V /V'' ^ DAI HOC QUOC GIA HA NOI TRirdNG DAI HOC KHOA HOC TU" NHIEN A /, 6)E TAI NGHIEN Cl/U KHOA HOC C0N(5 NGHE DONG BO DAY DU CUA CAC HE THONG • • ( Complete Synchronization of Systems ) MA SO: QT - 01 - 28 V CHtJ TRI DE TAI: TS H O A N G CHI THANH f>AI HOC O TftUN He Ml2i^ ^ V ^ HA NOI - 2002 TEN DE TAI; Dong bo day du cua cac he thong MA SO: QT - 01 - 28 CHU TRi DE TAI: TS Hoang Chi Thanh CAC CAN BO PHO I HOP: TS Doan Van Ban ThS Vu Quang Thudng ThS Nguyin Xu^n Hoang MUC LUC Phan I: BAO CAO TOM TAT a Ten dt tai, Ma so b Chu tri dt tai c Cac can bo tham gia d Muc tieu va noi dung nghien cuu e Cac ket qua dat duac f Tmh hinh kinh phi cua dt tai Trang 4 4 4 Part II: SUMMARY a Title and Code of the project b Head of the research group c Participants d Research aims and contents e Main obtained results 6 6 6 PHAN CHINH CUA BAO CAO Lai ma dau Noi dung chfnh 2.1 Bai toan d6ng bo day du 2.2 Ng6n ngu vet cue bo 2.3 Dong bo day du Ket luan " Tai lieu tham khao 8 9 10 10 11 PHU LUC: Cac bai bao da cong bo 1) Hoang Chi Thanh - ''Bdi todn dong bg ddy du ly thuyet tuang tranh"' - 2002 2) Hoang Chi Thanh - \D6ng ho ddy du tren cdc ngon ngii vet cue hg' - 2002 12 13 PHIEU DANG KY KET QUA NGHIEN CUU 29 17 PHAN I: BAO CAO TOM TAT a Ten dt tai: Dong bo day du ciia cac he thong Ma so: QT^-01 - 28 b Chu tri de tai: TS Hoang Chi Thanh c Cac can bo tham gia: TS Doan Van Ban ThS Vu Quang Thuang ThS Nsuv^n Xuan Hoang d Muc tieu va noi dung nghien cuu: D6ng bo va dong bo day du cua cac he tHong la mot van di max va quan trong cong nghe thong tm, Vi.ec nghien cuu t6ng hap cac he thong, dt cac nguyen ly dong bp cho viec t6ng hgp cac he thong phiic vu tot cho viec phan tich, thiet ke va xu ly mang tranh cac he thong, ching han nhu cac mang truv6n tm, cac dav chuv^n san xuat, cac mang mav tfnh, cac ca so du lieu lan va phan tan Dt tai tap trung nghien cuu xay dung mo hinh tong quat cho cac he thong tuang tranh va nguyen ly hap Tu dua cac di6u kien dii cho sud6ng bo day du e Cac ket qua dat dugc: - Chung toi da x^y dung dugc mo hinh tdng quat cho cac he thong ruang aanii vi r.guycn ly hgp cac he thong tuang tranh, xet tmh d6ng bo, d6ng bo day du cua chiing [bai bao I] Da dua di^u kien dii cho su d6ng bo day dii Clia cac he thong orong tranh duac bieu diln bai ngon nsu vet cue bo [bai bao2], ' " ^ - Dang huang din mot nshien cuu sinh viet luan an tien sv theo di tai (Vu Quang Thuang — '"Divlu khie'n tuang tranh toi uu cac ca sa du lieu phan tan'^ - Da viei va dang mot bai bao: Hoang Chi Thanh Bdi todn dong bp ddy du ly thuyet tuomg tranh Ky yeu Hoi thao Quoc gia "Mot so va'n de chon loc cua Cong nghe Th6ng tin", Dai hoc Hang hai Hai phong, 06/2001 , NXB khoa hoc Ky thuat 2002, trang 242 - 244 - Da viet mot bao cao tai Hoi thao Quoc gia "Mot so van de chon loc cua C6ng nghe Thong tin", Dai hoc Thuy san Nha Trang, 06/2002: Hoang Chi Thanh Dong bo ddy du tren cdc ngon ngii vet cue bg f Tinh hinh kinh phi cua de tai: - Thue khoan chuyen mon: - Hoi thao khoa hoc, xemina: - In an va cac viec khac: 7.200.000 d 600.000 d 200.000 d T6ngc6ng: 8.000.000 d r PART II SUMMARY a Title of the project: Complete Synchronization of Systems Code of the project: QT- 01- 28 b Head of the research group: Dr Hoang Chi Thanh c Participants: Dr Doan Van Ban Ms Vu Quang Thuong Ms Nguyen Xuan Hoang d Research aims and contents: Composition of concurrent systems is a new and important problem in Information Technology But the composition must be synchronous or completelly synchronous The main aim of the project is to show sufficient conditions for complete synchronization of concurrent systems and consider their properties In order to that we generally model concurrent systems by set theory, propose basic principles for system's composition and prove the complete synchronization for local trace languages Main contents of the research: General modelling for concurent systems Analyzing behaviours of concurrent systems Composing optimally small systems into large ones (conditions, methods, results I I) Proposing a sufficient condition for complete synchronization of local trace languages e Main obtained results: We modeled concurent systems in general by using set theory The composition of concurrent systems has been based on two basic principles: composition principle and synchronization principle We also investigated nonnal form of synchronization and pointed out a sufficient condition for the complete synchronization The synchronization and complete synchronization are usually used in system analyzing and bottom-up designing Main results of the project are presented in the following published papers: 1) Hoang Chi Thanh Complete SynchronizationZs Problem in Theory of Concurrency Proceedings of the 4^*" National Workshop on Information Technology, Publisher of Science & Technology - 2002, pp 242 - 244 2) Hoang Chi Thanh Complete Synchronization on Local Trace Languages Proceedings of the 5^^ National Workshop on Information Technology, 2002 Ha n6i, 22 than^ 10 nam 2002 XAC NHAN CUA BAN CHU NHIEM KHOA: P^S T^"^-H A'^yl^ f^ y ^ C_ CHU TRI DE TAI IA-, M'^ TS Hoang Chi Thanh xAC NHAN CUA TRUdNG: PHO Ml|u TRUONG "^^ITi^.^'awjety.MwcJ/nia PHAN CHINH CUA BAO CAO LC3lMdDAU: Mot nhung phuang phap thong dung de thiet ke cac he thong la phuang phap thiet ke duai-len (bottom-up method) He lan hgp tu cac he nho phai bao toan tinh chat dong bg, nghia la: - M6I hanh dong he thong hap phai la mot hanh dong cac he va khong co hanh dong nao khac - Thu tu xuat hien va so Idn xuat hien cua m6i mot hanh dong he thong hap giong het nhu cac he M6i qua trinh ciia he thong ion phai la ''d6ng bo '' cua cac qua trinh tuang ung cac he Nhung co the co mot so qua trinh cac he khong tham gia xay dung nen qua trinh he lan Khi he hap khong thuc hien het "nhiem vu" cua cac he mang ung De tai nghien cuu x^y dung bai toan d6ng bo diy dii cho cac he tuang tranh t6ng quat va chi dieu kien dii cho su d6ng bo day dii ciia cac he tuang tranh duac bieu dien bai cac neon neu vet cue bo NOIDL^^GCHINH: Da CO mot so mo hinh bieu dien cac he thong arang tranh nhu: Petri Nets (C A Petn, 1963) , Trace Language (A Mazurrkiewicz, 1977) , CSP -< Communicatmg Sequential Proceses (C A R Hoare, 1978) , COSY (P Lauer, 1979) , CCS"- Calculus of Communicating Systems (R Milner, 1980), Processes Algebra, Event Structure, Transition System I , Local Trace Languages (D^ Kuske & R Monn, 2000) M6i mo hinh tren thuang bao g6m hai phan: phan tinh, phan dong va phai xac dinh dugc cac dac trung chinh sau day ciia cac he thong tuang tranh: - Quan he ruans tranh he - Quan he xung dot he - Tmh trang giao tiep i^contactness) - Tmh trans tdc nshen (dead-lock) - Cac buac thuc hien tuang tranh he (tuang tranh cue dai) - Cac qua trinh he - Hanh vi (behaviour) ciia he thong Tu nhung mo hinh tren, chiing toi dua mo hinh tong quat nhu sau: Gia sir D^ , D2, , D^ la cac tap hap mang nhiing nghia nao M6t he tucmg tranh long qudt la mot bo g6m n phdn: CS = ( P, , P , Pn) vai P e D: , 1= 1,2 n Gia sir co hai he tuang tranh: CS, = ( P / ' , P ; , , P ; ) vai P' - D'' va: CS, = CP;- Pf , P^') vai P- z Dr i = I , , , n Ta xay dung he thong tuang tranh hgp tu hai he tuang tranh tren: CS - ( P t , P : Pn) vai P, c D; = D • ^ D; % 1,2 .n ma he tuang tranh hgp CS thuc hien dugc cac "nhiem ^voi" ciia cac he va bao toan cang nhieu cang to't cac tmh chat ciia cac he Ky hieu: CS := CS, g CS: De xay dung he tuong tranh CS , chiing ta xay dung cac phan P, theo nguyen ly hap thdnh nhu sau: P - tP.'n(D,'\Dr))'o(P/nP,-)u(P;n(D;\Di')) i=i,2 n 2.1 Bai toan d6ng bo diy du [l]: Vai dieu kien nao thi : ^csics, ~ ^cs - ^= ^- Nghia la, tat ca cac qua trinh ciia cac he deu duac tham gia xay dung cac qua trinh ciia he hgp Lai siai cho bai toan tren duac tap truns vao nson nsu vet cue bo, mot mC hinh tuang tranh co nhieu y nghia thue te: 2.2 Nson ngu vet cue b6 (D Kuske & R Monn , 2000): - Quan he dgc lap cue bo tren bang chu cai A: I z A^^ < 7)(A) - Quan he lucmo ducmg vet cue bo - smh bai I la quan he tuang duang nho nhat tren A* thoa man: 1) Vu, u'^ A*, a e A : ( u u' => u,a u\a ) 2) V(u, s) E L -rs^z s^ 7v^, v^_ELmu') : u.v, - u.v^ - Vet cue bo la mot lop tuong duang ciia quan he orang duang Chiing toi da co cac ke't qua chinh sau day: Dinh ly 1: Moi ng6n ngu ve't cue b6 tren (A, I) la d6ng bo ciia hai ngon ngiJ vet tren (A,, I,) va (A^, y , 2.3 Dong bo d^y du: Gia sir (B^ la mot ngon ngQ ve't cue bo tren (A^, I^) va H^ la mot ng6n ngfi vet cue bo tren (A^, I2) Ky hieu: « = « j # ^^ H dugc goi la dong hg ddy du cua 'S^ va '3^ neu: đ| = ô , i = 1,2 Quan he dgc lap cue bd I la ddy du irtn A neu thoa man: 1) (u, s) e I A s ' e s => (u, s') e I 2) (u, s) G I A s ' e s A V G Lin(s') => (u.v, s\s') e I 3) (u, {a,b}) G I A (u.a.b.v, s) G I ^ (u.b.a.v, s) G I 4) (u.a, ) G I = ^ ( U , {a})Gl Dinh ly 2: Neu I^ la quan he dgc lap cue bg day dii tren A va I^ la day du tren A^, -S = 'Sj # ®2 thi (B la ddng bg vet cue bg day dii cua '2?, va "B^ Ket qua tren co the ap dung de xac dinh hanh vi cua he thong tuang tranh lan hgp tir cac he thong nho m6t each nhanh chong Chiing toi cung da xet cac tinh chat dac trung khac ciia he hgp nhu: quan he tuang tranh co , quan he xung dot cf, tinh ben vung KET LUAN: - De tai da mo hinh hoa mot each tong quat cac he thong tuang tranh va xay dung dugc nhung nguyen ly ca ban nhat cho bai toan hgp cac he thong tuong tranh tdng quat, lam ca sa cho cong viec thiet ke he thong, ung dung dugc cho cac mang may tinh, cac he thong thong tin, cac ca sa du lieu phan tan thuc te De tai cung da dua va chiing minh mot dieu kien du cho su d6ng bg day du cua cac he thdng tuong tranh dugc bieu dien bai cac ngon ngfi vet cue bg - Cac vien cua de tai se tiep tuc nghien cuu, phat trien cac ket qua da CO va ap dung cho cac mo hinh khac va cho cac he thong thuc te nhu: mang truyen tin, day chuyen san xuat, mang may tinh 10 Mot so viin de chon lgc cua Cong nghe ihong tin Hdi Phong, 7-9 ihdng ndm 2001 NGUYEN L V DONG B O • Vdi each hgp ihanh cdc he thong theo nguyen ly hgp ihanh iren ihi mot so dac trung chinh ciia he hgp ihanh: quan he doc lap, quan he tuong iranh dang dieu co the xdc dinh iruc liep lu cac dac trung lUong ung-cua cac ht than]) phdn dua tren nguyen ly d6ng bo sau day: Gia su L), L- la hai ng6n ngu i6 hgp song song cua L va L- ia m6\ ngon ngu dugc dinh nghia nhu sau: L = L i # L : = {x!x € (L, -^ Lj)* xF- e U A X ! L : e L^l Y nghia: - M6i chii cai ngon ngu L phai ia m6; chu cai irong L\'a kiiong cd chii cdi nao kiiac - Tliu tu xuat hicn va so Idn xudi hien ciia m6i chu cai irong L gidng het nliu irong L, Nguyen ly dong bo: Neu CS = CS; © CS: ^r^ '^cs = ^cs: ^ '^csr,Co ilie xdc dmi) dang dieu cua hop lii dang dieu cha cac he ma kiidng phai linh loan lai lu ddu Cdn cac dac irung khac nhu: quan he tuong iranh quan he xuni: d6: klidng gian Ciic irang thai lai dugc xay dung theo nguyen ly hop ihanh Chang han: cr = cr.^ © cr2 cJ = ci, © cl, BAI TOAN DONG B O DAY DU TiJ chinh dinh nghia ciia phep lo hgp song song ciia hai ngon ngii ta co: (B^!c^, c ^cs- • 1=1 Cd nghia la co the co mot sd qua irinh irong cac he klione ihani gia xay dung qua irlnh irong he Idiv Bai toan dong bo day du: Vdi dieu kien nao thi ^Scs c ®csr i=l- -• Nghia la lA'l ca tdc qua iruih cua cdc he de dugc iham gia xSy dung cac qua irinh ciia he hgp ihanh Bai todn mdi chi giai quyet cho ngdn ngu vet [3] va mdi sd Idp he mang dac biei Viec Eziai quyei bai loan dong bo day dii cho mot Idp rong Idn cdc he luong iranli mang y nghia rat ihuc le TAl LIEU THAM KHAO 1.1 Albersberii and G, Rozenbeg Theory of Traces Theoretical Computer Science 60 (]988)p.l-82 \V Reisig Petri Nets Springer - Verlag 1985 Hoani: Chi Thanli, Cdc ihuai loan iim dang chudn ciia ve't va \et ddng bC: Tap chi Tin hgc vd dieu khien, T17 SI (2001), ir 72-77 244 "^^ A MOT SO VAN OE CHON LOC CUA CONG NGHE THONG TIN JHoii Uui ^^SSU4^ TOM TAt-^ BAO CAO KHOA HOC DAI HOC THUY SAN • • Nha Trang, 05 - 07 t h a n g n a m 2002 ^t *^owwaLiwii j.uica.^in:iuiay noLbeappropnate^ m some-cases^There may be some Item-sets with supports smaller thari-mzn^w;?-,value, but they can generate more useful rules The ainfi "of this'paper is pvefcbme that shortcoming by improvmg CHARM algorithm in order to find item-sets that their minsup supports are different- We also compare the proposed algorithm with CHARM algorithm about two aspects: the useful of set of returned rules and efficiency of algonthms Cac thuat toan phat hien ket hop den phan Ion dugc dua tren viec tim cac tap ph rH ^ ng Da/ Dai ho Q' r:r O CD mr o CO S' /loa 0> PN O ;;;3- •o n: CO- o rs -H >• Oi O^ 13 o V HOA o O •o ::^ > :z: O o "H :3" :Z3~ •o o \ > Q < "T > Z^ T" n n •o > ^^ ot ro ^ o o CDO CD CO g>j 3' Z5 0> Đ CO CD> CD o^ Z3 CO o^ o> CO o^ "O o> -^ o O -Q o IT]: ^ T3 QJo CO 20 yj a Oi CD^ CD13 CD CO Q CO o> : S CO 13 O i CO •o> Z3 CO -O' •CD> CD O CD> CD CO CD < o o> o ^ •o^ o CD Z3 'CD> O ZJ" o o^ o O' CO CO o O: ZJ" C/2 T CD^ —/ ^-H Z3 CO 9-:' CO ^ ^-v JO Oi 0)^ CD Z5 Q Z5 CO CD> O CZLi CD o> •CD> CO T Z3 O Oi CD>^ o> CO o CD' o •CD Q CO ti 77- X II O < X o TD o> o> CD\ Q> "O O CD^ O < Q Z3 CO oo •Q O m Q _o UJ _ ro Q Q > CD X I! -CD Oi < •Q CD •ST > T3 CD Nl Z3 CO CO II CO T3 o N T:5 in X •Q o CO "O CD hO > CD> CD > c; o m>> CO Q O CD O CO CD Oi o O" CD^ o CD •Q CO o CD o m > < CD ro II CD ;> 1_ cr Q CO Q O -^ o o CD> m m > ^ "P "CD o> CD -r CO Oi CO CO CD Q m CD Q CD 03 CD o m>> o O > O fi 11 I •CD O CD^> CD o < < CO Oi •o T3 CO m m > Q Q Z3 CO CD •-^ CO ••a Q < < CO CD Oi m 3CD>, > ^ Q Z5 ~^ < O o • O^ O) JZJ cz OD ro m CD =^ ^ ^ CD> 031 rvS^ CD II > o o 03^ CD^ O ^ CO - o ^ O CD II o> KD ro 0^ :i O 03 CD> 03^ ro 0> C3U ^: 03 ro O 03> > CD> o> CD O O CD\ CD m>> O o> CD O > 03N > > CO rvj 03^ CD> O o o 03 o DO o 2i u > cu o DO NO CO o c: N3 •Q o CD "9 cz C CO CO •CD cr m m C^ii CD m V CQ > > > •Q O CO CO •Q0"> n' CO c CO b" CO > < V a < CO m "C O a> cu o.> =3 CO DO •Q li D3 co^ o.> DO CO CO z;i o> < CD!> o O" • C •o o cu cr —s CD « CU CD> Z3 CQ Q 13 Z3 CQ O CO NJ U3 NO < DO ro cr < • CO d > •c o CD _ DO o> Oi o —^ ii CD DO > @ o o o 00 DO N3 > oo o > ^ DO ro CO Oi 03> < CD> o CD> < CD •O ^ < CD- cz cr ^ ^ CO ro m Z5 CQ CD> • C o cr CQ Q CO < CO" o DO ro o CD^ 031 CD m\ i> w 03^ o CD CD O^ 0\ O Z3 ^ ^ CO CD> d CZ QOo ,_^ CD 0_ Z3 03 O O ^ DO QN CD.o CD> O: P @ - Q CO "^ Oi ' " ^ CD.o CD> X 13 CD> O Oi o ^ 0>' ' 03 N^ :z: CD CZ DO a> Oi cr •Q 00 o> ' MI-^My o o CD > 00 O "O O cr •o Oi CD>v ^ ^ DO • Z3 II CO •CZ CD O ro •MMMM day du CO DO a DO CZii CD < CDro o 5> Oi CD> ^-< O Oh o CD > CD O DO ro m\ zs PHIEU D A N G K Y KET QUA NGHIEN CUU KHOA HOC - CONG NGHE Tan di tai: Ma s6': Dong bo day du cua cac he thong ( Complete Synchronization of Systems ) QT - 01 D 28 Ca quan chu tri de tai: Khoa Toan - Co - Tin hoc Trucmg Dai hoc Khoa hoc Tu nhien Dai hoc Quoc gia Ha Noi Dia chi: 334 Nguyin Trai, Thanh XuSn, Ha n6i Tel: 858 1135 Co quan quan ly de tai: Truomg Dai hoc Khoa hoc Tu nhien Dai hoc Quoc gia Ha Noi Dia chi: 334 Nguydn Trai, Thanh Xuan, Ha noi Tel: 858 42 87 Tdng kinh phi thuc chi: Trong do: - Tu- ngan sach nha nudc: - Kinh phi ciia Trudng: - Vay tin dung: - V6'n tu co: - Thu hoi: Thdi gian nghien ciru: Thdi gian bat dau: Thdi gian ke't thuc: 000 X 000 d X 000 d 000 X 000 d X 000 d X 000 d X 000 d 8/2001 den 12/2002 8/2001 10/2002 Ten cac can bo phdi hop nghien cihi: TS Hoang Chi Thanh - chu tri de tai TS Doan Van Ban - tham gia ThS Vu Quang Thudng - tham gia ThS Nguyin Xuan Hoang - tham gia Sd dang ky de tai: Ngay Sd chung nhan dang ky ke't qua nghien curu: Bao mat: a Phd bie'n rdng rai b Phd bie'n han che c Bao mat 19 Tom tat ket qua nghien curu; - De tai da mo hinh hoa cac he thong tiromg tranh tdng quat va nguyen ly hop cho mo hinh nay, - Tijr dura nguyen 1^^ ddng b6 cho viec hop va dieu kien du cho su d6ng bo day du Cac ket qua la ca sa cho viec thiet ke tdi uu cac he thdng Idn ttf cac he thdng nho va chi sir bao toan cac tfnh chat cua he thdng da tdng hop duac Kien nghj ve quy mo va ddi tuong ap dung nghien cihi: Cac ket qua nghien cuu dat dugc cd the ap dung cho cac mo hinh khac dang durgc sir dung de mo ta cac he thdng tuang tranh, ching han nhu: CSP, CCS, AP I , dac biet la nghien cuii tinh ddng bo day du cua chiing Cac ket qua tren cd the ap dung vao thuc te viec xay dung cac he thdng thong tin, cac day chuyen san xuat, cac ca sd du lieu phan tan, giao dien truyen tin, thiet ke cac mang may tinh Idn Chu nhiem d6 tai Ho va ten Hoang Chi Thanh Thu trucmg ca quan chu Iri d^ lai /V^i^^iwi^I Chu lich Hoi dong danh gia chinh thuc /TV V^i'n I^^^V^ Tliu Inrang ca quan quan ly dc tai Min^ IAMV/V cKu^r^ t(^