Luận án đã đề xuất các phương pháp và giải thuật xử lý tín hiệu không đầy đủ, ứng dụng xử lý tín hiệu y sinh, cụ thể như sau: 1) Theo hướng chủ động thu thập dữ liệu không đầy đủ để tăng tốc độ xử lý, luận án đề xuất 02 phương pháp mới (NewCCSMRI và CCSSWIFT) về lấy mẫu nén (CS) tất định dựa trên hệ hỗn loạn cho hệ thống thu nhận ảnh cộng hưởng từ (MRI) truyền thống và hệ thống MRI đặc biệt SWIFT. 2) Theo hướng khôi phục lại dữ liệu bị mất mát trong quá trình thu thập, luận án đề xuất 03 thuật toán mới (SWPETRELS, NLPETRELS và MSPETRELS) nhằm cải tiến thuật toán PETRELS dùng cho ước lượng không gian của dữ liệu không đầy đủ.
ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TRƯƠNG MINH CHÍNH PHÂN TÍCH VÀ XỬ LÝ TÍN HIỆU CHO DỮ LIỆU KHÔNG ĐẦY ĐỦ ỨNG DỤNG TRONG Y SINH LUẬN ÁN TIẾN SĨ CÔNG NGHỆ KỸ THUẬT ĐIỆN TỬ, TRUYỀN THÔNG Hà Nội - 2019 ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TRƯƠNG MINH CHÍNH PHÂN TÍCH VÀ XỬ LÝ TÍN HIỆU CHO DỮ LIỆU KHÔNG ĐẦY ĐỦ ỨNG DỤNG TRONG Y SINH Chuyên ngành: Kỹ thuật viễn thông Mã số: 9510302.02 LUẬN ÁN TIẾN SĨ CÔNG NGHỆ KỸ THUẬT ĐIỆN TỬ, TRUYỀN THÔNG NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS TS NGUYỄN LINH TRUNG GS TS ĐỖ NGỌC MINH Hà Nội - 2019 i LỜI CAM ĐOAN Tôi xin cam đoan luận án thực Những kết từ cơng trình tác giả khác mà tơi sử dụng luận án trích dẫn rõ ràng, cụ thể Các kết tính tốn, mơ trung thực Nếu có sai trái, tơi xin hoàn toàn chịu trách nhiệm Hà Nội, ngày 24 tháng 10 năm 2019 Học viên Trương Minh Chính ii LỜI CẢM ƠN Tơi xin bày tỏ lòng biết ơn sâu sắc đến thầy giáo, PGS TS Nguyễn Linh Trung, người hướng dẫn tơi tận tình, chu đáo q trình thực luận án Sự bảo tận tâm thầy mang lại cho hệ thống phương pháp, kiến thức kỹ q báu để hồn thiện luận án cách tốt Tôi xin chân thành cảm ơn quý thầy cô giáo: GS TS Karim Abed-Meraim, GS TS Đỗ Ngọc Minh, PGS TS Marie Luong, TS Lê Vũ Hà, PGS TS Trần Đức Tân TS Nguyễn Việt Dũng, người góp phần hướng dẫn chun mơn, hỗ trợ động viên suốt thời gian thực luận án Tôi xin trân trọng cảm ơn Ban Giám hiệu Nhà trường, quý thầy giáo, cô giáo khoa Điện tử - Viễn thơng, phòng Đào tạo, phòng Tổ chức Hành chính, Trường Đại học Cơng nghệ, Đại học Quốc gia Hà Nội, tham gia giảng dạy, hướng dẫn tạo điều kiện giúp đỡ thời gian thực luận án; đặc biệt quan tâm hướng dẫn, động viên PGS TS Chử Đức Trình, PGS TS Trần Xuân Tú thầy cô giáo, bạn sinh viên Bộ mơn Tín hiệu Hệ thống, Trường Đại học Cơng nghệ, người thực quan tâm đối xử với thành viên Trường Đại học Công nghệ Tôi xin trân trọng cảm ơn Ban Giám hiệu Nhà trường, khoa Vật lý, khoa Sư phạm Kỹ thuật, phòng Tổ chức Hành phòng Kế hoạch Tài chính, Trường Đại học Sư phạm, Đại học Huế hỗ trợ suốt thời gian học tập thực luận án Tôi xin chân thành cảm ơn người thân gia đình, người hỗ trợ nhiều vật chất lẫn tinh thần để tơi học tập đạt kết tốt thực thành công luận án Xin chân thành cảm ơn người bạn, đặc biệt ThS Nguyễn Hoàng Anh, ThS Vũ Hoàng Tuân, ThS Phạm Ngọc Thạch, người hỗ trợ nhiều vật chất lẫn tinh thần để tơi học tập đạt kết tốt thực thành công luận án iii Luận án hỗ trợ bởi: - Đề tài nghiên cứu khoa học số 57/2011/HDDT, Trung tâm Nghiên cứu Châu Á, Đại học Quốc gia Hà Nội; - Đề tài nghiên cứu khoa học số 102.02-2015.32, Quỹ Phát triển khoa học công nghệ Quốc gia (National Foundation for Science and Technology Development - NAFOSTED) Dữ liệu điện não đồ sử dụng luận án sử dụng từ kết đề tài nghiên cứu khoa học số QG.10.40, Đại học Quốc gia Hà Nội Tôi xin chân thành cảm ơn! Hà Nội, ngày 24 tháng 10 năm 2019 Trương Minh Chính iv MỤC LỤC Trang phụ bìa i Lời cam đoan ii Lời cảm ơn iii Mục lục Danh mục ký hiệu chữ viết tắt Danh mục bảng Danh mục hình vẽ, đồ thị MỞ ĐẦU 10 CHƯƠNG CƠ SỞ VỀ ÁP DỤNG PHƯƠNG PHÁP LẤY MẪU NÉN CHO TẠO ẢNH CỘNG HƯỞNG TỪ NHANH VÀ PHÂN TÍCH PHẦN TỬ SONG SONG CHO TÍN HIỆU ĐIỆN NÃO ĐỒ 20 1.1 Giới thiệu 20 1.2 Phương pháp lấy mẫu nén 20 1.2.1 Tín hiệu thưa tín hiệu nén 21 1.2.2 Mô hình lấy mẫu tín hiệu phương pháp lấy mẫu nén 22 1.2.3 Khơi phục tín hiệu phương pháp lấy mẫu nén 24 1.3 Một số tính chất hệ hỗn loạn 25 1.3.1 Hệ logistic 25 1.3.2 Tạo dãy tất định có tính chất phân bố Gauss 26 1.3.3 Tạo dãy tất định có tính chất phân bố Bernoulli phân bố 27 1.4 Bài tốn phân tích CP thích nghi cho ten-xơ bậc 28 1.4.1 Ước lượng không gian cho liệu không đầy đủ 28 1.4.2 Phân tích CP cho ten-xơ bậc 32 1.4.3 Thuật tốn phân tích CP thích nghi cho ten-xơ bậc 33 1.5 Kỹ thuật tạo ảnh cộng hưởng từ 36 1.5.1 Nguyên lý thu tín hiệu cộng hưởng từ 36 1.5.2 Nguyên lý phương trình tạo ảnh 38 1.5.3 Phương pháp tạo ảnh cộng hưởng từ tĩnh nhanh 40 1.6 Áp dụng phương pháp lấy mẫu nén cho tạo ảnh cộng hưởng từ nhanh 41 1.6.1 Cơ sở việc áp dụng CS cho MRI 41 1.6.2 Áp dụng CS cho MRI: Phương pháp lấy mẫu nén ngẫu nhiên 42 1.6.3 Áp dụng CS cho MRI: Phương pháp lấy mẫu nén hỗn loạn 44 1.7 Áp dụng phân tích CP cho xử lý tín hiệu EEG 45 1.7.1 Giới thiệu EEG 45 1.7.2 Hệ thống điện cực 46 1.7.3 Dữ liệu EEG với cấu trúc ten-xơ bậc 47 1.7.4 Áp dụng phân tích CP cho liệu EEG dạng ten-xơ bậc 48 1.8 Kết luận 49 CHƯƠNG ÁP DỤNG LẤY MẪU NÉN TẤT ĐỊNH TRÊN CƠ SỞ CÁC HỆ HỖN LOẠN CHO TẠO ẢNH CỘNG HƯỞNG TỪ NHANH 50 2.1 Giới thiệu 50 2.2 Một số vấn đề chi tiết áp dụng lấy mẫu nén cho tạo ảnh cộng hưởng từ nhanh 50 2.2.1 Mơ hình áp dụng CS cho MRI 50 2.2.2 Các phương pháp áp dụng CS cho MRI hạn chế 55 2.2.3 Tiêu chí xây dựng sở lấy mẫu tất định 56 2.2.4 Đánh giá chất lượng ảnh khôi phục 56 2.3 Các phương pháp đề xuất áp dụng CS hỗn loạn cho MRI 57 2.3.1 Phương pháp 1: CS hỗn loạn cho MRI 57 2.3.2 Phương pháp 2: CS hỗn loạn cho SWIFT 59 2.4 Mô đánh giá 61 2.4.1 Dữ liệu mô 61 2.4.2 Kịch mô 61 2.4.3 Phương pháp 1: CS hỗn loạn cho MRI 63 2.4.4 Phương pháp 2: CS hỗn loạn cho SWIFT 66 2.4.5 Xác suất thành công tỷ lệ lấy mẫu nén 68 2.5 Kết luận 71 CHƯƠNG PHÂN TÍCH PHẦN TỬ SONG SONG THÍCH NGHI CHO TEN-XƠ BẬC VÀ ÁP DỤNG XỬ LÝ TÍN HIỆU EEG KHÔNG ĐẦY ĐỦ 73 3.1 Giới thiệu 73 3.2 Cơ sở thuật toán đề xuất 73 3.2.1 Bài tốn ước lượng khơng gian phân tích CP thích nghi cho liệu khơng đầy đủ 73 3.2.2 Cơ sở đề xuất thuật toán 74 3.2.3 Đề xuất hàm chi phí 75 3.3 Đề xuất thuật toán ước lượng không gian cho liệu không đầy đủ 77 3.3.1 Thuật toán 1: SW-PETRELS 77 3.3.2 Thuật toán 2: NL-PETRELS 80 3.3.3 Thuật toán 3: MS-PETRELS 81 3.3.4 Độ phức tạp thuật toán 83 3.3.5 Mô đánh giá thuật toán 83 3.4 Phát triển thuật tốn phân tích CP thích nghi cho ten-xơ bậc 3, liệu không đầy đủ 88 3.4.1 Mơ hình toán 88 3.4.2 Thuật toán phân tích CP thích nghi cho ten-xơ bậc 3, liệu không đầy đủ 89 3.4.3 Mơ đánh giá thuật tốn 90 3.5 Áp dụng phân tích CP thích nghi cho liệu EEG không đầy đủ 101 3.5.1 Áp dụng 1: Trích xuất thơng tin 102 3.5.2 Áp dụng 2: Khôi phục liệu 106 3.6 Kết luận 109 KẾT LUẬN VÀ KIẾN NGHỊ 110 DANH MỤC CÔNG TRÌNH KHOA HỌC CỦA TÁC GIẢ LIÊN QUAN ĐẾN LUẬN ÁN 112 TÀI LIỆU THAM KHẢO 113 PHỤ LỤC A THUẬT TOÁN PETRELS 119 PHỤ LỤC B THUẬT TỐN PHÂN TÍCH CP THÍCH NGHI 120 PHỤ LỤC C THUẬT TOÁN NCG 121 DANH MỤC CÁC KÝ HIỆU VÀ CHỮ VIẾT TẮT Danh mục ký hiệu STT Ký hiệu Giải thích In nghiêng, chữ thường in hoa, ví dụ a, N Đại lượng vơ hướng In đậm, chữ thường, ví dụ a Đại lượng véc-tơ, thành phần véc-tơ a ký hiệu In đậm, kiểu chữ in hoa, ví dụ A Ma trận, thành phần ma trận A ký hiệu aij [A]ij In đậm, kiểu chữ in hoa nghiêng, ví dụ X Ten-xơ bậc 3, thành phần ten-xơ X ký hiệu xijk R Tập số thực RN Không gian véc-tơ thực N chiều (·)T Chuyển vị ma trận (hoặc véc-tơ) (·) (·)H Chuyển vị liên hợp phức (Hermitian ) ma trận (số phức) (·) ◦ Tích ngồi 10 ⊗ Tích Kronecker 11 Tích Khatri-Rao 12 ∗ Tích cặp 13 (·)† Giả nghịch đảo ma trận (·) 14 tr(·) Vết (trace ) ma trận (·) 15 diag {p} Ma trận đường chéo có thành phần đường chéo p 16 · 0 -norm véc-tơ (·) 17 · 1 -norm véc-tơ (·) 18 · 2 -norm véc-tơ, ma trận ten-xơ (·) Danh mục chữ viết tắt STT Chữ viết tắt Giải thích tiếng Anh Giải thích tiếng Việt CCSMRI Chaotic Compressed Sensing Magnetic Resonance Imaging Lấy mẫu nén hỗn loạn cho ảnh cộng hưởng từ (tên phương pháp ) CP Canonical Polyadic Phân tích phần tử song song CP-MS Canonical Polyadic - Modified Simplified PETRELS Phân tích phần tử song song sử dụng MS-PETRELS (tên thuật toán ) CP-NL Canonical Polyadic Non-Linear PETRELS Phân tích phần tử song song sử dụng NL-PETRELS (tên thuật toán ) CPCanonical Polyadic - PETRELS PETRELS Phân tích phần tử song song sử dụng PETRELS (tên thuật toán ) CPWOPT Canonical Polyadic - Weighted OPTimization Phân tích phần tử song song tối ưu trọng số (tên thuật toán ) CS Compressed Sensing Lấy mẫu nén (tên phương pháp ) CS-MRI Compressed Sensing - Magnetic Resonance Imaging Lấy mẫu nén cho ảnh cộng hưởng từ (tên phương pháp ) EEG Electroencephalogram Điện não đồ 10 FMS Factor Match Score Chỉ số khớp ten-xơ 11 HSn hyperbolic secant pulse Họ xung hyperbolic secant 12 MAE Mean Absolute Error Sai số tuyệt đối trung bình 13 MRI Magnetic Resonance Imaging Tạo ảnh cộng hưởng từ 14 MSModified Simplified PETRELS PETRELS Ước lượng không gian đơn giản cải tiến (tên thuật toán ) 15 NCG Građien liên hợp phi tuyến (tên thuật toán ) 16 NewCCS- New Chaotic Compressed MRI Sensing - Magnetic Resonance Imaging Lấy mẫu nén hỗn loạn cho ảnh cộng hưởng từ (tên phương pháp ) 17 NLNon-Linear PETRELS PETRELS Ước lượng khơng gian phi tuyến tính (tên thuật tốn ) 18 NRE Sai số chuẩn hóa Nonlinear Conjugate Gradient Normalized Residual Error ... Mặt khác, xử lý tín hiệu EEG đối mặt với vấn đề liệu không đ y đủ [4, 61, 62] Từ thực tế đó, luận án quan tâm nghiên cứu giải thuật phân tích xử lý tín hiệu liệu khơng đ y đủ ứng dụng y sinh, theo... MINH CHÍNH PHÂN TÍCH VÀ XỬ LÝ TÍN HIỆU CHO DỮ LIỆU KHÔNG Đ Y ĐỦ ỨNG DỤNG TRONG Y SINH Chuyên ngành: Kỹ thuật viễn thông Mã số: 9510302.02 LUẬN ÁN TIẾN SĨ CÔNG NGHỆ KỸ THUẬT ĐIỆN TỬ, TRUYỀN THÔNG... gian xử lý thuật toán lớn phụ thuộc vào kích thước khối liệu xử lý [17] Việc xử lý tín hiệu EEG đối mặt với việc mát liệu, tức thu tín hiệu khơng đ y đủ với thể cụ thể sau: ◦ Trong xử lý tín hiệu,