1. Trang chủ
  2. » Giáo án - Bài giảng

Tự chọn Hình học 9

12 563 2
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 12
Dung lượng 212 KB

Nội dung

a 0 a 0 m O A B O O A B C D A B C D 1 2 0 5 5 1 0 O M A B 1 6 0 2 3 D E O A B C Giáo án Tự chọn Tốn 9- Phần Hình học CH Ủ ĐỀ 4 Tiết 1 : GÓC Ở TÂM-SỐ ĐO DỘ CỦA CUNG – SO SÁNH CUNG A-LÝ THUYẾT : a) Góc ở tâm : Là góc có đỉnh trùng với tâm đường tròn AOB : Góc ở tâm AmB : Cung bò chắn của góc ở tâm AOB b) Số đo độ của cung Cung tròn AmB và góc ở tâm chắn cung đó có cùng số đo độ c) So sánh cung . 1- Cung bằng nhau 2- Cung không bằng nhau AB =CD <=> AOB = COD AB > CD <=> AOB > COD AB = CD <=> sđAB = sđCD AB > CD <=> sđAB > sđCD B/PHƯƠNG PHÁP CHUNG Tính các góc ở tâm , tính số đo các cung , so sánh các cung , ch. minh đẳng thức về số đo các cung . C/BÀI TẬP Bài 1: Cho đường tròn (O;5cm)và điểm M ngoài đường tròn với OM = 10cm .Vẽ hai tiếp tuyến MA và MB (A,B là hai tiếp điểm ).Tính các góc ở tâm do hai tia OA ,OB xác đònh . H.dẫn : * OA MA (T/c tiếp tuyến ) * Tam giác vuông OAM có OA = ½ OM. Suy ra AMO = 30 0 và AOM = 60 0 *Vậy AOB = 2AOM = 2.60 0 = 120 0 * OA , OB xác đònh hai góc ở tâm có số đo 120 0 và 240 0 Bài 2 : Cho tam giác đều ABC .Vẽ đường tròn đường kính BC cắt cạnh AB tại D , cắt cạnh AC tại E .So sánh các cung BD ,DE và EC . Hướng dẫn : *Ta có : OB = OD và OBD = 60 0  Tam giác OBD đều Do đó BOD = 60 0 *Tương tự tam giác COE đều  COE = 60 0 và DOE = 60 0 * Ba góc O 1 = O 2 = O 3 = 60 0 (ở tâm ) Vậy BD = DE = EC D/BÀI TẬP TỰ LUYỆN Cho hai đường tròn (O;R) và (O,r) đồng tâm ở O .Điểm M ngoài (O;R) .Qua M vẽ hai tiếp tuyến với (O,r) , một cắt (O,R) tại A và B (A nằm giữa M và B ) một cắt (O,R) tại C và D (C nằm giữa D và M) .Chứng minh AB = CD 1 Giáo án Tự chọn Toán 9- Phần Hình học ********* 2 O A B C D M N m O B A H Giáo án Tự chọn Tốn 9- Phần Hình học Tiết 2 : LIÊN HỆ GIỮA CUNG VÀ DÂY A- LÝ THUYẾT : O D O D B A C C B A B- PHƯƠNG PHÁP CHUNG : vận dụng sự liên hệ giữa cung và dây cung để so sánh độ lớn của các cung . C- BÀI TẬP : Bài 1: Cho đường tròn (O) đường kính AB . Từ A và B vẽ hai dây AC song song BD . Qua O vẽ đường vuông góc với AC tại M và BD tại N . So sánh hai cung AC và BD . H.dẫn : * Chứng minh ∆ AMO = ∆ BNO . * Suy ra : OM = ON . * Từ đó : AC = BD . * Vậy AC = BD Bài 2 : Dây cung AB chia đường tròn tâm O thành 2 cung AmB = 1/3 AnB . a) Tính mỗi cung ( theo độ ) . b) CMR : Khoảng cách OH từ tâm O đến dây bằng AB/2 . H.dẫn: * Sđ AmB = 360 0 /4 = 90 0 . * Sđ AnB = 3.90 0 = 270 0 . * Tam giác OAB vuông tại O (góc AOB = 90 0 ). * OH vừa là đường cao vừa là trung tuyến nên OH = AB/2 D- BÀI TẬP TỰ LUYỆN : Trên đường tròn (O) vẽ hai cung AB = 2CD . Chứng minh AB < 2 CD . H.dẫn : * Vẽ cung DD’ = cung CD về phía D .Ta có CD’ = 2 CD = AB Suy ra CD’ = AB .Xét bất đẳng thức về cạnh của tam giác CDD’ có CD’ < CD + DD’ . 3 AB = CD ⇔ AB = CD AB < CD ⇔ AB < CD Giáo án Tự chọn Toán 9- Phần Hình học Do ñoù AB < 2CD ******* 4 O B A C E O B A C D Giáo án Tự chọn Tốn 9- Phần Hình học Tiết 3 GÓC NỘI TIẾP . A- LÝ THUYẾT : O O O B A C M B N A C B C A H1: * BAC = ½ BOC H2: MAN = MBN = MCN H3: BAC = 1V * BAC = ½ sđ BC B- PHƯƠNG PHÁP CHUNG : Vận dụng góc nội tiếp để tính các góc , số đo của các cung , chứng minh hệ thức , chứng minh sự thẳng hàng C- BÀI TẬP : Bài 1 : Cho đường tròn (O) . Hai bán kính OA ⊥ OB và sđ AC : sđ BC = 4/5 . Tính các góc của tam giác ABC . H.dẫn : * Góc AOB = 90 0 => sđ AB = 90 0 . * Góc ACB = sđ AC + sđ CB = 360 0 – 90 0 = 270 0 . * Theo giả thiết thì sđ AC : sđ BC = 4/5 Hay (sđ AC + sđ BC ) : sđ BC = 9/5 . Suy ra sđ BC = 150 0 . Và sđ AC = 270 0 – 150 0 = 120 0 Vậy A = 75 0 ; B = 60 0 ; C = 45 0 Bài 2 : Cho đường tròn (O) đường kính AB vuông góc dây CD tại E .Chưng minh CD 2 = 4AE.BE . H.dẫn : * AB ⊥ CD => EC = ED . * Góc ACB = 90 0 (góc nội tiếp chắn nửa đường tròn) . * Áp dụng hệ thức lượng trong tam giác vuông CAB có CE 2 = AE.EB . Mà CE = ½ CD. Suy ra : CE 2 =(½ CD) 2 = ¼ CD 2 Hay 4CE 2 = CD 2 .Vậy CD 2 = 4 AE.BE . D- BÀI TẬP TỰ LUYỆN : 5 Giáo án Tự chọn Tốn 9- Phần Hình học Cho tam giác ABC cân tại A và góc A = 50 0 . Nửa đường tròn đường kính AC cắt AB tại D và cắt BC tại H . Tính số đo các cung AD ; DH và HC . ******* 6 x O A B O M A B C M C A B D I Giáo án Tự chọn Tốn 9- Phần Hình học Tiết 4 GÓC TẠO BỞI TIẾP TUYẾN VÀ DÂY CUNG . A-LÝ THUYẾT : B- PHƯƠNG PHÁP CHUNG Vận dụng để so sánh độ lớn của các góc với nhau , tính góc , tính độ dài của đoạn thẳng hoặc để chứng minh đẳng thức về góc . D- BÀI TẬP . Bài 1 : Cho đường tròn tậm O . Ba điểm A,B,C trên (O) .Dây cung CB kéo dài gặp tiếp tuyến tại A ở M . So sánh AMC với ABC và ACB ? H.dẫn : * ABC = BAM + AMC (góc ngoài tam giác) . * ACB = BAM (góc nội tiếp chắn cung BA) . * Suy ra AMC = ABC – ACB . Bài 2 : Cho đường tronø (O,R) .Hai đường kính AB và CD vuông góc nhau .Gọi I là một điểm trên cung AC , vẽ tiếp tuyến qua I cắt DC kéo dài tại M sao cho IC = CM . a) Tính AOI . b) Tính độ dài đoạn OM . H.dẫn : a) Tính AOI . * CI = CM (gt) ⇒ ∆ CMI cân tại C và CIM = CMI .(1) * AOI = CMI (góc có cạnh tương ứng vuông góc ) (2) * Từ (1) và (2) ⇒ AOI = CIM . * AOI = sđAI và CIM = ½ sđCI ⇒ sđ CI = 2sđAI . * Vậy sđAI = 1/3 sđ AC = 30 0 .Do đó AOI = 30 0 . b) Tính OM *Ta co ù IOM = 90 0 – AOI = 60 0 . * Tam giác vuông IOM có góc 60 0 là nửa tam giác đều . Vậy OM = 2OI = 2R E- BÀI TẬP TỰ LUYỆN : Cho hai đường tròn (O) > (O’) tiếp xúc ngoài nhau tại A .Qua A vẽ cát tuyến BD và CE (B,C ∈ (O’) ; D,E ∈ (O)).Chứng minh ABC = ADE . H.dẫn : * Vẽ tiếp tuyến chung xy qua A . * xAC = yAE(đối đỉnh) . 7 BAx = ½ BOA = ½ sđ AB I O D C A B 4 0 I B A O M C D x 4 0 7 0 E A B O M C D Giáo án Tự chọn Tốn 9- Phần Hình học * xAC = ABC = ½ sđAC và yAE = ADE = ½ sđAE. * Suy ra ABC = ADE . Tiết 5 GÓC CÓ ĐỈNH Ở BÊN TRONG HAY BÊN NGOÀI ĐƯỜNG TRÒN . A-LÝ THUYẾT : 1) Đỉnh bên trong đường tròn : 2) Đỉnh bên ngoài đường tròn . I D B B O O O M M M A C A D B A M = ½ Sđ(BD – AC) M = ½ sđ(AD – AB) M = ½ sđ ( AIB – AnB) B-PHƯƠNG PHÁP CHUNG . Vận dụng số đo của các góc , các cung , so sánh các góc , các cung . C-BÀI TẬP . Bài 1 : Cho 4 điểm A,B,C,D theo thứ tự trên đường tròn tâm (O) sao cho sđ AB = 40 0 , sđCD = 120 0 . Gọi I là giao điểm của AC và BD ; M là giao điểm của DA và CB kéo dài . Tính CID và ANB . H.dẫn : * CID = ½ sđ (AB + CD ).= ½ (40 0 +120 0 ) = 80 0 . * AMB = ½ sđ (CD - AB ).= ½ (120 0 -40 0 ) = 40 0 Bài 2 : Cho đường tròn (O) . Từ một điểm M ngoài (O) ta vẽ cát tuyến MAC và MBD sao cho góc CMD = 40 0 . Gọi E là giao điểm AD và BC .Biết góc AEB = 70 0 .Tính số đo AB và CD . H.dẫn :* Đặt sđ AB = x và sđCD = y . * AEB = ½ (x+y ) ⇒ x + y = 140 0 (1) *CMD = ½ (y – x) ⇒ y – x = 80 0 (2) . Giải hệ pt gồm (1) và (2) ta được : x = 30 và y = 110 *Vậy sđAB = 30 0 ; sđ CD = 110 0 . D- BÀI TẬP TỰ LUYỆN : 8 BID = ½ sđ (BD + AC) Giáo án Tự chọn Tốn 9- Phần Hình học Cho đường tròn (O) và điểm M ngoài (O) . Vẽ tiếp tuyến MA (A là tiếp điểm) và cát tuyến MBC đi qua O (B nằm giữa M và C ) . Đường tròn đường kính MB gặp MA tại E .Chứng minh : sđ AnC = sđBIA +sđBKE . H.dẫn :* Với (O) thì M = ½ sđ (AnC – AIB) (1) *Với (O’) thì M = ½ sđ BKE (2) . * So sánh (1) và (2) ⇒ sđ AnC = sđBIA +sđBKE 9 O A B D C I B C A H K F x y 1 2 O B A C D B O M A C I Giáo án Tự chọn Tốn 9- Phần Hình học Tiết 6 TỨ GIÁC NỘI TIẾP . A- LÝ THUYẾT . 1) Thuận : Tứ giác ABCD nội tiếp đường tròn ⇒ A + C = 180 0 . B + D = 180 0 . 2) Đảo : Tứ giác ABCD có A + C = 180 0 . Hoặc B + D = 180 0 ⇒ Tứ giác ABCD nội tiếp được đường tròn . 3) Các tứ giác nội tiếp được đường tròn . O O O A B D C A B D C A D B C B- PHƯƠNG PHÁP CHUNG Vận dụng tính chất thuận , đảo của tứ giác nội tiếp và các tứ giác đặc biệt đã học để chứng minh tứ giác nội tiếp được đường tròn . C- BÀI TẬP . Bài 1 : Cho tam giác ABC (AB > AC) .Vẽ 3 đường cao AH ,BK,CF và I là trực tâm .Nêu tên các tứ giác nội tiếp đường tròn khi nối KH,HF và FK . H.dẫn : Các tứ giác AFIK ; CHIK ; BHKA ; BHIF ; AFHC; BFKC. Nội tiếp được trong đường tròn Bài 2 : Cho góc nhọn xOy . Trên cạnh Ox lấy hai điểm A,B sao cho OA = 2cm ; OB = 6cm .Trên cạnh Oy lấy hai điểm C,D sao cho OC = 3cm , OD = 4cm .Nối BD và AC . Chứng minh tứ giác ABDC nội tiếp đường tròn . H.dẫn : * Xét ODBOAC ∆≈∆ vì góc O chung . 2 1 6 3 2 1 4 2 ==== OB OC va OD OA Do đó B = C 1 Mà C 1 +C 2 = 180 0 Suy ra C 2 + B = 180 0 Vậy tứ giác ABDC là tứ giác nội tiếp D- BÀI TẬP TỰ LUYỆN . Cho đường tròn tâm O và điểm A thuộc (O) . Từ M trên tiếp tuyến tại A vẽ cát tuyến MBC .Gọi I là trung điểm dây BC .Chứng minh tứ giác AMOI nội tiếp đường tròn . H.dẫn : Nối OI .Ta có OI ⊥ BC (tính chất đường kính qua trung điểm dây cung) .Suy ra OIM = 90 0 . 10 [...]... ngoại tiếp c) OA = R = 2/3 AH = 2/3 O 6 3 = 2 3 cm 2 k B r H C 11 Giáo án Tự chọn Tốn 9- Phần Hình học OH = r = 1/3AH = 1/3 6 3 = 3 cm 2 D-BÀI TẬP TỰ LUYỆN Cho đường tròn (O,R) a) Nêu cách vẽ hình vuông nội tiếp b) Tính trung đoạn hình vuông theo R H.dẫn : a) Vẽ 2 đường kính AC BD , nối các đầu đường kính với nhau ; ABCD là hình vuông cần vẽ b) Trung đoạn OH = R 2 2 ********************************...Giáo án Tự chọn Tốn 9- Phần Hình học Vậy tứ giác AMOI là tứ giác nội tiếp *** ĐA GÍAC ĐỀU NỘI VÀ NGOẠI TIẾP ĐƯỜNG TRÒN Tiết 7 B C A-LÝ THUYẾT 1) Tính chất : Bất kỳ đa giác đều nào cũng có một H r đường tròn ngoại tiếp và... đều nội tiếp A D B C B H R O A R B H C R r O r= R O D r C D a= R A 3 R 2 H F E a=R 2 r= a=R R 2 2 r= R 3 2 B- PHƯƠNG PHÁP CHUNG Vận dụng tính chất đa giác đều nội tiếp và ngoại tiếp đường tròn để vẽ hình , tính bán kính đt nội tiếp và ngoại tiếp ; chứng minh được đa giác đều , tính cạnh và góc của đa giác đều C- BÀI TẬP Cho tam giác đều ABC có cạnh 6cm a) Vẽ đt ngoại tiếp tam giác ABC b) Vẽ đt... TRA CHỦ ĐỀ IV Bài 1 :(4điểm) Cho nửa đường tròn đường kính AB và một dây CD Qua C vẽ đường thẳng vuông góc với CD , cắt AB tại I Các tiếp tuyến tại A và B của nửa đường tròn cắt đường thẳng CD theo thứ tự tại E và F Chứng minh rằng : a) Các tứ giác AECI và BFCI nội tiếp được b) ∆IEF = ∆CAB , từ đó suy ra ∆IEF vuông Bài 2 :(6 điểm) Từ một điểm M ở bên ngoài (O) ta vẽ hai tiếp tuyến MA,MB với đường . .Chứng minh AB = CD 1 Giáo án Tự chọn Toán 9- Phần Hình học ********* 2 O A B C D M N m O B A H Giáo án Tự chọn Tốn 9- Phần Hình học Tiết 2 : LIÊN HỆ GIỮA. AB < CD Giáo án Tự chọn Toán 9- Phần Hình học Do ñoù AB < 2CD ******* 4 O B A C E O B A C D Giáo án Tự chọn Tốn 9- Phần Hình học Tiết 3 GÓC NỘI

Ngày đăng: 19/09/2013, 15:10

HÌNH ẢNH LIÊN QUAN

Vận dụng tính chất đa giác đều nội tiếp và ngoại tiếp đường tròn để vẽ hình , tính bán kính đtnội tiếp và ngoại tiếp ; chứng minh được đa giác đều , tính cạnh và góc của đa giác đều . - Tự chọn Hình học 9
n dụng tính chất đa giác đều nội tiếp và ngoại tiếp đường tròn để vẽ hình , tính bán kính đtnội tiếp và ngoại tiếp ; chứng minh được đa giác đều , tính cạnh và góc của đa giác đều (Trang 11)

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w