1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề thi HSG môn Toán lớp 12 - Sở GD&ĐT Phú Yên

5 78 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 202,11 KB

Nội dung

Giúp học sinh đánh giá lại kiến thức đã học cũng như kinh nghiệm ra đề của giáo viên. Mời các bạn và quý thầy cô cùng tham khảo Đề thi HSG môn Toán lớp 12 - Sở GD&ĐT Phú Yên.

KỲ THI CHỌN HỌC SINH GIỎI NĂM HỌC 2019 – 2020 SỞ GIÁO DỤC PHÚ YÊN TRƯỜNG THPT NGÔ GIA TỰ MƠN: TỐN (Đề thi có 01 trang) Thời gian làm bài: 150 phút (không kể thời gian phát đề) U U Câu (2,0 điểm) Giải phương trình x3 = +1 2x −1 Câu (2, điểm) Cho tam giác ABC vuông A Trên hai cạnh AB AC lấy hai điểm B′ C ′ cho AB AB′ = AC AC ′ Gọi M trung điểm BC Chứng minh AM ⊥ B′C ′ Câu (3,0 điểm) Cho phương trình cos x + sin x + m − = a Tìm tất giá trị tham số m để phương trình có nghiệm phân biệt b Tìm tất giá trị tham số m để phương trình có nghiệm phân biệt thuộc khoảng (0; π ) Câu (4,0 điểm) Cho f ( x)= mx + 4(m − 1) x + m − ( m tham số) a Tìm tất giá trị tham số m để f ( x) > với x ∈  b Tìm tất giá trị tham số m để f ( x) < với x ∈ ( 0; )  x + + y + =m Câu (4,0 điểm) Cho hệ phương trình  ( m tham số) 3m  x + y = a Giải hệ phương trình m = b Tìm tất giá trị tham số m để hệ phương trình có nghiệm Câu (2,0 điểm) Cho tam giác ABC Gọi O điểm tùy ý nằm tam giác Kẻ OM , ON OP vng góc với cạnh BC , AC AB Chứng minh BC AC AB p + + ≥ OM ON OP r p nửa chu vi tam giác ABC r bán kính đường tròn nội tiếp tam giác ABC Câu (3,0 điểm) Cho tam giác ABC vuông B Kéo dài AC phía C đoạn CD = AB = 1;  = 300 Tính độ dài đoạn AC CBD HẾT SỞ GIÁO DỤC PHÚ YÊN KỲ THI CHỌN HỌC SINH GIỎI NĂM 2019 – 2020 TRƯỜNG THPT NGƠ GIA TỰ Mơn Tốn – Thời gian: 150 phút Đáp án Câu Câu1 (2,0 điểm) Đặt:= y Điểm x − 1,0 3 = =  x + y =  x + y  x + y Ta có:  ⇔ ⇔  2  y + 1= x  x − y = 2( y − x) ( x − y )( x − xy + y + 2)= 0,25 y 3y2 Do x − xy + y + =  x −  + + > ∀x, y  2  x3 + =2 y Nên ta có hệ:  x = y 0,5 ⇒ x3 + 1= x ⇔ ( x − 1)( x + x − 1)=  x =  −1 + ⇔  x =   x = −1 −  Câu (2,0 điểm) 0,25 Vì M trung điểm BC nên    = AM AB + AC ( B ) B' A C'           Ta có: AM B′C ′ = AB + AC AC ′ − AB′ = AC AC ′ − AB AB′ = ( )( C ) Vậy: AM ⊥ B′C ′ Câu 0,5 M a (1,5 điểm) cos x + sin x + m − = ⇔ 2sin x − sin x = m − 1,5 0,25 (3,0 điểm) Đặt: = t sin x, t ∈ [ −1;1] Phương trình trở thành 2t − t = m − 0,5 Xét hàm số = y 2t − t với t ∈ [ −1;1] Để phương trình có nghiệm phân biệt ⇔ m − =1 ⇔ m = 0,75 b (1,5 điểm) x ∈ ( 0; π ) ⇒ t ∈ ( 0;1] Xét hàm số = y 2t − t nửa khoảng ( 0;1] 1,0 Để phương trình có nghiệm phân biệt ⇔ − < m − < ⇔ Câu (4,0 điểm) 15 ⇔ x < − (loại) 0,5 + Khi m ≠ để 1,0 m > m > ⇔ ⇔1< m < f ( x) > 0∀x ∈  ⇔   ∆′ < (m − 1)(3m − 4) < b (2,5 điểm) + Khi m = f ( x) < ⇔ −4 x − < ⇔ x > − m < (thỏa mãn) 0,5 m < + ⇔ ⇒ VN  ∆′ < (m − 1)(3m − 4) < 0,5 + Khi m > đề f ( x) < 0∀x ∈ (0; 2) f ( x) = có hai nghiệm x1 , x2 thỏa  x ≤ < x2 (1) x1 ≤ < ≤ x2 ⇔   x1 < ≤ x2 (2) 0,5 m −1 ≤ ⇔ < m ≤1 m 0,5 (1) ⇔ (2) ⇔ ( x1 − 2)( x2 − 2) ≤ ⇔ x1 x2 − 2( x1 + x2 ) + ≤ ⇔ < m ≤ Vậy: ≤ m ≤ Câu (4,0 điểm) 13 10 0,5 13 10 a (1,5 điểm) y 12 − x  x + + y + =  = ⇔ 12  x + + 14 − x =  x + y = Khi m = ta có  ( −1 ≤ x ≤ 14; −2 ≤ y ≤ 13) 1,0  13 + 14 x = ⇒ ( x + 1)(14 − x) = ⇔ −4 x + 52 x + 55 = ⇔   13 − 14 x =   11 − 14 y =   11 + 14 y =  0,5  13 + 14 11 − 14   13 − 14 11 + 14  ; ;    2 2     Vậy: hệ có hai nghiệm  b (2,5 điểm) Đặt: = a b x + = m a + b =  y + Hệ trở thành a + b = 3m + a ≥ 0, b ≥  m có điểm chung với Để hệ có nghiệm đường thẳng a + b = 2 đường tròn a + b = 3m + a ≥ b ≥  m − 6m − ≤  + 21 ≤ m ≤ + 15 3m + ≤ m ≤ 6m + ⇔ m − 3m − ≥ ⇔ m ≥  Vậy: Câu (2,0 điểm) 0,5 1,0 1,0 + 21 ≤ m ≤ + 15 Theo BĐT Bunhiacopski, ta có  BC  AC AB BC.OM + AC.ON + AB.OP   ON OP  OM   BC AC AB  ≤ + +  ( BC.OM + AC.ON + AB.OP )  OM ON OP  1,0  BC AC AB  ⇔ ( BC + AC + AB) ≤  + +  ( BC.OM + AC.ON + AB.OP )  OM ON OP  BC AC AB p  BC AC AB  (do S ABC = pr ) ⇔ + + + + ≥  S ABC ≥ p ⇔ OM ON OP r  OM ON OP  0,5 Dấu xảy OM = ON + OP ⇔ O tâm đường tròn nội tiếp tam giác ABC Câu (3,0 điểm) Qua D kẻ đường thẳng vng góc với CD cắt BC E 0,5 E Tứ giác ABDE nội tiếp 1,0 ∠DBC = ∠DAE D C B A Đặt AC = x > ⇒ AD = x + π DE = AD.tan= x +1 ; BC = ∆CDE  ∆CBA ⇒ CD BC = ⇔ =( x + 1) x − ED BA x2 −1 0,5 1,0 ⇔ x( x − 2) + 2( x − 2) = ⇔ ( x3 − 2)( x + 2) = ⇔ x = Vậy: AC = 0,5 ...SỞ GIÁO DỤC PHÚ YÊN KỲ THI CHỌN HỌC SINH GIỎI NĂM 2019 – 2020 TRƯỜNG THPT NGÔ GIA TỰ Mơn Tốn – Thời gian: 150 phút Đáp án Câu Câu1 (2,0 điểm) Đặt:= y Điểm... x1 + x2 ) + ≤ ⇔ < m ≤ Vậy: ≤ m ≤ Câu (4,0 điểm) 13 10 0,5 13 10 a (1,5 điểm) y 12 − x  x + + y + =  = ⇔ 12  x + + 14 − x =  x + y = Khi m = ta có  ( −1 ≤ x ≤ 14; −2 ≤ y ≤ 13) 1,0 ... ⇔ −4 x − < ⇔ x > − m < (thỏa mãn) 0,5 m < + ⇔ ⇒ VN  ∆′ < (m − 1)(3m − 4) < 0,5 + Khi m > đề f ( x) < 0∀x ∈ (0; 2) f ( x) = có hai nghiệm x1 , x2 thỏa  x ≤ < x2 (1) x1 ≤ < ≤ x2 ⇔   x1

Ngày đăng: 27/05/2020, 07:05

TỪ KHÓA LIÊN QUAN