Ta có:  z   z  i  a   bi  a  (b  1)i    (a  2)2  b2  a  (b 1)    (a  2)  b2  a  (b 1)  4a  2b      điểm  M (a; b) thuộc đường thẳng  4x  y     Vậy, tập hợp các điểm  M  thỏa mãn bài ra là đường thẳng  x  y     Câu 47.  Gọi  z  x  yi ; ( x ,  y   ).  2 Ta có:  z   z   3i   x  1  y   x     y  3  x  y     Vậy tập hợp các điểm biểu diễn số phức  z  là đường thẳng có phương trình  x  y     Câu 48.   z  x  yi  x, y    12  5i  z  17  7i  13  12  5i z  17  7i  13 z   i   Đặt   , ta có:    z 2i  z   i  12  5i  z   i   13 z   i  12  5i z   i  13 z   i  13 z   i  13 z   i 2  z   i  z   i  x  yi   i  x  yi   i   x  1   y  1   x     y  1  x  y   (thỏa điều kiện  z   i )  Vậy tập hợp điểm biểu diễn số phức  z  là đường thẳng  x  y     Câu 49.  Gọi số phức  z  a  bi    a, b      Ta có:  z  i  iz    a  bi  i  i  a  bi   a   b  1 i  b     a   b  1  b  a    2b     Vậy tập hợp điểm biểu diễn số phức  z  thỏa mãn điều kiện bài tốn là đường thẳng  y  Câu 50.    Ta có  z   i  z 1  i    x  yi   i  1  i  x  y       x   x2  y  y   x2  y i     x   x  y    x   x  y  y   x  y   x  y     2  y   x  y  Do đó  M  thuộc đường thẳng  x  y     Câu 51.   Chọn D  Gọi  M  x, y   là điểm biểu diễn số phức  z  x  yi  x, y  R   Ta có: z  z 2 z  16  x  xyi  y  x  xyi  y  x  y  16    x  16  x  2  d  d1 , d2     Nguyễn Bảo Vương: https://www.facebook.com/phong.baovuong 20 CÁC DẠNG TOÁN THƯỜNG GẶP TRONG KỲ THI THPTQG ĐT:0946798489 Ở lưu ý hai đường thẳng x = x = -2 song song với nhau.  Câu 52.   Chọn B  Đặt  z  x  yi  x, y     và  M  x; y   là điểm biểu diễn của z.   z  x  y Ta có     z   i  x  iy   i  x   y  i     2  x  3    y     2 z   4i  x  y   x  3    y    x  y  25     z   4i  Vậy  z  Câu 53.   Chọn D  Gọi  M  x; y   là điểm biểu diễn số phức  z  x  yi   Ta có.  z   3i  2i   z     x     y   i   1  x    y   i  x     y  3 2 2  1  x    y       x  y  x  y  13  x  y  x  y     20 x  16 y  47  Vậy tập hợp điểm  M  x; y   là đường thẳng  20 x  16 y  47    Dạng 3. Tập hợp điểm biểu diễn là đường conic  Câu 54.  Chọn D  Đặt  z  x  yi  x, y     z  x  yi   Khi đó  z  i  z  z  2i  x   y  1 i   y   i   2   x   y  1    y       2  4x  y  y   y2  y    x2  là một Parabol.  Câu 55.   Gọi  M  x ; y   là điểm biểu diễn số phức  z  x  yi    y Xét hai điểm  F1  2;0  ,  F2  2;0  , khi đó theo giả thiết:  z2  z2  4  x  2  y2   x  2  y   MF1  MF2    Mà  F1F2  , nên  MF1  MF2  F1F2   Do đó tập hợp các điểm biểu diễn của  z  chính là đoạn thẳng  F1F2   Câu 56.  Giả sử  z  a  bi    a, b  R    Khi đó   z 1 i  z  zi 1  a    b  1 i  a    b  1 i  1  2ai      2ai  4a a   2a  b  1   2a  a  1  b  1 i  4a   z 1  i  b a a  là số thực suy ra  2a  a  1  b    b  2a  2a          2 2 z  z i 1  Nguyễn Bảo Vương: https://www.facebook.com/phong.baovuong 21 CÁC DẠNG TOÁN THƯỜNG GẶP TRONG KỲ THI THPTQG ĐT:0946798489 z a b  có điểm biểu diễn  M  ;      quỹ tích  M  là parabol có phương trình   2 y  x2  x    Số phức  z 1 3  là parabol có toạ độ đỉnh  I  ;     4 4 Câu 57.  Gọi  M  x; y   là điểm biểu diễn của số phức  z  x  yi  x, y      Tập hợp các điểm biểu diễn của số phức  Ta có:  z   i  z   i  10  x    y  1 i  x    y  1 i  10     x     y  1   x     y  1 Đặt  A  2;1 , B  4;1  AB    2 2  10  (*)   02    Khi đó phương trình (*) trở thành:  MA  MB  10   Khi đó tập hợp những điểm  M  thỏa mãn phương trình (*) là một elip với.  10 + Độ dài trục lớn  2a  10  a     + Tiêu cự  2c  AB   c     2 + Độ dài trục bé  2b với  b  a2  c2  52  32  16  b    Vậy diện tích hình phẳng giới hạn bởi các điểm biểu diễn các số phức thỏa mãn  z   i  z   i  10  là diện tích Elip trên:  S   ab   4.5  20   Câu 58.  Gọi  z  x  yi  z  x  yi ,  x, y     2 z  i  z  z  2i  x   y  1 i   y   i  x   y  1  02   y     x   Vậy tập hợp các điểm biểu diễn các số phức  z  thỏa mãn  z  i  z  z  2i  là một Parabol   P      x  y  y  1  y  y   x  16 y  y  có phương trình:  y  x   Câu 59.   Chọn B  Gọi số phức  z  x  yi  có điểm biểu diễn là  M  x, y   trên mặt phẳng tọa độ:  Theo đề bài ta có:  z  i  z  z  3i  3( x  yi)  3i  2( x  yi)  ( x  yi)  3i    3x  (3 y  3)i  x  (3  y)  x  (3 y  3)2  x  (3  y)2    x  (3 y  3)  x  (3  y )2  x  36 y   y   x   Vậy tập hợp các điểm  M  x, y   biểu diễn số phức z theo yêu cầu của đề bài là Một parabol  y   x   Câu 60.   Chọn B  Gọi  M  x; y  ,  F1 (2;0) ,  F2 (2;0)   Ta có  z   z    x  ( y  2)  x  ( y  2)2     MF1  MF2    Nguyễn Bảo Vương: https://www.facebook.com/phong.baovuong 22 CÁC DẠNG TOÁN THƯỜNG GẶP TRONG KỲ THI THPTQG ĐT:0946798489 Do đó điểm  M  x; y   nằm trên elip   E   có  2a   a  4,  ta có  F1 F2  2c   2c  c    Ta có  b  a  c  16   12  Vậy tập hợp các điểm M là elip   E  : x2 y     16 12 Câu 61.   Chọn B   Đặt  z  x  yi  z  x  yi  điểm biểu diễn của  z  là  M  x; y   Ta có:  z  i  z  z  2i  x  yi  i   x  yi    x  yi   2i  x   y  1 i   y  1 i  x   y  1  y   y    x Vậy tập hợp các điểm biểu diễn số phức  z  là một đường Parabol.  Câu 62.   Chọn D  Ta có: Gọi  M x ; y   là điểm biểu diễn của số phức  z  x  yi .  Gọi  A 4; 0  là điểm biểu diễn của số phức  z  .  Gọi  B 4; 0  là điểm biểu diễn của số phức  z  4 .  Khi đó:  z   z   10  MA  MB  10 (*).  Hệ thức trên chứng tỏ tập hợp các điểm  M  là elip nhận  A, B  là các tiêu điểm.  x y2   1, a  b  0, a  b  c   a b Từ (*) ta có:  2a  10  a  .  AB  2c   2c  c   b  a  c    x y2 Vậy quỹ tích các điểm  M  là elip:  E  :     25 Câu 63.   Chọn B  Gọi  M  x; y  biểu diễn số phức  z  x  yi  x, y  R     Gọi phương trình của elip là  Từ giả thiết ta có   x  4  y2   x  4   y  10  MF1  MF2  10  với  F1  4;0  , F2  4;0    Vậy tập hợp các điểm  M  biểu diễn cho số phức  z  là đường Elip có phương trình  x2 y2     25 Dạng 4. Tập hợp điểm biểu diễn là một miền  Câu 64.  Dễ thấy điểm  I  4;  là tâm của hai đường tròn.  2 Đường tròn nhỏ có phương trình là:   x     y      2 Đường tròn to có phương trình là:   x     y    16   Vậy tập hợp điểm biểu diễn số phức thỏa mãn đề bài là   z   4i    Câu 65.  Cách 1:  Đặt  z  x  yi với  x, y       Theo bài ra:  z    3i    x  yi    3i    x   ( y  3)i       x  2   y  32 2    x     y  3      Vậy tập hợp các điểm biểu diễn số phức  z  trong mặt phẳng tọa độ  Oxy  là hình tròn tâm  I  ;  3 , bán kính  R     Câu 66.  Gọi  M  x; y   là điểm biểu diễn cho số phức  z  x  yi;    x; y      Nguyễn Bảo Vương: https://www.facebook.com/phong.baovuong 23 CÁC DẠNG TOÁN THƯỜNG GẶP TRONG KỲ THI THPTQG ĐT:0946798489 z   4i     x  yi   4i     x    y  4 i    2  x  4   y  4    2   x     y       Vậy tập hợp điểm biểu diễn cho số phức  z  thỏa z   4i   là hình tròn tâm I  4;  , bán kính  R    Câu 67.  Gọi  M  a; b   là điểm biểu diễn của số phức  z ;  A  1;3  là điểm biểu diễn số phức  1  3i   Khi đó,  AM  z  3i   2  a  1   b  3    32   a  1   b  3  25 , tập hợp các điểm biểu diễn của  z là hình vành khăn giới hạn bởi  hai đường tròn   A;3   và   A;5  , kể cả các điểm nằm trên hai đường tròn này.  S  25  9  16  dvdt    Câu 68.  Vì số phức  z  có điểm biểu diến nằm trong cung phần tư thứ   I  nên gọi  z  a  bi,  a  0, b     1 b  b a    2  2 i  iz i  a  bi  b  a  b a  b a  b2 b a Do  a  0, b    0,     a b a  b2 Vậy điểm biểu diễn  w  nằm trong cung phần tư thứ   III    w 20 18 A B 16 14 12 10 O 10 E 5 I 10 15 C Câu 69.    Gọi  z  x  yi, x, y  R  khi đó điểm biểu diễn của  z là  M  x; y    x   1  0  x  16 z x  yi x y  16   (I)     i  theo giả thiết   y  y  16 16 16 16 16  0    16 16  x  yi  16 16 16 x 16 y     i  2 z x  yi x y x y x  y2 Nguyễn Bảo Vương: https://www.facebook.com/phong.baovuong 24 CÁC DẠNG TOÁN THƯỜNG GẶP TRONG KỲ THI THPTQG  0   Theo giả thiết   0   ĐT:0946798489 16 x 1 2 x  y2 0  16 x  x  y    2 16 y  16 y  x  y  1  x2  y 2  x  0, y   x  0, y      x  y  16 x    x  8  y  64  (II)    x  y  16 y    x   y    64 Gọi S1 là diện tích hình vng OABC có cạnh bằng 16,  S1  162  256   S2 là diện tích hình tròn có bán kính bằng 8.  S3 là diện tích phần giao của hai nửa đường tròn như hình vẽ.   1 S  S1  S2  S3  256  64    82  82     4 Vậy  S  256  64  32  64  32       Câu 70.  Gọi  z  a  bi  a ; b      2 Ta có   z  3i     a  bi  3i      a  3   b  1  25   Do đó tập hợp các điểm biểu diễn của  z là hình vành khăn giới hạn bởi hai đường tròn có tâm  I  3;  1  bán kính lần lượt là 3 và 5.    Vì vậy  S   52  32      16   Câu 71.   Chọn C  y -1 O x -1   Đặt  z  x  yi  z  x  yi  khi đó ta có:  z     x  yi        x  1  yi    x  1  y  1   z  z   x  yi    x  yi   yi  có phần ảo khơng âm suy ra  y   2   Nguyễn Bảo Vương: https://www.facebook.com/phong.baovuong 25 CÁC DẠNG TOÁN THƯỜNG GẶP TRONG KỲ THI THPTQG ĐT:0946798489 Từ (1) và (2) ta suy ra phần mặt phẳng biểu diễn số phức  z  là nửa hình tròn tâm  I 1;0   bán kính   r  , diện tích của nó bằng   r 2   (đvdt).  2 Câu 72.   Chọn B  Gọi  z  x  yi,  x, y      x2 y     x2 y Suy ra tập hợp điểm biểu diễn số phức  z là miền trong của Elip      1 Ta có  a  3, b  , nên diện tích hình  H  cần tìm bằng   diện tích Elip.  3 Vậy  S   a.b    4 Câu 73.   Chọn A  Gọi  w  x  yi; x; y     w 1 Ta có  w  1  i  z   z    1 i  x     y  1 i  w 1 w2i 1   1 Do đó  z      1 i 1 i 1 i Ta có   x  yi    x  yi    x  y   x  y     x     y  1 i 2    x     y  1    1 i Vậy diện tích hình tròn đó là  S  2   Câu 74.   Chọn B  Ta có:    i  z  i    i  z  z   i  w  Lúc đó:  sin 2  5 1  i  M  ;   tan     4 4 4 tan   tan  12   0; cos        tan  13  tan  13 Câu 75.   Chọn C  w 1 i   w 1 i z   4i     4i   w   i   8i   w   9i  1   w  2z 1  i  z  2  x, y    , khi đó  1   x     y    16   Suy ra tập hợp điểm biểu diễn số phức  w  là hình tròn tâm  I  7;   , bán kính  r    Giả sử  w  x  yi Vậy diện tích cần tìm là  S    16   Câu 76.   Chọn B  Nguyễn Bảo Vương: https://www.facebook.com/phong.baovuong 26 CÁC DẠNG TOÁN THƯỜNG GẶP TRONG KỲ THI THPTQG ĐT:0946798489   Gọi  z  x  yi   2 (với  x, y   )   z  3i      x  1   y  3  25   Vậy tập hợp các điểm biểu diễn số phức  z  trên mặt phẳng phức là hình vành khăn giới hạn bởi    hai đường tròn bán kính  R   và  r   Diện tích  S   R  r  16         Nguyễn Bảo Vương: https://www.facebook.com/phong.baovuong 27 ...CÁC DẠNG TOÁN THƯỜNG GẶP TRONG KỲ THI THPTQG Câu 5.  ĐT:0946798489  (ĐỀ MINH HỌA GBD&ĐT NĂM 2017) Cho các số phức  z  thỏa mãn z   Biết rằng tập hợp  các điểm biểu diễn các số phức... Vương: https://www.facebook.com/phong.baovuong CÁC DẠNG TOÁN THƯỜNG GẶP TRONG KỲ THI THPTQG ĐT:0946798489 z2  là số thuần ảo.  z  2i Biết rằng tập hợp các điểm biểu diễn các số phức  z  ln thuộc một đường tròn cố định. Bán kính ... Vương: https://www.facebook.com/phong.baovuong D.  m    CÁC DẠNG TOÁN THƯỜNG GẶP TRONG KỲ THI THPTQG ĐT:0946798489 Câu 40.   [Cụm 4 HCM] Cho số phức  z  thỏa mãn  z    Biết rằng tập hợp các điểm biểu diễn các số  phức  w  1

Ngày đăng: 16/06/2020, 16:02

TỪ KHÓA LIÊN QUAN