0521521475 cambridge university press the experimental foundations of particle physics aug 2009

567 73 0
0521521475 cambridge university press the experimental foundations of particle physics aug 2009

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

This page intentionally left blank T H E E X P E R I M E N TA L F O U N D AT I O N S O F PA RT I C L E P H Y S I C S Second Edition Our current understanding of elementary particles and their interactions emerged from break-through experiments This book presents these experiments, beginning with the discoveries of the neutron and positron, and following them through mesons, strange particles, antiparticles, and quarks and gluons This second edition contains new chapters on the W and Z , the top quark, B-meson mixing and CP violation, and neutrino oscillations This book provides an insight into particle physics for researchers, advanced undergraduate and graduate students Throughout the book, the fundamental equations required to understand the experiments are derived clearly and simply Each chapter is accompanied by reprinted articles and a collection of problems with a broad range of difficulty R O B E R T C A H N is a Senior Physicist at the Lawrence Berkeley National Laboratory His theoretical work has focused on the Standard Model, and, together with his collaborators, he developed one of the most promising methods for discovering the Higgs boson As a member of the BaBar Collaboration, he participated in the measurement of CP violation in B mesons is a Professor in the Graduate School at the University of California at Berkeley, and Faculty Senior Physicist at the Lawrence Berkeley National Laboratory He is co-discoverer of the antiproton annihilation process, the Bose–Einstein nature of pions, the J/Psi particle and psion spectroscopy, charmed mesons, and dark energy GERSON GOLDHABER T H E E X P E R I M E N TA L F O U N D AT I O N S O F PA RT I C L E P H Y S I C S Second Edition RO B E RT N C A H N Lawrence Berkeley National Laboratory GERSON GOLDHABER Lawrence Berkeley National Laboratory and University of California at Berkeley CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521521475 © First edition © Cambridge University Press 1989 Second edition © R Cahn and G Goldhaber 2009 This publication is in copyright Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press First published in print format 2009 ISBN-13 978-0-511-59551-6 eBook (EBL) ISBN-13 978-0-521-52147-5 Hardback Cambridge University Press has no responsibility for the persistence or accuracy of urls for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate For our grandchildren Zachary, Jakob, Mina, and Eve and Benjamin, Charles, and Samuel Contents Preface to the Second Edition Preface to the First Edition The Atom Completed and a New Particle The Muon and the Pion Strangeness Antibaryons The Resonances Weak Interactions The Neutral Kaon System The Structure of the Nucleon The J/ψ, the τ , and Charm 10 Quarks, Gluons, and Jets 11 The Fifth Quark 12 From Neutral Currents to Weak Vector Bosons 13 Testing the Standard Model 14 The Top Quark 15 Mixing and CP Violation in Heavy Quark Mesons 16 Neutrino Masses and Oscillations 17 Epilogue Index vii page ix xi 13 49 80 99 147 185 209 247 293 323 357 395 416 434 489 544 546 KamLAND Collaboration 539 540 Ref 16.7: Reactor Antineutrino Disappearance KamLAND Collaboration 541 542 Ref 16.7: Reactor Antineutrino Disappearance KamLAND Collaboration 543 17 Epilogue Six quarks, six leptons, together with the gluons of QCD and the photon and weak bosons, are enough to describe the tangible world and more, with remarkable economy Only the Higgs boson is missing among the ingredients of the canonical Standard Model And yet we know we are missing much more than this The last ten years of cosmological observations have established that the ordinary matter of quarks and leptons accounts for just 5% of the energy density of the Universe, that another 23% is “dark matter,” outside the Standard Model, and 72% of the energy density isn’t due to matter at all Moreover, we can’t answer the most basic question of all: why is there something rather than nothing? Why didn’t all the matter created in the Big Bang ultimately annihilate, particle against antiparticle? Andrei Sakharov explained that CP violation must be part of the answer, but we know it isn’t just the CP violation of the CKM matrix, for that wouldn’t account for the amount of matter that remains On the other hand, the strong interactions might have been CP violating but aren’t Why not? These questions are pressed upon us by facts and demand answers Other questions arise more from aesthetics: Are the strong and electroweak forces themselves unified? What about gravity? Are there more forces still to be discovered? Why are there three generations of quarks and leptons? Even more audaciously, why are there three spatial dimensions, or perhaps, are there more than three spatial dimensions? These are questions of physics, not metaphysics, because there are experiments to address them At CERN, the LEP tunnel is filled with 8-T magnets to constrain counterrotating beams of 7-TeV protons The gargantuan ATLAS and CMS detectors, the descendants of UA-1, UA-2, CDF, and D0, are there to pick out the 100 or so most interesting events of the 109 that will be produced each second At this energy, either the Higgs boson or some surrogate must make its appearance Supersymmetry would provide a replica of each known particle, with its spin offset by half a unit Among these could be the particle that makes up dark matter Particle physics, which has its origins in studies of cosmic rays and nuclear decays, is returning to these phenomena to answer basic questions Dark matter must be a form of cosmic rays and might be detected through collisions with ordinary matter if only all the extraneous backgrounds could be excluded by going deep underground with supersensitive detectors The absence of CP violation in the strong interactions can be explained at the 544 17 Epilogue 545 cost of introducing an axion, a feebly interacting particle a bit like a completely stable neutral pion The axion might itself be the dark matter and could be detected by converting it to a photon in a resonant cavity The CP violation that accounts for the baryon–antibaryon asymmetry might reside in very heavy neutrinos, which are beyond our reach Still, we can seek circumstantial evidence by looking for CP violation in the light neutrinos, whose mixing is only partially understood We don’t know yet how much of the electron-neutrino resides in the third neutrino mass eigenstate, the one whose mass is far from that of the other two All CP violating effects in neutrinos are proportional to this amplitude, sin θ13 Experiments both with accelerators and nuclear reactors are underway to measure this small quantity Perhaps words borrowed from Winston Churchill best describe Dark Energy “a riddle wrapped in a mystery inside an enigma.” It dominates the energy budget of the Universe but it isn’t matter at all About its properties we only know one thing: its pressure is nearly the negative of its energy Einstein’s abandoned Cosmological Constant, , fits the bill, for it gives p/ρ = −1 exactly, but the value of required is some 120 orders of magnitude larger than one would expect on dimensional grounds, showing that we really don’t understand this at all Alternatively, the Dark Energy might be something dynamical, not static The expansion history of the Universe, gleaned from precision measurements of distant type Ia supernovae, from weak gravitational lensing of distant galaxies, and from correlations between the locations of galaxies extracted from hundreds of millions of redshifts, provide the best means of learning more about Dark Energy The same measurements can check that the acceleration of the expansion of the Universe is not due to a failure of General Relativity, but really due to Dark Energy Some of the questions before particle physics have puzzled people for millennia What is the world, the Universe, made of? How did it start? How will it end? Others – like why is there any matter at all – require both understanding and imagination even to pose What is remarkable and thrilling is that we can expect to learn something about these formerly metaphysical questions by doing real experiments Index Aamodt, R L., 22 Abe, K., 262 Abrams, G S., 259 Adair, R., 103 adiabatic demagnetization, 154 Aguilar-Benitez, M., 262 ALEPH experiment, 395, 402 alpha ray, Alston, M., 108 Alternating Gradient Synchrotron (AGS), 158, 190, 248 Alvarez, L W., 58, 80, 102 Amaldi, E., 53, 81 Ambler, E., 154 AMY, 296 Anderson, C D., 4, 15, 49, 50 Anderson, H., 99 Anjos, J C., 263 annihilation electron–positron, 157, 247–256, 294, 296–298, 323, 328, 370 nucleon–antinucleon, 84 proton–antiproton, 81 quark–antiquark, 247 R in e+ e− , 295 three-jet events in e+ e− , 298 anomalous magnetic moment proton, 80, 211 antibaryon, 80, 83 antineutron, 83 antiparticle, 5, 57, 80, 81, 84, 147, 185 antiproton, 80–82, 84, 85 Araki, G., 16 ARGUS, 261, 329, 434 Armenteros, R., 108 Ashkin, J., 100 associated production, 57 Aston, F W., asymmetric e+ e− collider, 441 asymptotic freedom, 297 atomic mass, number, 1, weight, 1, B meson CP violation, 443 decay to π π , 440 decay to Dπ , 440 decay to J/ψ K , 439 exclusive decays, 328 lifetime, 328 mixing, 434 dilution, 439 semileptonic decays, 434 B∗ mesons, 328 BaBar, 442–450 Bagn`eres-de-Bigorre, 52 Baldo-Ceolin, M., 84 Balmer formula, 1, Baltrusaitis, R M., 259 baryon, 57, 80, 81, 84, 108, 111, 212, 293, 294 charmed, 255, 257 decuplet, 109 octet, 105, 108, 109 baryon–antibaryon asymmetry, 80 BEBC, 219 Becker, H., Becker, U., 248 Becquerel, H., 1, Belle experiment, 442–449 Benvenuti, A., 257 Bergkvist, K E., 150 beta decay, 4, 16, 17, 147, 150, 152, 155, 157, 160, 161, 325, 326, 357, 367 double, 490 parity violation in, 152, 154 pion, 156 beta ray, Bethe, H A., 6, 15, 49 546 Index Bethe–Heitler theory, 15 Bevatron, 57, 58, 80, 81, 84, 102, 105, 157, 186 BFP (Berkeley–Fermilab–Princeton) Collaboration, 220 Bhabha, H J., scattering, Bjorken, J D., 213, 254, 293, 295 Bjorklund, R., 19 blackbody radiation, Blackett, P M S., 5, 16, 49 Bloch, F., 80 Block, M., 105, 152 Bloom, E., 252 BNL, 54, 102, 108, 110, 157, 186, 190, 247, 248 Bohr, N., 2, 147 atom, Bonetti, A., 54 boson, 3, 18, 57 Higgs, 358, 363, 399, 402 identical, 22 pion, 25 vector, 159 W, 357, 358, 360, 364 Z, 358, 359 Bothe, W., Breit, G., 100 Breit–Wigner resonance, 100, 249, 396 bremsstrahlung, 14, 215 Brode, R B., 49 Brodsky, S J., 295 Brueckner, K A., 99 bubble chamber, 58, 84, 102, 103, 105, 108, 109, 153, 218, 219, 256–261, 358 Bugey neutrino experiment, 501 Butler, C C., 49 Cabibbo, N., 156, 159, 254 angle, 156, 216, 218, 254, 326 mixing, 257 Cabibbo–Kobayashi–Maskawa matrix, 327, 435 Callan–Gross relation, 214 calorimetry at B factories, 442 in beta decay, 147 in neutrino experiments, 219 UA-1, 364, 365 UA-1 and UA-2, 301 UA-2, 368 Caltech, Caltech–Fermilab collaboration, 361 Carithers, W C., 193 Carlson, A G., 19 Cartwright, W F., 25 cascade particle, − , 54 cascade zero, , 58 cathode ray, Cazzoli, E G., 256 CCFRR, 219, 220 CDF, 395, 416, 439, 442 CDHS, 219, 220, 326 CEA, Cambridge Electron Accelerator, 248 CERN, 158, 218, 257, 259, 301, 358, 364 CESR, 324 Chadwick, J., 4, 147 Chamberlain, O., 80 charge conjugation, 7, 185, 190, 251, 252 CHARM, 219 charm baryon, 255, 257 discovery, 257 hints of, 255–257 quark, 250, 252, 254, 255 Chen, A., 261, 327 Chen, M., 248 Cherenkov counter, 81, 84, 190, 248, 441 Cherenkov radiation, 84 Chew, G., 103, 104 Chew-Low analysis, 103 Chinowsky, W., 108, 186, 248 Chooz neutrino experiment , 501 Chr´etien, M., 105 Christenson, J H., 190 Christofilos, N., 158 CKM favored, 440 matrix, 326, 437, 438, 442, 444 suppressed, 445 suppression, 327, 435 Clark, D L., 25 CLEO, 261, 324 cloud chamber, 4, 13, 49, 50, 53, 58, 59, 153, 186 Co60 , 154 Cockroft, J D., 18 color, 248, 251, 293, 294, 302 confinement, 294 Compton, A H., scattering, 5, 262 wavelength, 298 Connolly, P L., 108 conservation CP, 195 energy, 4, 102, 149, 152 isospin, 57, 259 momentum, 102 parity, 24, 53 conserved vector current hypothesis, 156 Conversi, M., 17 Cork, B., 81 cosmic rays, 4, 13, 49, 51, 54, 58, 255 Cosmotron, 54, 58, 101, 103, 108, 157, 186 Coulomb’s law, Courant, E., 158 Cowan, C L., 157 547 548 Cowan, E W., 50, 54 CP, 108 action, 185 conservation, 185, 195 eigenstates, 185, 186 non-conservation, 185 violation, 190, 194, 437 from CKM matrix, 326 from three generations, 330 in B mesons, 443–446 in neutrinos, 511 in semileptonic decays, 193 CPT invariance, 190 Crandall, W E., 19 Cronin, J W., 190 Crystal Ball, 252 Curie, I., 4, 149 Curie, M., 1, Curie, P., CUSB, 324, 328 Cutkosky, R E., 101 CVC, 156 cyclotron Berkeley, 18 Chicago, 99 Nevis, 154 Rochester, 100 D meson, 257, 448 D∗ meson, 257 D0 experiment, 396, 417 Dalitz, R., 52, 152 pair, 25 plot, 52, 102, 103 Danysz, M, 54 DASP, 252, 253, 256, 323 DASP II, 324 Davis, Ray, 493 de Broglie, L., wave, decuplet, 109–111, 264 DELCO, 253 DELPHI experiment, 395 I = 1/2 rule, 160, 192, 330 J = operator, 150 multiplet, 109 resonance, 100, 104, 108, 109, 211, 212, 294 S = Q rule, 157, 186, 193, 256 Derenzo, S E., 153 DESY, 252, 253, 256, 258, 298, 323, 329 DESY–Heidelberg Collaboration, 253, 324 deuteron, 3, 23 dileptons, hint of charm, 255 Dirac, P A M., 3, 5, 52, 147 couplings, 297 δ function, 149 Index equation, 5, 80 matrices, 148, 150 moment, 80 particle, 80 particle, scattering of electron by, 214 spinor, 148, 210 theory, discrete symmetry, 26 DORIS, 253, 258, 298, 323–325, 366 Drell–Yan process, 247 drift chamber, 328, 364, 396 Dubna accelerator, 158 Dydak, F., 221 Einstein, A., elastic scattering, 49, 100, 101, 188, 212 amplitude, 188 electron, 210, 214 electron–proton, 211 electromagnetic shower, 15, 248 electron polarization in e+ e− annihilation, 295 electron, helicity in beta decay, 155 electron–proton scattering, 211 electroweak theory, 254 EMC, 220 emulsion, 17, 19, 80, 81, 84, 154, 186, 255 energy conservation, 4, 102, 149 energy loss by electrons, 15 , CP parameters, 192 Erwin, A R., 103 η meson decay, 106 discovery, 105 G-parity, 107 spin and parity, 105 η meson, 109, 111 ηc meson, 252 η± , η00 CP parameters, 192 F1 , F2 , 214 Feldman, G J., 260 Fermi, E., 4, 99, 100, 147 Golden Rule, 52, 149 theory of weak interactions, 147, 357 transition, 151 Fermi-Yang model, 104 Fermilab, 219, 220, 250, 258, 259, 301, 323, 361 fermion, Ferro-Luzzi, M., 105 Feynman, R P., 6, 152, 155, 213, 215, 222, 293 rules, 331 Fitch, V L., 190 flavor, 293, 298 form factor, 210, 211 F1 and F2 , 210 formation of resonances, 104 Index Fowler, W B., 58 Frascati, 248 Frauenfelder, H., 155 Frazer, W., 103 Fretter, W B., 49 Friedman, J L., 154 Friedrich, W., Fry, W F., 186 Fulco, J., 103 G-parity, 107 G-stack, 58 GALLEX neutrino experiment, 493 Gamow, G., 151 Gamow–Teller interaction, 357 transition, 151 Gardner, E., 19 Gargamelle bubble chamber, 218, 257, 358 Garwin, R L., 154 gauge theory, 363 Geiger, H., Geiger–Marsden experiment, Gell-Mann, M., 54, 57, 105, 109, 111, 155, 157, 185, 293 Gell-Mann–Nishijima relation, 57 Gell-Mann–Okubo relation, 108 Gershtein, S S., 156 GIM mechanism, 254 Gjesdal, S., 187 Glaser, D., 58 Glashow, S L., 254, 358 gluon, 215, 221, 251, 293 GNO, Gallium Neutrino Observatory, 493 Goldhaber, G., 81, 248 Goldhaber, M., 108, 155 Gran Sasso, 493 Greenberg, O W., 294 Grodzins, L., 155 Hadley, J., 22 hadron, 18 Han, K., 328 Heisenberg, W., Heitler, W., 15 helicity, 155, 216 Hess, V., Higgs, P W., 358 boson, 399, 402, 417 mechanism, 358, 363 Hofstadter, R., 211 Homestake Mine neutrino experiment, 493 Hooper, J E , 19 HPW Harvard–Penn–Wisconsin collaboration, 361 HPWF, 219 hydrogen bubble chamber, 58 hyperfragment, 54 hypernucleus, 54 hyperon, 52, 54 Iliopoulos, J., 254 IMB experiment, 500 impact parameter, 19 index of refraction, 188 inelastic scattering, 302 electron–proton, 212, 213 lepton, 297 neutrino, 215, 220, 360 internal symmetry, 26 ionization energy loss by, 4, 13, 15, 16, 51 minimum, 81 isospin, 19, 25, 26, 57, 99, 103 channels, 101 conservation, 259 forbidden decay, 259 nuclear multiplet, 157 of and pion, 103 of J/ψ , 250 of Y ∗ , 103 violations, 108 wave function, 103 isotope, 1, ISR, 258, 301, 366 JADE, 298, 300 jets, 294 hadronization, 295 in hadronic collisions, 301 in e+ e− annihilation, 295 in top decay, 416, 417 three-jet events in e+ e− , 298 Joliot, F., 4, 149 Jost, R., 107 J/ψ , 249 electromagnetic transitions, 252 width, 250 K∗ , 103, 108 K+ , discovery, 49 K, parity, 105 K-capture, 18 K L0 , 108, 186 K S0 , 108 K2K experiment, 506 Kamiokande experiment, 493 KamLAND neutrino experiment, 505 kaons, neutral, 185 KEK, 441 Kemmer, N., 19, 57 King, D T., 19 Klopfenstein, C., 327 549 550 Knipping, P., Kobayashi, M., 326 Kurie plot, 149 Kusch, P., L’h´eritier, M., 49 L3 experiment, 395 Lagarrigue, A., 358 Lamb, W E Jr., shift, , 102–104, 160, 186–189, 325 discovery, 54, 58 , 84 QC D , 298 c , 258 Lambertson, G R., 81 Lande, K., 186 Laporte’s rule, 23 Lattes, C M G., 17, 19, 49 Lawrence, E O., 18 Lederman, L M., 154, 159, 186, 247, 323 Lee, T D., 108, 152 Leighton, R B , 50 Leipuner, L B., 103 LEP, 395–400 LEP II, 401 Leprince-Ringuet, L., 49 lepton, 18 τ , 160 -pair production, 247 spectra in B decays, 327 leptonic decays, 156, 159, 252 leptonic scattering, 302 leptons like-sign in B mixing, 434 signature of Z, 367 Lewis, H., 19 Livingston, M S., 18, 158 Long, E A., 99 Lorentz-invariant amplitude, 53 Low, F., 103 LSND experiment, 507 luminosity, 366 Maglich, B., 102, 103 magnetic moment electron, muon, 154 neutron, 84 proton, 80, 211 Maiani, L., 254 Manchester, Mark I, 248, 256, 295, 297 Mark II, 328, 395, 397 MARK J, 298, 299 Marsden, E., Index Marshak, R E., 155 Maskawa, T., 326 mass difference K L0 − K S0 , 190 mass spectrometry, matrix mechanics, McAllister, R W., 211 McMillan, E., 19 Mendeleev, D I., meson, 18 Michel, L., 107, 152 parameter, 152 Millikan, R A., Mills, R., 357 MiniBooNE experiment, 508 MINOS experiment, 506 mixing B meson, 434 Bs meson, 434, 447 Cabibbo, 254, 257 D meson, 448 η−η , 111 K −K , 185 neutral K , 434 neutral gauge bosons, 358 neutrino, 491 ω−φ , 109 MNS matrix, 491, 509 Møller scattering, Møller, C., momentum conservation, 102 Moseley, H G J., Mott cross section, 209 Moyer, B J., 19 MSW effect, 495, 510 Muller, F., 189 multiplet baryon J P = (3/2)+ , 109 tensor meson, 110 vector meson, 108 muon, 17 decay, 154, 326 deep inelastic scattering, 221 magnetic moment, 154 produced in neutrino scattering, 218 Musset, P., 358 Nagle, D E., 99 Nakano, T., 57 Nambu, Y., 103 Ne’eman, Y., 105, 109 Neddermeyer, S H., 15 Nernst, R., 325 neutral weak currents, 254, 358, 360 neutrino, 4, 17, 147 Bugey experiment, 501 Index chlorine experiments, 493 Chooz experiment, 501 detection of, 157 GALLEX experiment, 493 gallium experiments, 493 helicity, 155 Homestake Mine experiment, 493 IMB experiment, 500 inelastic scattering, 215 K2K experiment, 506 Kamiokande experiment, 493 KamLAND experiment, 505 LSND experiment, 507 Majorana, 490 mass limits, 489 MiniBooNE experiment, 508 MINOS experiment, 506 mixing, 491 oscillations, 492 SAGE experiment, 493 see-saw mechanism, 491 SNO experiment, 503 solar results, 494 Super-Kamiokande experiment, 494, 500 neutrino beam, off axis, 512 neutrinoless double beta decay, 490 neutrinos cosmic ray, 500 number of, 396 solar, 493–500 two kinds, 157 neutron, discovery, Ni60 , 154 Nishijima, K., 57 N14 ,3 Niu, K., 255 non-conservation CP, 185 parity, 185 nonleptonic decays, 159 of charm, 257 November Revolution, 247 Novosibirsk, 248 nuclear forces, 16 Nygren, D., 14 O’Ceallaigh, C., 50 O’Neill, G., 248 Occhialini, G P S., 5, 16, 17, 49 octet baryon, 105 pseudoscalar, 105 tensor meson, 110 vector meson, 108 Oddone, P., 441 ω meson, 103, 108 − , 110 OPAL experiment, 395 Oppenheimer, J R., 5, 19 Ornstein, L S., Orsay, 248 pair creation, 5, 15 Pais, A., 54, 107, 185 Palmer, R., 255 Pancini, E., 17 Panofsky, W K H., 19, 22, 211 parity, 23, 26 conservation, 24, 152, 185 neutral pion, 25 violation, 152 Pauli, W., 4, 17, 147, 148 spin matrices, 148 spinor, 148 penetrating particles, 15 penguin process, 329, 444 PEP, 366 periodic table, Perkins, D H., 17, 358 Perl, M., 248, 252 PETRA, 252, 296, 298, 302, 329, 366 Pevsner, A., 105 phase shift, 100 phase stability, 19 φ meson spin, 108 photoelectric effect, Pic-du-Midi, 50 Piccioni, O., 17, 81 pion, 17, 24 charged mass, 22 spin, 24, 25 neutral, 19 lifetime, 19 mass, 22 spin, 25 parity, 22 Planck, M., constant, Plano, R., 25 PLUTO, 256, 298, 300, 323 Pniewski, J., 54 polarized electron–deuteron scattering, 361 Pontecorvo, B., 157 positron, emission, 149 potential models, 323 Powell, C F., 17, 49 Powell, W., 84 Prescott, C Y., 361 Prodell, A., 25 551 552 production of resonances, 104 proton charge radius, 211 magnetic moment, 80 Proton Synchrotron (PS), 218 Prowse, D., 84 PS, 158 ψ(3772), 257 ψ(3685), 250 QCD, 215 QED, quantum electrodynamics, 6, 16 quantum mechanics, quantum numbers, electroweak, 360 quark model, 111 R, in e+ e− annihilation, 248 Raab, J R., 263 Rabi, I I., 49, 80 radiation alpha, beta, blackbody, Rapidis, P A., 260 Rassetti, F., 4, 17 regeneration of K S0 , 189 Reines, F., 157 resonance, 99 3-3, 99 Breit–Wigner, 100, 249 formation, 104 hyperon , 102 in inelastic electron–nucleon scattering, 212 J/ψ , 247 production, 104 ρ , 103 ϒ , 323 width, 100 Retherford, R C., ρ meson, 103, 104, 107–108 Richman, C., 25 Richter, B., 247, 248 Rjukan, 503 Roberts, A , 25 Rochester, G D., 49 Răontgen, W C., Rosenbluth, M., 211 formula, 211 Rosenfeld, A H., 102 Rossi, B., 17 Rousset, A., 358 Royds, T., Rubbia, C., 364 Rutherford, E., 2, formula, 209 Index Rydberg unit, SAGE neutrino experiment, 493 Sakata model, 104 Salam, A., 358 Samios, N., 25, 255, 256 Sargent, C P., 153 scattering Bhabha, Compton, deep inelastic, 220 deep-inelastic electron, 212 elastic, 212 elastic electron, 210 elastic electron–proton, 211 elastic from fixed charge distribution, 210 elastic proton, 211 elastic proton–proton, 209 electron, 214 in parton model, 215 inelastic electron–nucleon, 293 inelastic electron–proton, 212 inelastic neutrino, 293 lepton–nucleon, 212 Møller, muon deep inelastic, 220 structure functions in electron, 212 Schrăodinger equation, Schwartz, M., 25, 157, 194 Schwinger, J., scintillator, 80, 84, 157, 190, 362 Segr`e, E., 80, 84 semileptonic decays, 156, 159, 187, 325, 326 B mesons, 328 charm, 257 Serber, R., − , 54 (1385), 102 silicon vertex detector, 417, 441 sin 2β , 442 Skobeltzyn, D., SLAC, 211, 247, 295, 361, 441 SLC, 395, 400 SLD, 400 SNO neutrino experiment, 503 Snyder, H., 158 Soddy, F., 2, solar neutrinos, 493–500, 510 Solmitz, F., 102 spark chamber, 153, 159, 190, 248, 250, 362 SPEAR, 248, 295, 366 sphericity, 295 SppS Collider, 301, 364, 366, 416 Steinberger, J., 19, 25, 159, 194 Steller, J., 19 Stern, O., 80 Index Stevenson, E C., 16 Stevenson, L., 102 strange particles, discovery, 49 strangeness, 57 Street, J C., 16 structure functions in electron scattering, 212 SU(3), 49, 105 color, 293 Sudarshan, E C G., 155 Sudbury Neutrino Observatory (SNO), 503 Sunyar, A W., 155 Super-Kamiokande experiment, 494, 500 supernova SN1987a, 493 supersaturation, 16 superweak model of CP violation, 194 SVX, 417, 440 symmetry continuous, 26 discrete, 26 internal, 26 isospin, 19 synchrocyclotron, 19 synchrotron, 19 ’t Hooft, G, 358 TASSO, 298 τ lepton, 253, 259 lifetime, 254 τ meson, 50 spin and parity, 52 τ −θ puzzle, 54, 152 Telegdi, V L., 154, 156 Teller, E., 151 tensor meson, 110 Tevatron Collider, 395, 417 Thomson, J J., 1, Ticho, H., 108 Ting, S C C., 247, 248 Tiomno, J., 152 Tomonaga, S., 6, 16 top quark, 416–419 TOPAZ, 296 TPC, 397 triggering, 16 Trilling, G., 248 Tripp, R., 105 TRISTAN, 296, 416 Turlay, R., 190 UA-1, 301, 364, 416, 434 UA-2, 301, 364, 367, 416 Uehling, E A., unitarity triangle, 437 universality of weak interactions, 152 ϒ , 323 ϒ(4S), 441 V01 , 50 V02 , 50 V-A theory, 155, 357 Van de Graaff, R J., 18 van der Meer, S., 364 van Wyk, W R., vector meson multiplet, 108 Veksler, V I., 19 violation parity, 152 von Krogh, J., 257 von Laue, M., W boson, 159, 254, 357, 358, 360, 364 discovery, 365 Walker, W D., 58 Walton, E T S., 18 Watson, M B., 105 weak isospin, 358, 360, 363 weak mixing angle θW , 359 Weinberg, S., 358 Weinrich, M., 154 Wenzel, W A., 81 Wheeler, J A., 152 Whitehead, M N., 25 Wiegand, C., 80 Wigner, E., 23, 100 Wilcox, H A., 25 Wilson, R., 25 Wolfenstein, L., 437 Wouthuysen, S., 19 Wu, C S., 154 Wu-Yang phase convention, 192 X-ray diffraction, discovery, lines, resonant scattering, 155 Y∗ , 102 Yang, C N., 100, 108, 152, 357 theorem, 20 Yang–Mills theory, 357 York, C M., 54 York, H F., 19 Ypsilantis, T., 80 Yukawa, H., 16, 159 particle, 16 Z boson, 358, 359 decay angular distribution, 399 width, 397 Zeeman splitting, Zeldovich, Ya B., 156 Zemach, C., 103 Zweig, G., 111, 293 553

Ngày đăng: 30/03/2020, 19:18

Từ khóa liên quan

Mục lục

  • Cover

  • Half-title

  • Title

  • Copyright

  • Dedication

  • Contents

  • Preface to the Second Edition

  • Preface to the First Edition

  • 1 The Atom Completed and a New Particle

    • Exercises

    • Further Reading

    • References

    • 2 The Muon and the Pion

      • Exercises

      • Further Reading

      • References

      • 3 Strangeness

        • Exercises

        • Further Reading

        • References

        • 4 Antibaryons

          • Exercises

          • References

          • 5 The Resonances

            • Exercises

Tài liệu cùng người dùng

Tài liệu liên quan